Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield
2.1.1. Extraction Yield by Maceration
2.1.2. Extraction Yield by Decoction
2.2. Total Polyphenol Content (TPC)
2.3. Flavonoid Content
2.4. Total Antioxidant Activity
3. Discussion
3.1. Extraction Yield
3.2. Total Polyphenol Content (TPC)
3.3. Flavonoid Content
3.4. Total Antioxidant Activity
4. Materials and Methods
4.1. Plant Material
4.2. Chemical Products
4.3. Extraction of Total Polyphenols and Flavonoids
4.4. Extraction Yield
4.5. Determination of Total Polyphenols and Flavonoids
4.6. Total Antioxidant Activity (TAA)
4.7. The Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koechlin-Ramonatxo, C. Oxygène, stress oxydant et supplémentations antioxydantes ou un aspect différent de la nutrition dans les maladies respiratoires. Nutr. Clin. Metab. 2006, 20, 165–177. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. Food Biosci. 2018, 21, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, S.; Khali, M.; Mahmoudi, N. Etude de l’extraction des composés phénoliques de différentes parties de la fleur d’artichaut (Cynara scolymus L.). Nat. Technol. 2013, 9, 35. [Google Scholar]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef] [PubMed]
- Brglez-Mojzer, E.; Knez-Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Wojdyło, A.; Samoticha, J.; Chmielewska, J. Effect of different pre-treatment maceration techniques on the content of phenolic compounds and color of Dornfelder wines elaborated in cold climate. Food Chem. 2020, 339, 1278–1288. [Google Scholar] [CrossRef]
- Paranjpe, S.S.; Ferruzzi, M.; Morgan, M.T. Effect of flash vacuum expansion process on grape juice yield and quality. Food Sci. Technol. 2012, 48, 147–155. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, L.; Ye, W. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Sithisarn, P.; Supabphol, R.; Gritsanapan, W. Comparison of free radical scavenging activity of Siamese neem tree (Azadirachta indica A. Juss var. Siamensis Valeton) leaf extracts prepared by different methods of extraction. Med. Princ. Pract. 2006, 15, 219–222. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Gritsanapan, W. Bioactive contents and free radical scavenging activity of Moringa oleifera leaf extract under different storage conditions. Ind. Crops Prod. 2013, 49, 419–421. [Google Scholar] [CrossRef]
- Ngoua-Meye-Misso, R.L.; Sima-Obiang, C.; Ndong, J.D.L.C.; Ndong-Atome, G.R.; Privat-Ondo, J.; Ovono, J.; Abessolo, F.; Obame-Engonga, L.C. Medicinal plants used in management of cancer and other related diseases in Woleu-Ntem province, Gabon. Eur. J. Integr. Med. 2019, 29, 1009–1024. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Herbal beverages: Bioactive compounds and their role in disease risk reduction-A review. J. Tradit. Complement. Med. 2018, 8, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, O.; Bou, S.; Vigo, M.; Nolasco, S. Chemical characteristics of Passiflora Caerulea seed oil and residual seed meal. Molecules 2000, 5, 376–378. [Google Scholar] [CrossRef]
- Pérez, J.O. Diversity of Colombian Passifloraceae: Biogeography and an updated list for conservation. Biota Colombiana 2007, 8. [Google Scholar] [CrossRef]
- Song, Y.; Wei, X.Q.; Li, M.Y.; Duan, X.W.; Sun, Y.M.; Yang, R.L.; Su, X.D.; Huang, R.M.; Wang, H. Nutritional composition and antioxidant properties of the fruits of a Chinese wild Passiflora foetida. Molecules 2018, 23, 459. [Google Scholar] [CrossRef] [Green Version]
- Anzoise, M.; Marrassini, C.; Bach, H.; Gorzalczany, S. Beneficial properties of Passiflora caerulea on experimental colitis. J. Ethnopharmacol. 2016, 194, 137–145. [Google Scholar] [CrossRef]
- Dhawan, K.; Dhawan, S.; Sharma, A. Passiflora: A review update. J. Ethnopharmacol. 2004, 94, 1–23. [Google Scholar] [CrossRef]
- Ozarowski, M.; Thiem, B. Progress in micropropagation of Passiflora spp. to produce medicinal plants: A mini-review. Revista Brasileira Farmacognosia 2013, 23, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Miroddi, M.; Calapai, G.; Navarra, M.; Minciullo, P.; Gangemi, S. Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. J. Ethnopharmacol. 2013, 150, 791–804. [Google Scholar] [CrossRef]
- Legge, A. Notes on the history, cultivation and uses of Physalis peruviana L. J. R. Hortic. Soc. 1974, 99, 310–314. [Google Scholar]
- Barirega, A. Potential for Value Chain Improvement and Commercialization of Cape Gooseberry (Physalis peruviana L.) for Livelihood Improvement in Uganda. Ethnobot. Res. Appl. 2014, 12, 131–140. [Google Scholar] [CrossRef]
- Çakir, Ö.; Pekmez, M.; Çepni, E.; Candar, B.; Fidan, K. Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2 genes in HeLa cells. Food Sci. Technol. 2014, 34, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.C.; Sang-Ngern, M.; Pezzuto, J.M.; Ma, C. The Daniel, K. Inouye college of pharmacy scripts: Poha Berry (Physalis peruviana) with potential anti-inflammatory and cancer prevention activities. Hawaii J. Med. Public Health 2016, 75, 353. [Google Scholar]
- Higaki, R.; Chang, L.C.; Sang-Ngern, M. Antibacterial activity of extracts from Physalis peruviana (Poha Berry). J. Health Dispar. Res. Pract. 2016, 9, 57–58. [Google Scholar]
- Joshi, K.; Joshi, I. Nutritional composition and biological activities of rasbhari: An overview. Int. J. Recent Sci. Res. 2015, 7, 7508–7512. [Google Scholar]
- Kasali, F.M.; Kadima, J.N.; Mpiana, P.T.; Tshibangu, D.S.-T. Assessment of antidiabetic activity and acute toxicity of leaf extracts from Physalis peruviana L. in guinea-pig. Asian Pac. J. Trop. Biomed. 2013, 3, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Lashin, I.; Elhaw, M. Evaluation of secondary metabolites in callus and tissues of Physalis peruviana. J. Inter. Modern Botany 2016, 1, 10–17. [Google Scholar] [CrossRef]
- Ozturk, A.; Özdemir, Y.; Albayrak, B.; Simşek, M.; Yildirim, K.C. Some nutrient characteristics of golden berry (Physalis peruviana L.) cultivar candidate from Turkey. Sci. Papers Ser. B Hortic. 2017, 61, 293–297. [Google Scholar]
- Pereda, M.S.B.; Nazareno, M.A.; Viturro, C.I. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the Argentinean northern Andean region. Plant Foods Hum. Nutr. 2017, 74, 68–75. [Google Scholar] [CrossRef]
- Council, N.R. Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation; National Academies Press: Washington, DC, USA, 1989. [Google Scholar]
- Yildiz, T.; Kalkan, F. Some color and physical properties of pepino (Solanum muricatum Aiton) fruit. Bulg. J. Agric. Sci. 2014, 20, 988–992. [Google Scholar]
- Huyskens-Keil, S.; Widayat, H.; Lüdders, P.; Schreiner, M.; Peters, P. Physiological changes of pepino (Solanum muricatum Ait.) during maturation and ripening. In Proceedings of the II ISHS Conference on Fruit Production in the Tropics and Subtropics, Bonn, Germany, 1 May 1999; pp. 251–256. [Google Scholar]
- Di Scala, K.; Vega-Gálvez, A.; Uribe, E.; Oyanadel, R.; Miranda, M.; Vergara, J.; Quispe, I.; Lemus-Mondaca, R. Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int. J. Food Sci. Technol. 2011, 46, 746–753. [Google Scholar] [CrossRef]
- Ren, W.; Tang, D. Extract of Solanum muricatum (Pepino/CSG) inhibits tumor growth by inducing apoptosis. Anticancer Res. 1999, 19, 403–408. [Google Scholar] [PubMed]
- Sudha, G.; Sangeetha Priya, M.; Indhu Shree, R.B.; Vadivukkarasi, S. Antioxidant activity of ripe and unripe pepino fruit (Solanum muricatum Aiton). J. Food Sci. 2012, 77, C1131–C1135. [Google Scholar] [CrossRef] [PubMed]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Kovačević, D.B. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food Bioprod. Process. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Didi, A. Study of the Antioxidant Activity of the Flavonoids of Arbutus unedo and Daplin gaidium L. from the Tlemcen Region; University of Tlemcen: Tlemcen, Algeria, 2009. [Google Scholar]
- Salem, J.H.; Chevalot, I.; Harscoat-Schiavo, C.; Paris, C.; Fick, M.; Humeau, C. Biological activities of flavonoids from Nitraria retusa (Forssk.) Asch. and their acylated derivatives. Food Chem. 2011, 124, 486–494. [Google Scholar] [CrossRef]
- Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; Chaves, D.S.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; Mikolajczak, P.L. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Bras. Farmacogn. 2018, 28, 179–191. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Golding, J.B.; Stathopoulos, C.E.; Nguyen, M.H.; Roach, P.D. Optimizing conditions for the extraction of catechins from green tea using hot water. J. Sep. Sci. 2011, 34, 3099–3106. [Google Scholar] [CrossRef]
- Khan, S.A.; Aslam, R.; Makroo, H.A. High pressure extraction and its application in the extraction of bio-active compounds: A review. J. Food Process Eng. 2019, 42. [Google Scholar] [CrossRef] [Green Version]
- Orlando, G.; Zengin, G.; Ferrante, C.; Ronci, M.; Recinella, L.; Senkardes, I.; Gevrenova, R.; Zheleva-Dimitrova, D.; Chiavaroli, A.; Leone, S. Comprehensive Chemical Profiling and Multidirectional Biological Investigation of Two Wild Anthemis Species (Anthemis tinctoria var. Pallida and A. cretica subsp. tenuiloba): Focus on Neuroprotective Effects. Molecules 2019, 24, 2582. [Google Scholar] [CrossRef] [Green Version]
- Salih, E.Y.A.; Julkunen-Tiitto, R.; Luukkanen, O.; Sipi, M.; Fahmi, M.K.M.; Fyhrquist, P.J. Potential anti-tuberculosis activity of the extracts and their active components of Anogeissus leiocarpa (Dc.) guill. and perr. with special emphasis on polyphenols. Antibiotics 2020, 9, 364. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Esplá, A.; Zapata, P.J.; Valero, D.; García-Viguera, C.; Castillo, S.; Serrano, M. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.). J. Agric. Food Chem. 2014, 62, 3432–3437. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; Gil, M.I.; Cremin, P.; Waterhouse, A.L.; Hess-Pierce, B.; Kader, A.A. HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [CrossRef] [PubMed]
- Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Boban, M. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Koffi, E.; Sea, T.; Dodehe, Y.; Soro, S. Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants. J. Anim. Plant Sci. 2010, 5, 550–558. [Google Scholar]
- Sripad, G.; Prakash, V.; Rao, M.N. Extractability of polyphenols of sunflower seed in various solvents. J. Biosci. 1982, 4, 145–152. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Licodiedoff, S.; Koslowski, L.A.; Ribani, R. Flavonol rates of gosseberry fruits Physalis peruviana determined by HPLC through the optimization and validation of the analytic method. Int. J. Food Sci. Nutr. 2013, 3, 1–6. [Google Scholar] [CrossRef]
- Ahmad, A.R.; Wisdawati, S.; Asrifa, W.O. Study of antioxidant activity and determination of phenol and flavonoid content of pepino’s leaf extract (Solanum muricatum aiton). Int. J. Pharm. Tech. Res. 2014, 6, 600–606. [Google Scholar]
- Gehin, A.; Guyon, C.; Nicod, L. Glyphosate-induced antioxidant imbalance in HaCaT: The protective effect of Vitamins C and E. Environ. Toxicol. Pharmacol. 2006, 22, 27–34. [Google Scholar] [CrossRef]
- Evenamede, K.S.; Kpegba, K.; Simalou, O.; Boyode, P.; Agbonon, A.; Gbeassor, M. Etude comparative des activités antioxydantes d’extraits éthanoliques de feuilles, d’écorces et de racines de Cassia sieberiana. Int. J. Biol. Chem. Sci. 2017, 11, 2924–2935. [Google Scholar] [CrossRef] [Green Version]
- Mulinacci, N.; Prucher, D.; Peruzzi, M.; Romani, A.; Pinelli, P.; Giaccherini, C.; Vincieri, F. Commercial and laboratory extracts from artichoke leaves: Estimation of caffeoyl esters and flavonoidic compounds content. J. Pharm. Biomed. 2004, 34, 349–357. [Google Scholar] [CrossRef]
- Gadioli, I.L.; da Cunha, M.S.; de Carvalho, M.V.; Costa, A.M.; Pineli, L.L. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Crit. Rev. Food Sci. Nutr. 2016, 58, 785–807. [Google Scholar] [CrossRef] [PubMed]
- Jokić, S.; Velić, D.; Bilić, M.; Bucić-Kojić, A.; Planinić, M.; Tomas, S. Modelling of solid-liquid extraction process of total polyphenols from soybeans. Czech J. Food Sci. 2010, 28, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Medina, S.; Collado-González, J.; Ferreres, F.; Londoño-Londoño, J.; Jiménez-Cartagena, D.; Guy, A.; Durand, T.; Galano, J.-M.; Gil-Izquierd, A. Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. J. Sci. Food Agric. 2019, 99, 2194–2204. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Guo, Y.R.; Wang, Z.H.; Yin, M.C. Protective effects of an aqueous extract from pepino (Solanum muricatum Ait.) in diabetic mice. J. Sci. Food Agric. 2011, 91, 1517–1522. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trend Anal. Chem. 2019. [Google Scholar] [CrossRef]
- Farnsworth, N.R.; Akerele, O.; Bingel, A.S.; Soejarto, D.D.; Guo, Z. Medicinal plants in therapy. Bull. World Health Organ. 1985, 63, 965. [Google Scholar] [CrossRef] [Green Version]
- Aizza, L.C.B.; Sawaya, A.C.H.F.; Dornelas, M.C. Identification of anthocyanins in the corona of two species of Passiflora and their hybrid by ultra-high performance chromatography with electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). Biochem. Syst. Ecol. 2019, 85, 60–67. [Google Scholar] [CrossRef]
- Aizza, L.C.; Dornelas, M.C.A. genomic approach to study anthocyanin synthesis and flower pigmentation in passion flowers. J. Nucleic Acids 2011, 371517. [Google Scholar] [CrossRef] [Green Version]
- Athamena, S.; Chalghem, I.; Kassah-Laouar, A.; Laroui, S.; Khebri, S. Activité antioxydante et antimicrobienne d’extraits de Cuminum cyminum L. Lebanese Sci. J. 2010, 11, 69–81. [Google Scholar]
- Wong, C.C.; Li, H.B.; Cheng, K.W.; Chen, F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. 2006, 97, 705–711. [Google Scholar] [CrossRef]
- Hayes, J.; Allen, P.; Brunton, N.; O’Grady, M.; Kerry, J. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem. 2011, 126, 948–955. [Google Scholar] [CrossRef]
- Wong, Y.S.; Sia, C.M.; Khoo, H.E.; Ang, Y.K.; Chang, S.K.; Yim, H.S. Influence of extraction conditions on antioxidant properties of passion fruit (Passiflora edulis) peel. Acta Sci. Pol. Technol. Aliment. 2014, 13, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duman, S.; Sivaci, A. Investigation of drought stress in pepino (Solanum muricatum Ait. cv. Miski) leaves. Pak. J. Botan. 2015, 47, 1621–1627. [Google Scholar]
- Romani, A.; Pinelli, P.; Cantini, C.; Cimato, A.; Heimler, D. Characterization of Violetto di Toscana, a typical Italian variety of artichoke (Cynara scolymus L.). J. Food Chem. 2006, 95, 221–225. [Google Scholar] [CrossRef]
- Chavan, U.; Shahidi, F.; Naczk, M. Extraction of condensed tannins from beach pea (Lathyrus maritimus L.) as affected by different solvents. Food Chem. 2001, 75, 509–512. [Google Scholar] [CrossRef]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comptes Rendus Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apicult. Res. 2015, 37, 99–105. [Google Scholar] [CrossRef]
- Cano, A.; Hernández-Ruiz, J.; García-Cánovas, F.; Acosta, M.; Arnao, M.B. An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 1998, 9, 196–202. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Extraction Method | Extraction Solvents | Blue Passion Flower (Passiflora caerulea L.) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 15.44 ± 0.58 k–p | 14.34 ± 1.33 m–q | 12.07 ± 0.05 s | 15.81 ± 0.4 l–p |
EtOH (70%) | 13.22 ± 0.07 p–s | 12.10 ± 2.14 p–s | 12.83 ± 1.27 r,s | 13.45 ± 2.7 n–r | |
H2O | 20.98 ± 0.27 a–c | 18.73 ± 0.67 b–g | 19.56 ± 7.43 g–n | 18.81 ± 0.87 d–k | |
Acetone (70%) | 21.95 ± 0.05 a | 20.32 ± 0.38 a–e | 18.33 ± 0.53 c–i | 21.07 ± 0.9 a–e | |
MeOH, NaF (80%) | 19.00 ± 0.95 d–j | 15.28 ± 2.33 o–s | 16.69 ± 1.67 j–p | 18.70 ± 2.26 f–m | |
Decoction | MeOH (70%) | 22.02 ± 0.02 a | 20.02 ± 0.05 a–f | 22.08 ± 0.96 a,b | 22.18 ± 0.06 a |
EtOH (70%) | 20.82 ± 0.17 a–d | 18.42 ± 0.79 e–l | 20.09 ± 0.27 a–f | 20.53 ± 1.47 a–f | |
H2O | 18.87 ± 0.81 d–j | 18.32 ± 1.63 f–m | 16.68 ± 1.34 i–o | 18.73 ± 0.54 b–g | |
Acetone (70%) | 13.73 ± 0.27 o–s | 16.28 ± 0.07 h–o | 12.25 ± 0.28 q–s | 16.53 ± 1.93 l–p | |
MeOH, NaF (80%) | 19.07 ± 0.31 b–h | 15.43 ± 1.11 i–o | 16.83 ± 2.76 l–p | 17.45 ± 0.1 f–n | |
Extraction Method | Extraction Solvents | Cape Gooseberry (Physalis peruviana L.) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 17.25 ± 0.14 l,m | 15.02 ± 0.19 q | 17.20 ± 0.16 l,m | 18.76 ± 0.83 i–k |
EtOH (70%) | 11.90 ± 0.67 s | 16.02 ± 0.2 o,p | 16.04 ± 0.21 o,p | 12.81 ± 0.17 r | |
H2O | 18.87 ± 0.91 i–k | 19.28 ± 0.39 g–i | 17.76 ± 0.87 l,m | 18.74 ± 0.83 i–k | |
Acetone (70%) | 20.33 ± 0.00 e,f | 20.99 ± 1.25 e,f | 20.90 ± 0.1 c–e | 21.59 ± 0.29 a,b | |
MeOH, NaF (80%) | 16.96 ± 1.07 m–p | 17.66 ± 0.82 l–n | 18.93 ± 0.29 h–k | 19.01 ± 0.23 g–j | |
Decoction | MeOH (70%) | 19.53 ± 0.36 f,g | 21.32 ± 0.35 a–c | 20.31 ± 0.5 d,e | 22.36 ± 0.13 a |
EtOH (70%) | 17.22 ± 0.15 m,n | 21.07 ± 0.14 b–e | 19.38 ± 0.11 g,h | 21.60 ± 0.64 b–d | |
H2O | 17.22 ± 0.3 l–n | 17.90 ± 0.65 k,j | 17.85 ± 0.33 k,l | 18.23 ± 0.34 j,k | |
Acetone (70%) | 17.45 ± 0.88 m,n | 13.06 ± 0.46 r | 15.62 ± 0.25 p,q | 16.41 ± 0.08 s | |
MeOH, NaF (80%) | 17.2 ± 0.73 m,n | 17.09 ± 0.32 m–o | 17.08 ± 0.16 m,n | 16.20 ± 0.32 o,p | |
Extraction Method | Extraction Solvents | Pepino (Solanum muricatum Aiton) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 18.95 ± 0.17 e–g | 15.78 ± 0.29 h–l | 14.85 ± 0.55 o–q | 15.79 ± 0.44 k–n |
EtOH (70%) | 17.09 ± 0.36 h | 15.44 ± 0.7 j–m | 12.86 ± 0.33 r | 14.28 ± 0.87 q | |
H2O | 18.63 ± 0.65 g | 18.03 ± 0.35 g | 16.17 ± 0.15 h–k | 14.88 ± 0.43 n–q | |
Acetone (70%) | 21.41 ± 0.58 b | 19.46 ± 0.4 d,e | 19.34 ± 0.14 d–f | 19.82 ± 0.01 d | |
MeOH, NaF (80%) | 19.54 ± 0.52 d–f | 19.08 ± 0.44 d–f | 16.05 ± 0.12 h–l | 14.62 ± 0.83 m–p | |
Decoction | MeOH (70%) | 22.67 ± 0.07 a | 21.29 ± 0.01 b | 19.63 ± 0.43 d–f | 22.69 ± 0.1 a |
EtOH (70%) | 20.98 ± 0.16 b | 19.80 ± 0.89 e–f | 14.97 ± 0.61 l–o | 20.41 ± 0.68 c,d | |
H2O | 18.27 ± 0.54 f,g | 18.18 ± 0.41 g | 18.20 ± 2.02 h | 18.61 ± 0.22 f,g | |
Acetone (70%) | 13.98 ± 0.59 p,q | 14.43 ± 0.45 p,q | 14.75 ± 0.67 o–p | 12.57 ± 0.05 r | |
MeOH, NaF (80%) | 16.36 ± 0.71 h,i | 16.09 ± 0.38 h–l | 15.46 ± 0.3 l–o | 16.64 ± 0.075 h–j |
Extraction Method | Extraction Solvents | Blue Passion Flower (Passiflora caerulea L.) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 1429.13 ± 55.62 g,h | 1261.73 ± 47.89 j–m | 1233.47 ± 74.25 l,m | 1372.6 ± 60.81 h,i |
EtOH (70%) | 1505.21 ± 65.65 c–e | 1166.08 ± 47.89 n | 1259.56 ± 75.26 k–m | 1437.82 ± 67.12 f,g | |
H2O | 1324.78 ± 57.84 i,j | 1083.47 ± 43.18 o | 1198.69 ± 57.4 m,n | 1137.82 ± 56.07 n,o | |
Acetone (70%) | 1476.95 ± 58.7 d–g | 1274.78 ± 47.62 j–l | 1290 ± 56.07 j–l | 1316.08 ± 57.4 i–k | |
MeOH, NaF (80%) | 1976.95 ± 62.04 a | 1498.69 ± 28.73 c–f | 1518.26 ± 68.1 c,d | 1466.08 ± 49.69 d–g | |
Decoction | MeOH (70%) | 1234.13 ± 26.41 l,m | 924.34 ± 24.33 r,s | 974.34 ± 19.28 p–s | 958.04 ± 24.17 p–s |
EtOH (70%) | 1373.26 ± 32.02 h,i | 964.56 ± 24.69 p–s | 991.73 ± 15.26 p,q | 1447.17 ± 19.24 e–g | |
H2O | 1229.78 ± 35.56 l,m | 787.39 ± 28.51 t | 918.91 ± 12.98 s | 947.17 ± 28.92 q–s | |
Acetone (70%) | 1362.39 ± 47.41 i | 938.47 ± 23.38 q–s | 984.13 ± 9.64 p–r | 1289.56 ± 31.15 j–l | |
MeOH, NaF (80%) | 1597.17 ± 41.45 b | 1020 ± 27.26 p | 997.17 ± 22.83 p,q | 1551.52 ± 26.88 b,c | |
Extraction Method | Extraction Solvents | Cape Gooseberry (Physalis peruviana L.) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 1340 ± 36.54 f,g | 940 ± 27.03 p | 1050.86 ± 35.05 n | 1576.95 ± 19.28 c |
EtOH (70%) | 1774.78 ± 27.03 a | 983.08 ± 30.81 o,p | 1129.13 ± 37.14 m | 1448.69 ± 29.27 d | |
H2O | 1205.21 ± 49.69 j,k | 829.13 ± 29.59 q | 1048.69 ± 30.94 n | 1366.08 ± 32.14 e,f | |
Acetone (70%) | 1337.82 ± 31.25 f,g | 968.26 ± 25.96 p | 1220.43 ± 32.04 j,k | 1492.17 ± 29.27 d | |
MeOH, NaF (80%) | 1635.65 ± 29.7 b | 1016.08 ± 28.73 n,o | 1296.52 ± 33.67 g,h | 1637.82 ± 36.46 b | |
Decoction | MeOH (70%) | 1141.73 ± 27.72 l,m | 480.86 ± 9.39 t | 1120 ± 37.73 m | 1224.34 ± 29.05 i,j |
EtOH (70%) | 1221.08 ± 40.53 j,k | 809.13 ± 29.38 q,r | 1177.6 ± 37.96 k,l | 1268.91 ± 24.94 h,i | |
H2O | 1026.52 ± 31.25 n,o | 422.17 ± 18.27 u | 772.17 ± 31.15 r | 1099.34 ± 28.7 m | |
Acetone (70%) | 1237.39 ± 43.91 I,j | 490.65 ± 20.81 t | 1134.13 ± 41.91 l,m | 1348.26 ± 24.72 f | |
MeOH, NaF (80%) | 1393.91 ± 39.37 e | 558.04 ± 31.22 s | 1291.73 ± 25.96 h | 1554.78 ± 37.06 c | |
Extraction Method | Extraction Solvents | Pepino (Solanum muricatum Aiton) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 1266.08 ± 44.33 e | 818.26 ± 27.03 r | 887.826 ± 36.54 q | 1159.56 ± 37.82 g,h |
EtOH (70%) | 1335.65 ± 48.67 d | 1024.78 ± 29.59 j–l | 1131.3 ± 40.47 h | 1168.26 ± 30.43 g,h | |
H2O | 1163.91 ± 46.76 g,h | 716.08 ± 35.05 s | 840 ± 37.56 r | 966.08 ± 32.14 n–p | |
Acetone (70%) | 1340 ± 45.73 d | 892.17 ± 31.75 q | 1016.08 ± 36.46 k–m | 1026.95 ± 27.03 j–l | |
MeOH, NaF (80%) | 1637.82 ± 47.29 b | 1013.91 ± 31.75 l,m | 1172.6 ± 37.82 g,h | 1398.69 ± 36.46 c | |
Decoction | MeOH (70%) | 1198.26 ± 36.89 f,g | 921.08 ± 24.94 p,q | 963.47 ± 23.81 n–p | 1045 ± 34.48 i–k |
EtOH (70%) | 1403.69 ± 22.83 c | 950.43 ± 29.05 o,p | 1002.6 ± 24.84 i–k | 1061.3 ± 33.01 i–k | |
H2O | 1074.34 ± 22.02 i | 920 ± 31.75 p,q | 738.47 ± 35.03 s | 900.43 ± 25.72 q | |
Acetone (70%) | 1374.34 ± 27.61 c,d | 1009.13 ± 25.22 l–n | 977.6 ± 23.1 m–o | 1045 ± 33.93 i–k | |
MeOH, NaF (80%) | 1824.34 ± 27.72 a | 1068.91 ± 27.81 i,j | 1268.91 ± 21.41 e | 1243.91 ± 27.15 e,f |
Extraction Method | Extraction Solvents | Blue passion flower (Passiflora caerulea L.) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 532.71 ± 5.28 c | 162.84 ± 1.05 s–u | 222.46 ± 4.91 m–p | 200.48 ± 0.35 r,q |
EtOH (70%) | 676 ± 9.82 b | 222.46 ± 10.52 m–p | 242.49 ± 1.2 k–m | 239.03 ± 4.21 k–m | |
H2O | 329.92 ± 1.01 e | 100.6 ± 1.4 w | 132.6 ± 0.7 v | 129.44 ± 0.35 v | |
Acetone (70%) | 717.28 ± 1.4 a | 217.48 ± 2.45 n–q | 265.57 ± 8.23 h–j | 237.82 ± 0.7 k–n | |
MeOH, NaF (80%) | 736.1 ± 5.38 a | 166.78 ± 0.7 s–u | 154.94 ± 0.35 t,u | 233.27 ± 0.35 l–o | |
Decoction | MeOH (70%) | 300.42 ± 19.63 f,g | 173.89 ± 0.7 s,t | 183.6 ± 0.7 r,s | 236.42 ± 1.4 k–n |
EtOH (70%) | 318.99 ± 5.61 e,f | 301.63 ± 4.21 f | 218.82 ± 0.7 n-q | 472.85 ± 5.48 d | |
H2O | 211.53 ± 3.51 o–q | 198.78 ± 1.4 qr | 158.71 ± 1.4 tu | 147.17 ± 2.1 u,v | |
Acetone (70%) | 297.74 ± 2.1 fg | 246.74 ± 0.7 j-l | 255.24 ± 0.7 k-n | 238.24 ± 0.7 k–n | |
MeOH, NaF (80%) | 273.74 ± 5.6 hi | 203.03 ± 3.51 p-r | 278.56 ± 6.83 gh | 229.14 ± 2.8 l–o | |
Extraction Method | Extraction Solvents | Cape Gooseberry (Physalis peruviana L.) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 205.34 ± 3.86 k | 49 ± 1.4 t | 115.78 ± 2.1 q | 219.6 ± 0.7 g–j |
EtOH (70%) | 257.55 ± 2.19 e | 55.68 ± 3.51 s,t | 148.57 ± 4.91 n,o | 282.14 ± 2.8 c | |
H2O | 116.09 ± 3.86 q | 23.8 ± 0.35 u | 73.59 ± 1.05 r | 133.39 ± 0.7 p | |
Acetone (70%) | 277.59 ± 1.77 c | 63.26 ± 3.15 r,s | 136.43 ± 5.61 o,p | 300.66 ± 8.58 b | |
MeOH, NaF (80%) | 230.53 ± 7.71 f,g | 45.66 ± 1.75 t | 155.55 ± 10.17 n | 279.11 ± 2.1 c | |
Decoction | MeOH (70%) | 209.1 ± 1.93 k,j | 57.31 ± 2.1 s,t | 215.78 ± 7.01 h–k | 279.53 ± 3.51 c |
EtOH (70%) | 323.85 ± 2.64 a | 155.07 ± 1.2 n | 217.6 ± 13.32 h–k | 272.24 ± 4.72 c,d | |
H2O | 169.64 ± 9.82 m | 140.49 ± 1.4 o,p | 170.24 ± 2.1 g–k | 210.32 ± 0.7 i–k | |
Acetone (70%) | 234.6 ± 2.1 e | 175.71 ± 7.01 l | 222.46 ± 4.91 f–i | 315.35 ± 2.62 a | |
MeOH, NaF (80%) | 260.1 ± 9.11 d,e | 157.49 ± 2.8 m,n | 224.28 ± 4.21 f–h | 252.82 ± 3.51 e | |
Extraction Method | Extraction Solvents | Pepino (Solanum muricatum Aiton) | |||
Leaves | Flower | Stem | Roots | ||
Maceration | MeOH (70%) | 402.17 ± 3.51 e | 120.46 ± 6.31 s,t | 97.22 ± 2.29 v–x | 171.34 ± 0.35 p,q |
EtOH (70%) | 649.89 ± 7.71 a | 128.96 ± 6.12 r,s | 158.71 ± 1.63 q | 229.02 ± 0.35 i–k | |
H2O | 224.89 ± 4.72 j–l | 67.03 ± 2.1 y | 112.56 ± 8.41 t,u | 137.64 ± 1.4 r | |
Acetone (70%) | 550.32 ± 3.32 b | 127.74 ± 3.51 r,s | 187.24 ± 2.1 n,o | 236.6 ± 0.7 h–j | |
MeOH, NaF (80%) | 440.42 ± 2.04 d | 84.03 ± 0.7 x | 99.81 ± 2.1 u–w | 202 ± 4.21 m,n | |
Decoction | MeOH (70%) | 252.82 ± 2.33 g | 41.53 ± 0.7 y | 159.92 ± 1.40 q | 190.89 ± 3.51 n,o |
EtOH (70%) | 502.96 ± 3.55 c | 49.42 ± 4.21 y | 178.14 ± 4.21 o,p | 214.57 ± 7.01 k–m | |
H2O | 212.74 ± 0.7 l,m | 17.85 ± 1.4 z | 87.67 ± 0.7 w,x | 227.92 ± 5.61 i–k | |
Acetone (70%) | 277.71 ± 4.21 f | 61.87 ± 2.56 y | 159.92 ± 2.8 q | 241.28 ± 2.8 g–i | |
MeOH, NaF (80%) | 288.64 ± 1.4 f | 52.15 ± 2.22 y | 107.71 ± 2.8 t–v | 246.74 ± 0.7 g–h |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezoul, N.E.H.; Belkadi, M.; Habibi, F.; Guillén, F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules 2020, 25, 4672. https://doi.org/10.3390/molecules25204672
Lezoul NEH, Belkadi M, Habibi F, Guillén F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules. 2020; 25(20):4672. https://doi.org/10.3390/molecules25204672
Chicago/Turabian StyleLezoul, Nour El Houda, Mohamed Belkadi, Fariborz Habibi, and Fabián Guillén. 2020. "Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants" Molecules 25, no. 20: 4672. https://doi.org/10.3390/molecules25204672
APA StyleLezoul, N. E. H., Belkadi, M., Habibi, F., & Guillén, F. (2020). Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules, 25(20), 4672. https://doi.org/10.3390/molecules25204672