Ring-Closing Metathesis Approaches towards the Total Synthesis of Rhizoxins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Planning
2.2. Synthesis of Alcohol 7*
2.3. Synthesis of Acid 6
2.4. Building Block Assembly and Attempted Ring-Closing Olefin Metathesis
2.5. Macrocyclization by Ring-Closing Alkyne Metathesis (RCAM)
2.5.1. Synthesis of Building Blocks
2.5.2. Building Block Assembly and Completion of the Synthesis of Rhizoxin F (2)
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iwasaki, S.; Kobayashi, H.; Furukawa, J.; Namikoshi, M.; Okuda, S. Studies on macrocyclic lactone antibiotics. vii. structure of a phytotoxin "Rhizoxin" produced by Rhizopus Chinensis. J. Antibiot. 1984, 37, 354–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, S.; Namikoshi, M.; Kobayashi, H.; Furukawa, J.; Okuda, S. Studies on macrocyclic lactone antibiotics. viii. Absolute structures of rhizoxin and a related compound. J. Antibiot. 1986, 39, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.; Matsumoto, S.; Iwasaki, S.; Yahara, I. Molecular basis for determining the sensitivity of eucaryotes to the antimitotic drug rhizoxin. Mol. Gen. Genet. 1990, 222, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Koga-Ban, Y.; Niki, T.; Nagamura, Y.; Sasaki, T.; Minobe, Y. cDNA Sequences of Three Kinds of β-tubulins from Rice. DNA Res. 1995, 2, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Partida-Martinez, L.P.; Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 2005, 437, 884–888. [Google Scholar] [CrossRef]
- Partida-Martinez, L.P.; Hertweck, C. A Gene Cluster Encoding Rhizoxin Biosynthesis in “Burkholderia rhizoxina”, the Bacterial Endosymbiont of the Fungus Rhizopus microspores. ChemBioChem 2007, 8, 41–45. [Google Scholar] [CrossRef]
- Scherlach, K.; Partida-Martinez, L.P.; Dahse, H.-M.; Hertweck, C. Antimitotic Rhizoxin Derivatives from a Cultured Bacterial Endosymbiont of the Rice Pathogenic Fungus Rhizopus microsporus. J. Am. Chem. Soc. 2006, 128, 11529–11536. [Google Scholar] [CrossRef]
- Prota, A.; Bargsten, K.; Díaz, J.F.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, C.; Andreu, J.M.; Altmann, K.-H.; Steinmetz, M.O. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl. Acad. Sci. USA 2014, 111, 13817–13821. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, S.; Namikoshi, M.; Kobayashi, H.; Furukawa, J.; Okuda, S. Studies on macrocyclic lactone antibiotics. IX: Novel macrolides from the fungus Rhizopus chinensis: Precursors of rhizoxin. Chem. Pharm. Bull. 1986, 34, 1387–1390. [Google Scholar] [CrossRef] [Green Version]
- Kiyoto, S.; Kawai, Y.; Kawakita, T.; Kino, E.; Okuhara, M.; Uchida, I.; Tanaka, H.; Hashimoto, M.; Terano, H.; Kohsaka, M.; et al. A new antitumor complex, Wf-1360, Wf-1360A, B, C, D, E and F. J. Antibiot. 1986, 39, 762–772. [Google Scholar] [CrossRef] [Green Version]
- Brendel, N.; Partida-Martinez, L.P.; Scherlach, K.; Hertweck, C. A cryptic PKS-NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org. Biomol. Chem. 2007, 5, 2211–2213. [Google Scholar] [CrossRef] [PubMed]
- Loper, J.E.; Henkels, M.D.; Shaffer, B.T.; Valeriote, F.A.; Gross, H. Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl. Environ. Microbiol. 2008, 74, 3085–3093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loper, J.E.; Henkels, M.D.; Rangel, L.I.; Olcott, M.H.; Walker, F.L.; Bond, K.L.; Kidarsa, T.A.; Hesse, C.N.; Sneh, B.; Stockwell, V.O.; et al. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ. Microbiol. 2016, 18, 3509–3521. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.S.; Prasad, V.; Roach, M.C.; Takahashi, M.; Iwasaki, S.; Luduena, R.F. Interaction of rhizoxin with bovine brain tubulin. Cancer Res. 1990, 50, 4277–4280. [Google Scholar]
- Takahashi, M.; Iwasaki, S.; Kobayashi, H.; Okuda, S.; Murai, T.; Sato, Y. Rhizoxin binding to tubulin at the maytansine-binding site. Biochim. Biophys. Acta 1987, 926, 215–223. [Google Scholar] [CrossRef]
- Hendriks, H.R.; Plowman, J.; Berger, D.P.; Paull, K.D.; Fiebig, H.H.; Fodstad, Ø.; van der Meulen, H.C.D.; Henrar, R.E.C.; Pinedo, H.M.; Schwartsmann, G. Preclinical antitumour activity and animal toxicology studies of rhizoxin, a novel tubulin-interacting agent. Ann. Oncol. 1992, 3, 755–763. [Google Scholar] [CrossRef]
- Tsuruo, T.; Ohara, T.; Iida, H.; Tsukagoshi, S.; Sato, Z.; Matsuda, I.; Iwasaki, S.; Okuda, S.; Shimizu, F.; Sasagawa, K.; et al. Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against human and murine tumor cells and their vincristine-resistant sublines. Cancer Res. 1986, 46, 381–385. [Google Scholar]
- Hanauske, A.-R.; Catimel, G.; Aamdal, S.; Huinink, W.T.B.; Paridaens, R.; Pavlidis, N.; Kaye, S.B.; Velde, A.T.; Wanders, J.; Verweij, J. Phase II clinical trials with rhizoxin in breast cancer and melanoma. Br. J. Cancer 1996, 73, 397–399. [Google Scholar] [CrossRef] [Green Version]
- Nakada, M.; Kobayashi, S.; Shibasaki, M.; Iwasaki, S.; Ohno, M. The first total synthesis of the antitumor macrolide, rhizoxin. Tetrahedron Lett. 1993, 34, 1039–1042. [Google Scholar] [CrossRef]
- Neuhaus, C.M.; Liniger, M.; Stieger, M.; Altmann, K.-H. Total synthesis of the tubulin inhibitor WF-1360F based on macrocycle formation through ring-closing alkyne metathesis. Angew. Chem. Int. Ed. 2012, 52, 5866–5870. [Google Scholar] [CrossRef]
- Hong, J.; White, J.D. The chemistry and biology of rhizoxins, novel antitumor macrolides from Rhizopus chinensis. Tetrahedron 2004, 60, 5653–5681. [Google Scholar] [CrossRef]
- Mitchell, I.S.; Pattenden, G.; Stonehouse, J. A total synthesis of the antitumour macrolide rhizoxin. Org. Biomol. Chem. 2005, 3, 4412–4431. [Google Scholar] [CrossRef] [PubMed]
- Karier, P.; Ungeheuer, F.; Ahlers, A.; Anderl, F.; Wille, C.; Fürstner, A. Metathesis at an Implausible Site: A Formal Total Synthesis of Rhizoxin D. Angew. Chem. Int. Ed. 2018, 58, 248–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukayama, T.; Naraska, K.; Banno, K. A New Aldol Type Reaction. Chem. Lett. 1973, 2, 1011–1014. [Google Scholar] [CrossRef] [Green Version]
- Mukaiyama, T.; Banno, K.; Narasaka, K. New Cross-Aldol reactions. Reactions of Silyl Enol Ethers with Carbonyl Compounds Activated by Titanium Tetrachloride. J. Am. Chem. Soc. 1974, 96, 7503–7509. [Google Scholar] [CrossRef]
- Paterson, I.; Goodman, M. Aldol reactions of methylketones using chiral boron reagents: A reversal in aldehyde enantioface selectivity. Tetrahedron Lett. 1989, 30, 997–1000. [Google Scholar] [CrossRef]
- Hosomi, A.; Sakurai, H. Syntheses of γ,δ-unsaturated alcohols from allylsilanes and carbonyl compounds in the presence of titanium tetrachloride. Tetrahedron Lett. 1976, 16, 1295–1298. [Google Scholar] [CrossRef]
- Keck, G.E.; Tarbet, K.H.; Geraci, L.S. Catalytic Asymmetric Allylation of Aldehydes. J. Am. Chem. Soc. 1993, 115, 8467–8468. [Google Scholar] [CrossRef]
- White, J.D.; Blakemore, P.R.; Green, N.J.; Hauser, E.B.; Holoboski, M.A.; Keown, L.E.; Nylund Kolz, C.S.; Phillips, B.W. Total Synthesis of Rhizoxin D, a Potent Antimitotic Agent from the Fungus Rhizopus chinensis. J. Org. Chem. 2002, 67, 7750–7760. [Google Scholar] [CrossRef]
- Menche, D.; Hassfeld, J.; Li, J.; Rudolph, S. Total synthesis of archazolid A. J. Am. Chem. Soc. 2007, 129, 6100–6101. [Google Scholar] [CrossRef]
- Dess, D.B.; Martin, J.C. A Useful 12-I-5 Triacetoxyperiodinane (the Dess-Martin Periodinane) for the Selective Oxydation of Primary or Secondary Alcohols and a Variety of Related 12-I-5 Species. J. Am. Chem. Soc. 1991, 113, 7277–7278. [Google Scholar] [CrossRef]
- House, H.O.; Rasmussen, G.H. Stereoselective Synthesis of α-Substituted α,β-Unsaturated Esters. J. Org. Chem. 1961, 26, 11–4278. [Google Scholar] [CrossRef]
- Nahm, S.; Weinreb, S.M. N-methoxy-n-methylamides as effective acylating agents. Tetrahedron Lett. 1981, 22, 3815–3818. [Google Scholar] [CrossRef]
- Cazeau, P.; Duboudin, F.; Moulines, F.; Babot, F.; Dunogues, J. A new practical synthesis of silyl enol ethers: II. From α,β-unsaturated aldehydes and ketones. Tetrahedron 1987, 43, 2089–2093. [Google Scholar] [CrossRef]
- Evans, D.A.; Chapman, K.T.; Carreira, E.M. Directed Reduction of β-Hydroxy Ketones Employing Tetramethylammonium Triacetoxyborohydride. J. Am. Chem. Soc. 1988, 110, 3560–3578. [Google Scholar] [CrossRef]
- Sugiyama, H.; Yokokawa, F.; Shioiri, T. Total synthesis of mycothiazole, a polyketide heterocycle from marine sponges. Tetrahedron 2003, 59, 6579–6593. [Google Scholar] [CrossRef]
- Poon, K.W.C.; Dudley, G.B. Mix-and-Heat Benzylation of Alcohols Using a Bench-Stable Pyridinium Salt. J. Org. Chem. 2006, 71, 3923–3927. [Google Scholar] [CrossRef]
- Iversen, T.; Bundle, D.R. Benzyl trichloroacetimidate, a versatile reagent for acid-catalysed benzylation of hydroxy-groups. Chem. Commun. 1981, 1240–1241. [Google Scholar] [CrossRef]
- Negishi, E.-I. Palladium- or Nickel-Catalyzed Cross Coupling. A New Selective Method for Carbon-Carbon Bond Formation. Acc. Chem. Res. 1982, 15, 340–348. [Google Scholar] [CrossRef]
- Tamao, K.; Sumitani, K.; Kumada, M. Selective Carbon-Carbon Bond Formation by Cross-Coupling of Grignard Reagents with Organic Halides. Catalysis by Nickel-Phosphine Complexes. J. Am. Chem. Soc. 1972, 94, 4374–4376. [Google Scholar] [CrossRef]
- Knappke, C.E.; Von Wangelin, A.J. 35 years of palladium-catalyzed cross-coupling with Grignard reagents: How far have we come? Chem. Soc. Rev. 2011, 40, 4948–4962. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. Catalytic Asymmetric Allylation Using a Chiral (Acyloxy)borane Complex as a Versatile Lewis Acid Catalyst. J. Am. Chem. Soc. 1993, 115, 11490–11495. [Google Scholar] [CrossRef]
- Williams, D.R.; Meyer, K.G. Total Synthesis of (+)-Amphidinolide K. J. Am. Chem. Soc. 2001, 123, 765–766. [Google Scholar] [CrossRef]
- Schlosser, M. Superbases for organic synthesis. Pure Appl. Chem. 1988, 60, 1627–1634. [Google Scholar] [CrossRef]
- Prandi, C.; Venturello, P. α,β-Unsaturated Acetals as Precursors of α-Substituted Ethoxy Dienes. Useful Reagents for Nucleophilic Acylation. J. Org. Chem. 1994, 59, 5458–5462. [Google Scholar] [CrossRef]
- Moreno-Dorado, F.J.; Guerra, F.M.; Manzo, F.L.; Aladro, F.J.; Jorge, Z.D.; Massanet, G.M. CeCl3/NaClO: A safe and efficient reagent for the allylic chlorination of terminal olefins. Tetrahedron Lett. 2003, 44, 6691–6693. [Google Scholar] [CrossRef]
- Smith, A.B.; Sfouggatakis, C.; Risatti, C.A.; Sperry, J.B.; Zhu, W.; Doughty, V.A.; Tomioka, T.; Gotchev, D.B.; Bennett, C.S.; Sakamoto, S.; et al. Spongipyran synthetic studies. Evolution of a scalable total synthesis of (+)-spongistatin 1. Tetrahedron 2009, 65, 6489–6509. [Google Scholar] [CrossRef] [Green Version]
- Weigand, S.; Brückner, R. Direct Preparation of Allylstannanes from Allyl Alcohols: Convenient Synthesis of β-Substituted Allylstannanes and of Stereodefined γ-Substituted Allylstannanes. Synthesis 1996, 475–482. [Google Scholar] [CrossRef]
- Takano, S.; Inomata, K.; Samizu, K.; Tomita, S.; Yanase, M.; Suzuki, M.; Iwabuchi, Y.; Sugihara, T.; Ogasawara, K. A Convenient One-flask Synthesis of α-Methylenealdehydes from Primary Alcohols. Chem. Lett. 1989, 1283–1284. [Google Scholar] [CrossRef]
- Naruta, Y.; Nishigaichi, Y.; Maruyama, K. Extremely Facile and Stereoselective Preparation of Allylstannanes with Use of Ultrasound. Chem. Lett. 1986, 1857–1860. [Google Scholar] [CrossRef]
- Corey, E.J.; Imwinkelried, R.; Pikul, S.; Xiang, Y.B. Practical enantioselective Diels-Alder and aldol reactions using a new chiral controller system. J. Am. Chem. Soc. 1989, 111, 5493–5495. [Google Scholar] [CrossRef]
- Williams, D.R.; Meyer, K.G.; Shamim, K.; Patnaik, S. Diastereoselectivity in asymmetric allylations: The role of vicinal chirality in the allyl nucleophile for SE2′ reactions with aldehydes. Can. J. Chem. 2004, 82, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Hoye, T.R.; Jeffrey, C.S.; Shao, F. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc. 2007, 2, 2451–2458. [Google Scholar] [CrossRef] [PubMed]
- Davenport, R.J.; Regan, A.C. Synthesis of a C1–C9 fragment of rhizoxin. Tetrahedron Lett. 2000, 41, 7619–7622. [Google Scholar] [CrossRef]
- Tebbe, F.N.; Parshall, G.W.; Reddy, G.S. Olefin Homologation with Titanium Methylene Compounds. J. Am. Chem. Soc. 1978, 100, 3611–3613. [Google Scholar] [CrossRef]
- Okazoe, T.; Hibino, J.-I.; Takai, K.; Nozaki, H. Chemoselective methylenation with a methylenedianion synthon. Tetrahedron Lett. 1985, 26, 5581–5584. [Google Scholar] [CrossRef]
- Takai, K.; Nitta, K.; Utimoto, K. Simple and selective method for aldehydes (RCHO). fwdarw.(E)-haloalkenes (RCH:CHX) conversion by means of a haloform-chromous chloride system. J. Am. Chem. Soc. 1986, 108, 7408–7410. [Google Scholar] [CrossRef]
- Aissa, C. Improved Julia−Kocienski Conditions for the Methylenation of Aldehydes and Ketones. J. Org. Chem. 2006, 71, 360–363. [Google Scholar] [CrossRef]
- Lebel, H.; Paquet, V. Rhodium-Catalyzed Methylenation of Aldehydes. J. Am. Chem. Soc. 2004, 126, 320–328. [Google Scholar] [CrossRef]
- Lebel, H.; Parmentier, M. Copper-Catalyzed Methylenation Reaction: Total Synthesis of (+)-Desoxygaliellalactone. Org. Lett. 2007, 9, 3563–3566. [Google Scholar] [CrossRef]
- Li, J.; Menche, D. Selective Deprotection of Silyl Ethers with Sodium Periodate. Synthesis 2009, 1904–1908. [Google Scholar] [CrossRef]
- Blanchette, M.A.; Choy, W.; Davis, J.T.; Essenfeld, A.P.; Masamune, S.; Roush, W.R.; Sakai, T. Horner-Wadsworth-Emmons reaction: Use of lithium chloride and an amine for base-sensitive compounds. Tetrahedron Lett. 1984, 25, 2183–2186. [Google Scholar] [CrossRef]
- Schrodi, Y.; Pederson, R.L. Evolution and Applications of Second-Generation Ruthenium Olefin Metathesis Catalysts. Aldrichim. Acta 2007, 40, 45–52. [Google Scholar]
- Ung, T.; Hejl, A.; Grubbs, R.H.; Schrodi, Y. Latent Ruthenium Olefin Metathesis Catalysts That Contain an N-Heterocyclic Carbene Ligand. Organometallics 2004, 23, 5399–5401. [Google Scholar] [CrossRef] [Green Version]
- Hoye, T.R.; Jeffrey, C.S.; Tennakoon, M.A.; Wang, J.; Zhao, H. Relay Ring-Closing Metathesis (RRCM): A Strategy for Directing Metal Movement Throughout Olefin Metathesis Sequences. J. Am. Chem. Soc. 2004, 126, 10210–10211. [Google Scholar] [CrossRef]
- Wang, X.; Bowman, E.J.; Bowman, B.J.; Porco, J.A., Jr. Total Synthesis of the Salicylate Enamide Macrolide Oximidine III: Application of Relay Ring-Closing Metathesis. Angew. Chem. Int. Ed. 2004, 43, 3601–3604. [Google Scholar] [CrossRef]
- Robinson, A.J.; Elaridi, J.; Van Lierop, B.J.; Mujcinovic, S.; Jackson, W.R. Microwave-assisted RCM for the synthesis of carbocyclic peptides. J. Pept. Sci. 2007, 13, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Voigtritter, K.; Ghorai, S.; Lipshutz, B.H. Rate Enhanced Olefin Cross-Metathesis Reactions: The Copper Iodide Effect. J. Org. Chem. 2011, 76, 4697–4702. [Google Scholar] [CrossRef] [Green Version]
- Fürstner, A.; Mathes, C.; Lehmann, C.W. Mo[N(t-Bu)(Ar)]3 Complexes As Catalyst Precursors: In Situ Activation and Application to Metathesis Reactions of Alkynes and Diynes. J. Am. Chem. Soc. 1999, 121, 9453–9454. [Google Scholar] [CrossRef] [Green Version]
- Brewitz, L.; Llaveria, J.; Yada, A.; Fürstner, A. Formal Total Synthesis of the Algal Toxin (−)-Polycavernoside A. Chem. Eur. J. 2013, 19, 4532–4537. [Google Scholar] [CrossRef]
- Chaładaj, W.; Corbet, M.; Fürstner, A. Total Synthesis of Neurymenolide A Based on a Gold-Catalyzed Synthesis of 4-Hydroxy-2-pyrones. Angew. Chem. Int. Ed. 2012, 51, 6929–6933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willwacher, J.; Kausch-Busies, N.; Fürstner, A. Divergent Total Synthesis of the Antimitotic Agent Leiodermatolide. Angew. Chem. Int. Ed. 2012, 51, 12041–12046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehr, K.; Fürstner, A. An efficient route to the musk odorant (R,Z)-5-muscenone via base-metal-catalysis. Tetrahedron 2012, 68, 7695–7700. [Google Scholar] [CrossRef]
- Hickmann, V.; Kondoh, A.; Gabor, B.; Alcarazo, M.; Fürstner, A. Catalysis-Based and Protecting-Group-Free Total Syntheses of the Marine Oxylipins Hybridalactone and the Ecklonialactones A, B, and C. J. Am. Chem. Soc. 2011, 133, 13471–13480. [Google Scholar] [CrossRef]
- Benson, S.; Collin, M.-P.; Arlt, A.; Gabor, B.; Goddard, R.; Fürstner, A. Second-Generation Total Synthesis of Spirastrellolide F Methyl Ester: The Alkyne Route. Angew. Chem. Int. Ed. 2011, 50, 8739–8744. [Google Scholar] [CrossRef] [Green Version]
- Lehr, K.; Mariz, R.; Leseurre, L.; Gabor, B.; Fürstner, A. Total Synthesis of Tulearin C. Angew. Chem. Int. Ed. 2011. [Google Scholar] [CrossRef] [Green Version]
- Micoine, K.; Fürstner, A. Concise Total Synthesis of the Potent Translation and Cell Migration Inhibitor Lactimidomycin. J. Am. Chem. Soc. 2010, 132, 14064–14066. [Google Scholar] [CrossRef]
- Hickmann, V.; Alcarazo, M.; Fürstner, A. Protecting-Group-Free and Catalysis-Based Total Synthesis of the Ecklonialactones. J. Am. Chem. Soc. 2010, 132, 11042–11044. [Google Scholar] [CrossRef] [Green Version]
- Schaubach, S.; Gebauer, K.; Ungeheuer, F.; Hoffmeister, L.; Ilg, M.K.; Wirtz, C.; Fürstner, A. A Two-Component Alkyne Metathesis Catalyst System with an Improved Substrate Scope and Functional Group Tolerance: Development and Applications to Natural Product Synthesis. Chem. Eur. J. 2016, 22, 8494–8507. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.; Schulthoff, S.; Dao, Q.M.; Wirtz, C.; Fürstner, A. Total Synthesis of Disciformycin A and B: Unusually Exigent Targets of Biological Significance. Chem. Eur. J. 2018, 24, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Mata, G.; Woelfl, B.; Fürstner, A. Synthesis and Molecular Editing of Callyspongiolide, Part 1: The Alkyne Metathesis/trans-Reduction Strategy. Chem. Eur. J. 2019, 25, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.W. Ring-closing alkyne metathesis in natural product synthesis. In Metathesis in Natural Product Synthesis; Cossy, J., Arseniyadis, S., Meyer, C., Eds.; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2010; pp. 205–223. [Google Scholar]
- Trost, B.M.; Ball, Z.T. Alkyne Hydrosilylation Catalyzed by a Cationic Ruthenium Complex: Efficient and General Trans Addition. J. Am. Chem. Soc. 2005, 127, 17644–17655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacombe, F.; Radkowski, K.; Seidel, G.; Fürstner, A. (E)-Cycloalkenes and (E,E)-cycloalkadienes by ring closing diyne- or enyne-yne metathesis/semi-reduction. Tetrahedron 2004, 60, 7315–7324. [Google Scholar] [CrossRef]
- Kleinbeck, F.; Carreira, E.M. Total Synthesis of Bafilomycin A1. Angew. Chem. Int. Ed. 2009, 121, 586–589. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, J.C.; Weerasooriya, U. Diazoethenes: Their Attempted Synthesis from Aldehydes and Aromatic Ketones by Way of the Horner-Emmons Modification of the Wittig Reaction. A Facile Synthesis of Alkynes1. J. Org. Chem. 1982, 47, 1837–1845. [Google Scholar] [CrossRef]
- Vatèle, J.-M. Yb(OTf)3-Catalyzed Oxidation of Alcohols with Iodosylbenzene Mediated by TEMPO. Synlett 2006, 2055–2058. [Google Scholar] [CrossRef]
- Lafontaine, J.A.; Provencal, D.P.; Gardelli, C.; Leahy, J.W. Enantioselective Total Synthesis of the Antitumor Macrolide Rhizoxin D. J. Org. Chem. 2003, 68, 4215–4234. [Google Scholar] [CrossRef]
- Hama, N.; Matsuda, T.; Sato, T.; Chida, N. Total Synthesis of (−)-Agelastatin A: The Application of a Sequential Sigmatropic Rearrangement. Org. Lett. 2009, 11, 2687–2690. [Google Scholar] [CrossRef]
- Sternberg, H.W.; Greenfield, H.; Friedel, R.H.; Wotiz, J.H.; Markby, R.; Wender, I. A new type of metallo-organic complex derived fromdicobalt octacarbonyl and acetylenes. J. Am. Chem. Soc. 1954, 76, 1457–1458. [Google Scholar] [CrossRef]
- Greenfield, H.; Sternberg, H.W.; Friedel, R.H.; Wotiz, J.H.; Markby, R.; Wender, I. Acetylenic Dicobalt Hexacarbonyls. Organometallic Compounds Derived from Alkynes and Dicobalt Octacarbonyl. J. Am. Chem. Soc. 1956, 78, 120–124. [Google Scholar] [CrossRef]
- Yenjai, C.; Isobe, M. One-step recyclization of sugar acetylenes to form medium ether rings via dicobalthexacarbonyl complexes. Tetrahedron 1998, 54, 2509–2520. [Google Scholar] [CrossRef]
- Isobe, M.; Yenjai, C.; Tanaka, S. Medium Size Ether Ring Formation of C-Alkynylated Sugars via Dicobalthexacarbonyl Complexes. Synlett 1994, 916–918. [Google Scholar] [CrossRef]
- Hosokawa, S.; Isobe, M. Reductive decomplexation of biscobalthexacarbonyl acetylenes into olefins. Tetrahedron Lett. 1998, 39, 2609–2612. [Google Scholar] [CrossRef]
- Takai, S.; Ploypradith, P.; Hamajima, A.; Kira, K.; Isobe, M. Sodium Hypophosphite Decomplexation of Acetylenebiscobalthexacarbonyls to cis-Olefins. Synlett 2002, 588–592. [Google Scholar] [CrossRef]
- Chong, Y.K.; Moad, G.; Rizzardo, E.; Thang, S.H. Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by Radical-Induced Reduction. Macromolecules 2007, 40, 4446–4455. [Google Scholar] [CrossRef]
- Jang, D.O.; Cho, D.H.; Kim, J. Diphenylphosphine Oxide: An Alternative to Organotin Hydrides in the Radical Deoxygenation of Alcohols. Synth. Commun. 1998, 28, 3559–3565. [Google Scholar] [CrossRef]
- Kende, A.S.; Blass, B.E.; Henry, J.R. Enantioselective total synthesis of didesepoxyrhizoxin. Tetrahedron Lett. 1995, 36, 4741–4744. [Google Scholar] [CrossRef]
- Kusebauch, B.; Scherlach, K.; Kirchner, H.; Dahse, H.-M.; Hertweck, C. Antiproliferative Effects of Ester- and Amide-Functionalized Rhizoxin Derivatives. Chemmedchem. 2011, 6, 1998–2001. [Google Scholar] [CrossRef]
- Stella, V.J.; Umprayn, K.; Waugh, W.N. Development of parenteral formulations of experimental cytotoxic agents. I. Rhizoxin (NSC-332598). Int. J. Pharm. 1988, 43, 191–199. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liniger, M.; Neuhaus, C.M.; Altmann, K.-H. Ring-Closing Metathesis Approaches towards the Total Synthesis of Rhizoxins. Molecules 2020, 25, 4527. https://doi.org/10.3390/molecules25194527
Liniger M, Neuhaus CM, Altmann K-H. Ring-Closing Metathesis Approaches towards the Total Synthesis of Rhizoxins. Molecules. 2020; 25(19):4527. https://doi.org/10.3390/molecules25194527
Chicago/Turabian StyleLiniger, Marc, Christian M. Neuhaus, and Karl-Heinz Altmann. 2020. "Ring-Closing Metathesis Approaches towards the Total Synthesis of Rhizoxins" Molecules 25, no. 19: 4527. https://doi.org/10.3390/molecules25194527
APA StyleLiniger, M., Neuhaus, C. M., & Altmann, K.-H. (2020). Ring-Closing Metathesis Approaches towards the Total Synthesis of Rhizoxins. Molecules, 25(19), 4527. https://doi.org/10.3390/molecules25194527