Synthesis of Highly Crystalline Graphite from Spontaneous Ignition of In Situ Derived Acetylene and Chlorine at Ambient Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chung, D.D.L. Review Graphite. J. Mater. Sci. 2002, 37, 1475–1489. [Google Scholar] [CrossRef]
- Jara, A.D.; Betemariam, A.; Woldetinsae, G.; Kim, J.Y. Purification, application and current market trend of natural graphite: A review. Int. J. Min. Sci. Technol. 2019, 29, 671–689. [Google Scholar] [CrossRef]
- Bourlinos, A.B.; Georgakilas, V.; Zboril, R.; Steriotis, T.A.; Stubos, A.K. Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small 2009, 5, 1841–1845. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Beaudoin, J.J. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications; Elsevier Science & Technology Books: Norwich, NY, USA, 2000. [Google Scholar]
- Rodygin, K.S.; Werner, G.; Kucherov, F.A.; Ananikov, V.P. Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology. Chem. Asian J. 2016, 11, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Q.; Li, W.; Meng, H.; Lu, Y.; Li, C. Synthesis and Supercapacitor Application of Alkynyl Carbon Materials Derived from CaC2 and Polyhalogenated Hydrocarbons by Interfacial Mechanochemical Reactions. Acs Appl. Mater. Interfaces 2017, 9, 3895–3901. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Chen, X.; Zhang, G.; Wang, L.; Hu, C.; Sun, X. Topotactic conversion of calcium carbide to highly crystalline few-layer graphene in water. J. Mater. Chem. A 2018, 6, 23638–23643. [Google Scholar] [CrossRef]
- Li, T.; Bai, X.; Gulzar, U.; Capiglia, C.; Bai, Y.-J.; Proietti Zaccaria, R. Facile Synthesis of Highly Graphitized Carbon via Reaction of CaC2 with Sulfur and Its Application for Lithium/Sodium-Ion Batteries. Acs Omega 2019, 4, 8312–8317. [Google Scholar] [CrossRef] [PubMed]
- The Reaction of Ethyne with Chlorine (RSC). Available online: http://www.rsc.org/learn-chemistry/resource/res00001780/the-reaction-of-ethyne-with-chlorine?cmpid=CMP00005290 (accessed on 26 September 2019).
- Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Kawasumi, S.; Egashira, M.; Katsuki, H. Catalytic formation of graphite from benzene on iron powder. J. Catal. 1981, 68, 237–241. [Google Scholar] [CrossRef]
- Ko, S.; Kwon, Y.J.; Lee, J.U.; Jeon, Y.-P. Preparation of synthetic graphite from waste PET plastic. J. Ind. Eng. Chem. 2019. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Zólyomi, V.; Koltai, J.; Kürti, J. Resonance Raman spectroscopy of graphite and graphene. Physica. Status Solidi (b) 2011, 248, 2435–2444. [Google Scholar]
- Qiu, T.; Yang, J.-G.; Bai, X.-J.; Wang, Y.-L. The preparation of synthetic graphite materials with hierarchical pores from lignite by one-step impregnation and their characterization as dye absorbents. Rsc. Adv. 2019, 9, 12737–12746. [Google Scholar] [CrossRef] [Green Version]
- Drewniak, S.; Muzyka, R.; Stolarczyk, A.; Pustelny, T.; Kotyczka-Morańska, M.; Setkiewicz, M. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors. Sensors 2016, 16, 103. [Google Scholar] [CrossRef] [PubMed]
- X-ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: http://www.xpsfitting.com/2008/12/graphite.html (accessed on 26 September 2019).
- Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, A.; Chua, C.K.; Khezri, B.; Sofer, Z.; Webster, R.D.; Pumera, M. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proc. Natl. Acad. Sci. USA 2012, 109, 12899–12904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chee, S.Y.; Pumera, M. Metal-based impurities in graphenes: Application for electroanalysis. Analyst. 2012, 137, 2039–2041. [Google Scholar] [CrossRef] [PubMed]
- Mazánek, V.; Luxa, J.; Matějková, S.; Kučera, J.; Sedmidubský, D.; Pumera, M.; Sofer, Z. Ultrapure Graphene Is a Poor Electrocatalyst: Definitive Proof of the Key Role of Metallic Impurities in Graphene-Based Electrocatalysis. ACS Nano 2019, 13, 1574–1582. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalmpes, N.; Spyrou, K.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; Gournis, D. Synthesis of Highly Crystalline Graphite from Spontaneous Ignition of In Situ Derived Acetylene and Chlorine at Ambient Conditions. Molecules 2020, 25, 297. https://doi.org/10.3390/molecules25020297
Chalmpes N, Spyrou K, Bourlinos AB, Moschovas D, Avgeropoulos A, Karakassides MA, Gournis D. Synthesis of Highly Crystalline Graphite from Spontaneous Ignition of In Situ Derived Acetylene and Chlorine at Ambient Conditions. Molecules. 2020; 25(2):297. https://doi.org/10.3390/molecules25020297
Chicago/Turabian StyleChalmpes, Nikolaos, Konstantinos Spyrou, Athanasios B. Bourlinos, Dimitrios Moschovas, Apostolos Avgeropoulos, Michael A. Karakassides, and Dimitrios Gournis. 2020. "Synthesis of Highly Crystalline Graphite from Spontaneous Ignition of In Situ Derived Acetylene and Chlorine at Ambient Conditions" Molecules 25, no. 2: 297. https://doi.org/10.3390/molecules25020297
APA StyleChalmpes, N., Spyrou, K., Bourlinos, A. B., Moschovas, D., Avgeropoulos, A., Karakassides, M. A., & Gournis, D. (2020). Synthesis of Highly Crystalline Graphite from Spontaneous Ignition of In Situ Derived Acetylene and Chlorine at Ambient Conditions. Molecules, 25(2), 297. https://doi.org/10.3390/molecules25020297