Chemometric Assessment of Bulgarian Wastewater Treatment Plants’ Effluents
Abstract
:1. Introduction
2. Results
2.1. Basic Statistics
2.2. Multivariate Analysis
3. Discussion
3.1. Basic Statistics
3.2. WWTP Effluents Ratios
3.3. Multivariate Analysis
4. Materials and Methods
4.1. Data Acquisition and Input Data Arrangement
4.2. Chemical Analysis
4.3. Multivariate Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. Department of Economic and Social Affairs, Population Division. In World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352); United Nations: New York, NY, USA, 2014. [Google Scholar]
- Jones, B.; O’Neill, B.C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 2016, 11, 084003. [Google Scholar] [CrossRef]
- Henze, M.; Comeau, Y. Wastewater Characterization. In Biological Wastewater Treatment: Principles Modelling and Design; Henze, M., Van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D., Eds.; IWA Publishing: London, UK, 2008; pp. 33–52. ISBN 978-1-84339-188-3. [Google Scholar]
- Dyer, S.D.; Wang, X. A comparison of stream biological responses to discharge from wastewater treatment plants in high and low population density areas. Environ. Toxicol. Chem. 2002, 21, 1065–1075. [Google Scholar] [CrossRef]
- Carey, R.O.; Migliaccio, K.W. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef]
- Council of the European Union. Council Directive 91/271/EEC concerning urban waste-water treatment. OJ. L. 1991, 135, 40–52. [Google Scholar]
- Jackson, M.C.; Loewen, C.J.G.; Vinebrooke, R.D.; Chimimba, C.T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Chang. Biol. 2016, 22, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Amorello, D.; Barreca, S.; Gambacurta, S.; Gulotta, M.G.; Orecchio, S.; Pace, A. An analytical method for monitoring micro-traces of landfill leachate in groundwater using fluorescence excitation–emission matrix spectroscopy. Anal. Methods 2016, 8, 3475–3480. [Google Scholar] [CrossRef]
- Meyer, J.L.; Paul, M.J.; Taulbee, W.K. Stream ecosystem function in urbanizing landscapes. J. N. Am. Benthol. Soc. 2005, 24, 602–612. [Google Scholar] [CrossRef]
- Miserendino, M.L.; Brand, C.; Di Prinzio, C.Y. Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollut. 2008, 194, 91–110. [Google Scholar] [CrossRef]
- Aristi, I.; Von Schiller, D.; Arroita, M.; Barceló, D.; Ponsatí, L.; García-Galán, M.J.; Sabater, S.; Elosegi, A.; Acuña, V. Mixed effects of effluents from a wastewater treatment plant on river ecosystem metabolism: Subsidy or stress? Freshw. Biol. 2015, 60, 1398–1410. [Google Scholar] [CrossRef]
- Posthuma, L.; Eijsackers, H.J.P.; Koelmans, A.A.; Vijver, M.G. Ecological effects of diffuse mixed pollution are site-specific and require higher-tier risk assessment to improve site management decisions: A discussion paper. Sci. Total Environ. 2008, 406, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Altenburger, R.; Ait-Aissa, S.; Antczak, P.; Backhaus, T.; Barceló, D.; Seiler, T.-B.; Brion, F.; Busch, W.; Chipman, K.; De Alda, M.L.; et al. Future water quality monitoring—Adapting tools to deal with mixtures of pollutants in water resource management. Sci. Total. Environ. 2015, 512, 540–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atashgahi, S.; Aydin, R.; Dimitrov, M.R.; Sipkema, D.; Hamonts, K.; Lahti, L.; Maphosa, F.; Kruse, T.; Saccenti, E.; Springael, D.; et al. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Sci. Rep. 2015, 5, 17284. [Google Scholar] [CrossRef] [PubMed]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; Metcalf & Eddy, Ed.; McGraw-Hill Series in Civil and Environmental Engineering; McGraw-Hill: New York, NY, USA, 2003; ISBN 978-0-07-041878-3. [Google Scholar]
- Andersen, C.B.; Lewis, G.P.; Sargent, K.A. Influence of wastewater-treatment effluent on concentrations and fluxes of solutes in the Bush River, South Carolina, during extreme drought conditions. Environ. Geosci. 2004, 11, 28–41. [Google Scholar] [CrossRef]
- Marti, E.; Riera, J.L.; Sabater, F. Effects of wastewater treatment plants on stream nutrient dynamics under water scarcity conditions. In Water Scarcity in the Mediterranean: Perspectives under Global Change; Sabater, S., Barcelo, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 173–196. [Google Scholar]
- Petersen, T.M.; Rifai, H.S.; Suarez, M.P.; Stein, A.R. Bacteria Loads from Point and Nonpoint Sources in an Urban Watershed. J. Environ. Eng. 2005, 131, 1414–1425. [Google Scholar] [CrossRef]
- Arroita, M.; Elosegi, A.; Hall, R.O. Twenty years of daily metabolism show riverine recovery following sewage abatement. Limnol. Oceanogr. 2019, 64, S77–S92. [Google Scholar] [CrossRef] [Green Version]
- Pereda, O.; Solagaistua, L.; Atristain, M.; De Guzmán, I.; Larrañaga, A.; Von Schiller, D.; Elosegi, A. Impact of wastewater effluent pollution on stream functioning: A whole-ecosystem manipulation experiment. Environ. Pollut. 2020, 258, 113719. [Google Scholar] [CrossRef]
- Drury, B.; Rosi-Marshall, E.; Kelly, J.J. Wastewater Treatment Effluent Reduces the Abundance and Diversity of Benthic Bacterial Communities in Urban and Suburban Rivers. Appl. Environ. Microbiol. 2013, 79, 1897–1905. [Google Scholar] [CrossRef] [Green Version]
- Kuemmerlen, M.; Reichert, P.; Siber, R.; Schuwirth, N. Ecological assessment of river networks: From reach to catchment scale. Sci. Total Environ. 2019, 650, 1613–1627. [Google Scholar] [CrossRef]
- Miltner, R.J.; Rankin, A.E.T. Primary nutrients and the biotic integrity of rivers and streams. Freshw. Biol. 1998, 40, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Dodds, W.K.; Welch, E.B. Establishing nutrient criteria in streams. J. N. Am. Benthol. Soc. 2000, 19, 186–196. [Google Scholar] [CrossRef]
- Rabalais, N.N. Nitrogen in Aquatic Ecosystems. Ambio 2002, 31, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Dowd, F.S. Municipal wastewater treatment plants’ nitrogen removal response to financial incentives in Maryland and Virginia. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 29 June 2015. [Google Scholar]
- Yang, S.; Büttner, O.; Kumar, R.; Jäger, C.; Jawitz, J.W.; Rao, P.S.C.; Borchardt, D. Spatial patterns of water quality impairments from point source nutrient loads in Germany’s largest national River Basin (Weser River). Sci. Total Environ. 2019, 697, 134145. [Google Scholar] [CrossRef] [PubMed]
- Ibisch, R.; Austnes, K.; Borchardt, D.; Boteler, B.; Leujak, W.; Lukat, E.; Rouillard, J.; Schmedtje, U.; Solheim, A.L.; Westphal, K. European Assessment of Eutrophication Abatement Measures across Land-Based Sources, Inland, Coastal and Marine Waters; European Topic Centre on Inland, Coastal and Marine Waters (ETC/ICM Technical Report 2); UFZ: Magdeburg, Germany, 2016. [Google Scholar]
- Westphal, K.; Graeber, D.; Musolff, A.; Fang, Y.; Jawitz, J.W.; Borchardt, D. Multi-decadal trajectories of phosphorus loading, export, and instream retention along a catchment gradient. Sci. Total Environ. 2019, 667, 769–779. [Google Scholar] [CrossRef]
- Ludwig, W.; Dumont, E.; Meybeck, M.; Heussner, S. River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Prog. Oceanogr. 2009, 80, 199–217. [Google Scholar] [CrossRef]
- Passy, P.; Gypens, N.; Billen, G.; Garnier, J.; Thieu, V.; Rousseau, V.; Callens, J.; Parent, J.-Y.; Lancelot, C. A model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone since 1984. J. Mar. Syst. 2013, 128, 106–122. [Google Scholar] [CrossRef]
- Meybeck, M.; Lestel, L.; Carré, C.; Bouleau, G.; Garnier, J.; Mouchel, J.M. Trajectories of river chemical quality issues over the Longue Durée: The Seine River (1900S–2010). Environ. Sci. Pollut. Res. 2018, 25, 23468–23484. [Google Scholar] [CrossRef]
- Aissa-Grouz, N.; Garnier, J.; Billen, G. Long trend reduction of phosphorus wastewater loading in the Seine: Determination of phosphorus speciation and sorption for modeling algal growth. Environ. Sci. Pollut. Res. 2018, 25, 23515–23528. [Google Scholar] [CrossRef]
- Zhang, D.; Tao, Y.; Liu, X.; Zhou, K.; Yuan, Z.; Wu, Q.; Zhang, X. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China. Water Sci. Technol. 2016, 73, 1243–1252. [Google Scholar] [CrossRef]
- Figueroa-Nieves, D.; McDowell, W.H.; Potter, J.D.; Martínez, G.; Ortiz-Zayas, J.R. Effects of Sewage Effluents on Water Quality in Tropical Streams. J. Environ. Qual. 2014, 43, 2053–2063. [Google Scholar] [CrossRef]
- Shtereva, G.; Velikova, V.; Doncheva, V. Human impact on marine water nutrients enrichment. J. Environ. Protect. Ecol. 2015, 16, 40–48. [Google Scholar]
- Mulling, B.T.M.; Van den Boomen, R.M.; Van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W. Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland. Water Res. 2013, 47, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Ouali, A.; Azri, C.; Medhioub, K.; Ghrabi, A. Descriptive and multivariable analysis of the physico-chemical and biological parameters of Sfax wastewater treatment plant. Desalination 2009, 246, 496–505. [Google Scholar] [CrossRef]
- Lu, W.; Wu, J.; Li, Z.; Cui, N.; Cheng, S. Water quality assessment of an urban river receiving tail water using the single-factor index and principle component analysis. Water Sci. Technol. Water Supply 2019, 19, 603–609. [Google Scholar] [CrossRef]
- Sun, S.; Jia, L.; Li, B.; Yuan, A.; Kong, L.; Qi, H.; Ma, W.; Zhang, A.; Wu, Y. The occurrence and fate of PAHs over multiple years in a wastewater treatment plant of Harbin, Northeast China. Sci. Total Environ. 2018, 624, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Platikanov, S.; Rodriguez-Mozaz, S.; Huerta, B.; Barceló, D.; Cros, J.; Batle, M.; Poch, G.; Tauler, R. Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements. J. Environ. Manag. 2014, 140, 33–44. [Google Scholar] [CrossRef]
- Yotova, G.; Lazarova, S.; Kudłak, B.; Zlateva, B.; Mihaylova, V.; Wieczerzak, M.; Venelinov, T.; Tsakovski, S. Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies. Molecules 2019, 24, 2274. [Google Scholar] [CrossRef] [Green Version]
- Hagan, K.; Anderson, M. 2014 Watershed Overview of Wastewater Treatment Plant. Performance; Grand River Conservation Authority: Cambridge, UK, 2016. [Google Scholar]
- Mucha, Z.; Mikosz, J. Analysis of unit pollution loads for small wastewater treatment plants. In Research and Application of New Technologies in Wastewater Treatment and Municipal Solid Waste Disposal in Ukraine, Sweden and Poland, Proceedings of the A Polish-Swedish-Ukrainian Seminar, Ustron, Poland, 23–24 November 2007; Plaza, E., Levlin, E., Eds.; Joint Polish-Swedish Reports; Warsaw University of Technology: Warszawa, Poland, 2005. [Google Scholar]
- Henze, M.; Harremoës, P.; La Cour Jansen, J.; Arvin, E. Wastewater Treatment: Biological and Chemical Processes, 3rd ed.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Von Sperling, M.; De Lemos Chernicharo, C.A. Biological Wastewater Treatment in Warm Climate Regions; IWA Publishing: London, UK, 2005; Volume 1. [Google Scholar]
- Płuciennik-Koropczuk, E.; Myszograj, S. New Approach in COD Fractionation Methods. Water 2019, 11, 1484. [Google Scholar]
- Navarro, A.; Tauler, R.; Lacorte, S.; Barceló, D. Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J. Hydrol. 2010, 383, 18–29. [Google Scholar] [CrossRef]
- Acquavita, A.; Aleffi, I.F.; Benci, C.; Bettoso, N.; Crevatin, E.; Milani, L.; Tamberlich, F.; Toniatti, L.; Barbieri, P.; Licen, S.; et al. Annual characterization of the nutrients and trophic state in a Mediterranean coastal lagoon: The Marano and Grado Lagoon (northern Adriatic Sea). Reg. Stud. Mar. Sci. 2015, 2, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Tauler, R. Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst. 1995, 30, 133–146. [Google Scholar] [CrossRef]
- Dadashi, M.; Ghaffari, S.; Bakhtiari, A.R.; Tauler, R. Multivariate curve resolution of organic pollution patterns in mangrove forest sediment from Qeshm Island and Khamir Port—Persian Gulf, Iran. Environ. Sci. Pollut. Res. 2018, 25, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Jaumot, J.; De Juan, A.; Tauler, R. MCR-ALS GUI 2.0: New features and applications. Chemom. Intell. Lab. Syst. 2015, 140, 1–12. [Google Scholar] [CrossRef]
Sample Availability: Samples are not available from the authors. |
Parameter | Concentration (mg/L) | Load (kg/day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Stdev | Mean | Median | Min | Max | Stdev | |
COD | 37.09 | 22.15 | 5.00 | 702.0 | 59.42 | 772.7 | 328.0 | 9.9 | 10569.0 | 1362.6 |
BOD | 11.12 | 5.90 | 0.90 | 323.5 | 28.16 | 211.4 | 75.0 | 0.9 | 4870.5 | 427.6 |
N | 9.68 | 8.69 | 1.40 | 39.50 | 5.89 | 273.1 | 86.3 | 2.7 | 3543.5 | 556.3 |
P | 1.13 | 0.94 | 0.01 | 6.20 | 0.72 | 27.3 | 12.4 | 0.1 | 355.3 | 51.8 |
TSS | 12.27 | 8.00 | 0.20 | 306.0 | 20.64 | 241.9 | 93.6 | 2.5 | 4607.0 | 403.5 |
Reference | Unit | COD | BOD | N | P | TSS |
---|---|---|---|---|---|---|
this study | g/p.e./day | 1.3–61.7 | 0.2–29.5 | 0.36–16.3 | 0.03–1.45 | 0.21–18.8 |
[44] | g/person/day | – | 80 | 13 | 3.2 | 90 |
[45] | g/p.e./day | 36–159 | 17–76 | 4.2–18 | 0.68–2.5 | 14.2–87 |
[4] | g/cap/day | 25–200 | 15–80 | 2–15 | 1–3 | – |
kg/Year/Person | Unit | BOD | N | P | TSS |
---|---|---|---|---|---|
this study | kg/p.e./yr | 0.08–10.8 | 0.13–6.0 | 0.01–0.53 | 0.08–6.86 |
Brazil | kg/cap/yr | 20–25 | 3–5 | 0.5–1 | 20–25 |
Egypt | kg/cap/yr | 10–15 | 3–5 | 0.4–0.6 | 15–25 |
India | kg/cap/yr | 10–15 | – | – | – |
Turkey | kg/cap/yr | 10–15 | 3–5 | 0.4–0.6 | 15–25 |
US | kg/cap/yr | 30–35 | 5–7 | 0.8–1.2 | 30–35 |
Denmark | kg/cap/yr | 20–25 | 5–7 | 0.8–1.2 | 30–35 |
Germany | kg/cap/yr | 20–25 | 4–6 | 0.7–1 | 30–35 |
P/TSS | BOD/TSS | BOD/COD | |
---|---|---|---|
Average | 0.17 | 1.05 | 0.28 |
min | 0.03 | 0.27 | 0.07 |
max | 0.67 | 4.20 | 0.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yotova, G.; Venelinov, T.; Tsakovski, S. Chemometric Assessment of Bulgarian Wastewater Treatment Plants’ Effluents. Molecules 2020, 25, 4408. https://doi.org/10.3390/molecules25194408
Yotova G, Venelinov T, Tsakovski S. Chemometric Assessment of Bulgarian Wastewater Treatment Plants’ Effluents. Molecules. 2020; 25(19):4408. https://doi.org/10.3390/molecules25194408
Chicago/Turabian StyleYotova, Galina, Tony Venelinov, and Stefan Tsakovski. 2020. "Chemometric Assessment of Bulgarian Wastewater Treatment Plants’ Effluents" Molecules 25, no. 19: 4408. https://doi.org/10.3390/molecules25194408
APA StyleYotova, G., Venelinov, T., & Tsakovski, S. (2020). Chemometric Assessment of Bulgarian Wastewater Treatment Plants’ Effluents. Molecules, 25(19), 4408. https://doi.org/10.3390/molecules25194408