Next Article in Journal
Drying Shrinkage of Concrete Containing Calcium Stearate, (Ca(C18H35O2)2), with Ordinary Portland Cement (OPC) as a Binder: Experimental and Modelling Studies
Next Article in Special Issue
COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds
Previous Article in Journal
Exopolysaccharide II Is Relevant for the Survival of Sinorhizobium meliloti under Water Deficiency and Salinity Stress
Previous Article in Special Issue
Antiviral Activities of Quercetin and Isoquercitrin Against Human Herpesviruses
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules

1
Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
2
Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
3
Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
4
Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
*
Author to whom correspondence should be addressed.
Molecules 2020, 25(21), 4878; https://doi.org/10.3390/molecules25214878
Submission received: 10 September 2020 / Revised: 12 October 2020 / Accepted: 14 October 2020 / Published: 22 October 2020
(This article belongs to the Special Issue Antiviral Properties of Natural Products)

Abstract

:
Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.

Graphical Abstract

1. Introduction

A virus is a tiny parasite that has no capacity to replicate itself. Once infected in a host agent or living cell, it produces more viruses using host machinery. With their complexity and diversity, it survives for a long time in the host, bypassing the treatments, and it causes devastating issues such as pandemics [1]. They have RNA or DNA as genetic material with single or double-stranded nucleic acid. Using unique physical properties such as phospholipid layers, ligands, and configurations, they invaded into host cells easily [2]. Viral infections can lead to acute as well as chronic conditions. Acute infections happen in an out of balance way; for instance, it is a non-equilibrium process whereby the virus and host change its process until the destruction of the host or control over the infection. The ineffective function of specific genes related to the immunity of the host or effective reduction of host immunity by the viral genes is a niche in this infection and leads to the development of overwhelming consequences [3]. On the other hand, chronic viral infections occur in metastable equilibrium with viral and host genes balancing one another. Sometimes, the virus can persist in the healthy and immune host, which is deprived of any sign of infection [4].
Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide [5]. Even though there are different therapeutic strategies available in the clinical practice, a lack of specificity toward the virus, and the limited efficacy of drugs makes the vaccines a gold standard prophylactic to viral infections. Moreover, the synthetic drugs often do not meet the treatment expectation via either unwanted drug side effects or drug resistance to nucleoside analogues via mutation [6,7]. The drug failure and resistances have led to a growing interest in natural products, especially plants, and investigation into antiviral agent discovery. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of the treatment modality [8]. Human use of plants as medicine, including viral infections, dates back 60,000 years to the Paleolithic age [9]. Hence, plants have an advantage in drug discovery based on their long-term use by humans, and lesser toxicity and plenty of bioactive compounds can be expected from them.
Hence, the aim of the present retrospective review is an update on the discovery regarding different plants and lead compounds isolated from them against the essential and clinically significant virus such as the human immunodeficiency virus (HIV), herpes simplex virus (HSV), influenza, and hepatitis c, clarifying their indication with viruses and mechanisms of action.

2. Methodology

To obtain the appropriate literature, we have used relevant keywords such as plants, viruses, phytochemicals, HIV, HSV, influenza, hepatitis-c, HIV integrase, HIV-reverse transcription, HIV-protease, virucidal action, virus replication imbibition, viral attachment, inhibition of hemagglutination, HCV infection replication, etc. These keywords were searched in relevant databases such as Google Scholar, PubMed, Scopus, Scielo, etc. We have collected information from research articles, review articles, PhD theses, books, chapters, and conference abstracts from 1975 to 2020. A total of 207 species have been reported in this review article. The taxonomy of the plant species was properly identified from http://www.theplantlist.org and http://www.ipni.org websites.

3. Human Immunodeficiency Virus (HIV)

The main target of the human immunodeficiency virus (HIV) is our immune system, where it affects and destroys the immune system function. At present, more than 35 million people are suffering from HIV; so far, it caused more than 39 million HIV-related deaths worldwide [10]. The overwhelming adverse effects of HIV continue globally. The treatment for HIV involves antiretroviral therapy (ART), which is a combination of HIV medicines. Since the year 2000, there has been a significant decrease in HIV-related patient deaths, which accounted for about 50% of all cases. This achievement maybe because of the successful use of ART regimen among the patients and new preventive strategies [11]. Regardless of this progress in HIV treatment with ART and the global measures taken for HIV prevention still, the newly infected HIV patient numbers have been increasing with the rate of 2 million every year [12].
HIV is a member of the genus Lentivirus, part of the family Retroviridae [13]. HIV contains two copies of single-strand RNA, which is the contributory agent of acquired immunodeficiency syndrome (AIDS) by a progressive decline of the immune system. In this condition, the infections take advantage of the weaker immune system, where the immune system is no longer in a stage to fight back. HIV is an enveloped positive-sense virus, which is meticulously focused on the immune system by infecting CD4+ T cells [14,15]. This T helper cell is the core of the immune system, whereby it handles signal transduction toward the rest of the immune cells and thereby protects the whole system against life-threatening infections and endangering subjects. The first stage of infection is the attachment of HIV to the CD4+ lymphoid cell surface. After the viral capsid enters the cell, reverse transcriptase liberates a positive sense single-stranded RNA, coping it into a complementary DNA. Then, the nuclei of host cells become integrated with the viral RNA. The integrated DNA is then transcribed into RNA in the presence of transcription factors such as NF-kB, which is then spliced into messenger RNA (mRNA) [16,17,18]. Then, the structural protein is generated and made into a new virus particle (Figure 1).
The antiviral treatments explicitly target these key areas of virus multiplication. Nonetheless, the infection rate of HIV is increasing in spite of ART [19]. Moreover, the ART has become more important, since there is no vaccine available against HIV. However, again, ART is not a panacea for HIV, due to the various side effects and resistance [20,21]. Hence, significant attempts have been employed by natural product biologists to find an alternative for ART. Even the WHO suggests and supports these initiatives. Many plants and plant products such as secondary metabolites have shown significant effects in these targets [22].
Natural products have been explored in finding anti-HIV agents with a critical focus in four mechanisms. They are HIV integrase strand transfer inhibitors [23], Nucleoside Reverse Transcriptase Inhibitors (NRTIs), Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs), and Protease Inhibitors (PIs) [24]. Integrase is a key enzyme by which HIV inserts (integrate) its viral DNA (proviral) into the DNA of the host CD4 cell. Thus, inhibiting the integrase in the cellular level is a significant target for anti-HIV drug discovery [25]. As per the Food and Drug Administration (FDA), Raltegravir was the first integrase strand inhibitor (INSTI) to be approved in 2007, followed by elvitegravir in 2012 and dolutegravir in 2014. [26]. Natural product discovery has been conducted much time by specifically inhibiting the integrase target [27]. Another target of anti-HIV drugs is reverse transcriptase inhibitors. The reverse transcriptase, a RNA-dependent DNA-polymerase, has been used by the virus to convert RNA to DNA, which is called reverse transcription. Hence, blocking reverse transcription will inhibit HIV replication [28]. In the last phase of viral replication, a viral protease is necessary for the cleavage of a large precursor polyprotein. This cleavage of a protein precursor is crucial for the viral particle maturation and infectivity. Saquinavir, indinavir, ritonavir, and nelfinavir are a few examples of approved protease inhibitors by the WHO [29,30]. Thus, inhibiting protease is also considered as a significant target of anti-HIV natural products.
In our search for natural products in the mentioned databases, we have observed that the majority of the natural products are evaluated for anti-HIV properties up to the crude extraction level only. So, we found a few major secondary metabolites isolated from plants, which have good activity against HIV. A list of plant species with inhibition studies is summarized in Table 1.
The screening of medicinal plants has delivered plenty of secondary metabolites with anti-HIV properties. They include alkaloids, triterpenoids, flavonoids, coumarins, phenolics, tannins, saponins, phospholipids, xanthones, quinones, etc. [81]. There is a large pool of natural compounds with diverse structures, which target different viral targets. Some of them have been found to inhibit HIV integrase and some show RT inhibition (Table 2). The compounds for which we could not establish the mechanism of action will not be included in this review.

4. Herpes Simplex Virus

The herpes simplex virus (HSV) infection, otherwise known as genital herpes (GH), is the most frequent cause of genital ulceration worldwide. In general, herpes can appear commonly in the mouth and genitals. The primary cause of oral herpes is the HSV-1 type strain, but genital herpes is commonly caused by the HSV-2 type strain [101]. HSV-seronegative persons (vulnerable group) develop a primary infection on their first HSV-1 or HSV-2 exposure. HSV-1 and HSV-2 are normally spread by different routes and affect different areas of the body, however, the signs and symptoms that they cause overlap. The infection happens through primary contact with mucocutaneous surfaces of an infected person, whereas the virus enters the nerve cells to create latency in the sacral dorsal root ganglion and lesions at the point of entry. Even though HSV is rarely fatal, most people who have been infected and dormant viruses can reactivate; thus, an extensive of HSV pool is available to spread to vulnerable individuals in the society [102]. The estimated worldwide prevalence of HSV-1 is 67%, whereas HSV-2 is less common, infecting ~11% of the world population with the highest prevalence in Africa [103].
HSV is a member of Herpesviridae, which is a large family of enveloped double-stranded DNA viruses that causes diseases in both human and animals [104]. Even though Herpesviridae viruses vary in tissue tropism and host interaction mechanisms, they have a much-conserved tool by which they replicate their DNA in infection. Among the members of this family, HSV has been much exploited to study its mechanism of replication. It is well understood that other viruses of this family follow similar replication pathways, but they differ in the pace of activity [105]. Initially, the host cell attachment happens with the HSV virus. This attachment occurs at the heparan sulfate moieties of cellular proteoglycans with the glycoprotein present in the virus envelope, where they bind with the secondary cellular receptors. After the attachment, the viral envelope is released into the cytosol. This will facilitate the movement of capsid toward the nuclear pore, where the viral DNA will be released via the capsid portal. Once in the nucleus, viral DNA transcription leads to mRNA by cellular RNA polymerase II. This viral gene expression is tightly regulated, which is comprised of three kinetic expressions such as early, intermittent, and late mRNA formation. All mRNA transcripts are translated into proteins and travel into the nucleus from the cytoplasm. Capsid proteins assemble in the nucleus to form empty capsids. Then, the newly formed capsids are released from the nucleus to the cytoplasm, where they form its final vesicles [106,107]. Then, the formed virus accumulates in the endoplasmic reticulum and is subsequently released by exocytosis (Figure 2).
There is no ultimate cure for HSV, but the current strategies are mainly focused on symptomatic relief. Both innate and adaptive immune systems can control HSV infections. In fact, the nature of HSV infection is dependent upon how the virus bypasses the host innate immune system. In the current system of practice, antiviral drugs are classified as virucidal, immunomodulators, and chemotherapeutic agents [108]. There is a starting treatment for HSV with acyclovir, valacyclovir, or famciclovir for 7–10 days for primary HSV infections [109]. After that, the treatment will be started only when the recurrence of HSV occurs, and the treatment will be episodic for five days to prevent the symptoms and prevent recurrence [110]. These drugs act via a mechanism of inhibition of DNA polymerase. Even though these drugs are in practice, they can fail to meet the treatment expectation via either unwanted drug side effects or drug resistance to nucleoside analogues via mutation. Therefore, clinicians and microbiologists are always looking for a better alternative.
The natural products always served as a trustable source for new compounds with antiviral properties. Many studies have been carried out since 1995 to isolate bioactive antiviral compounds from plants and functional foods. Accordingly, a large number of plant-derived anti-HSV drugs have been described in several studies. A list of plant species with inhibition studies is summarized in Table 3.
Many herbal compounds have been investigated in the past for their effectiveness against HSV. The purification of new lead compounds from the plants and evaluating their targets and mechanism of action in HSV is also equally important. Many secondary metabolites have been proven to have anti-HSV effects such as lignans, tannins, saponins, terpenes, alkaloids, quinones, and glucosides [155,156,157,158]. In Table 4, we have mentioned the compounds that exhibited viral inhibition with inhibitory activity at the early phase and late phase of replication and HSV viral inhibition with IC50 dose.

5. Influenza Virus

Pandemics are the mainly remarkable appearances of the influenza virus [160]. Three pandemics happened in the previous century: the H1N1 pandemic (1918), the H2N2 pandemic (1957), and the H3N2 pandemic (1968) [161,162]. Influenza is observed nationally and internationally through a multiparty system of surveillance systems distributed worldwide that eventually feeds into the WHO global influenza program [163,164]. The annual incidence is 3.5 million, with more than 250,000 deaths [165]. Alpha-influenzavirus is the primary cause of all the pandemics [166,167]. Various waves of beta-influenzavirus flu were observed in local settings around the world [168].
Influenza virus belongs to Orthomyxoviridae family (RNA viruses), which includes seven genera (Alpha, Beta, Delta, Gamma, Isavirus, Quaranjavirus, and Thogotovirus) [169,170]. Alpha, Beta, Delta, and Gamma caused mammalian flu. There are 18 various hemagglutinin (HA) subtypes and 11 various neuraminidase (NA) subtypes [171,172]. Subtypes are named by combining the H and N numbers—e.g., A(H1N1), A(H3N2). On the other hand, influenza B viruses are classified into two lineages: B/Yamagata and B/Victoria [173,174]. This genetic pattern imitates the altered nature of the antigenic properties of these viruses, and their following outbreak depends upon various factors [174,175]. Influenza B virus was supposed to have a weaker rate of antigenic progression than A and to cause milder sickness than A in the past [176,177].
Influenza virus mainly targets the columnar epithelial cells in the respiratory tract [178]. Firstly, the hemagglutinin (HA) present in the receptor binding site of virus attached to galactose bound sialic acid on the surface of the host. This receptor binding is the determining factor for turning part of an organism in a particular direction of infection in response to a virus stimulus. To achieve this receptor binding, the virus undergoes tremendous efforts to bypass host immune responses, mucociliary clearance, and genetic diversification of the host receptor. Then, after the binding, viron enters the host cell by an endocytosis mechanism with the protease cleavage of hemagglutinin. Then, the viron produces a vacuole membrane, which releases the viral RNA and proteins into the cytosol. These proteins and RNA form a complex (vRNA/RdRP), which reaches the nucleus [179,180]. Then, the viral RNA is translated into newly synthesized proteins, which are secreted via the Golgi apparatus to the nucleus to bind viral RNA to form a viral particle. Later, the RNA particle and viral proteins accumulate to form a new viron and buds off from the cell membrane (Figure 3).
In the contingency of a flu pandemic with a new strain, antiviral drugs symbolize the primary line of defense [181,182]. Research on the development of anti-influenza medications was started a long time ago [183,184]. This approach was based on the two mechanisms that induce viral replication in host immune reactions [185,186]. Viral replication has various cellular targets starting from the release of the new viruses from the host cells. Many drugs were scientifically proven to inhibit M2 Ion Channel and Neuraminidase on the virus itself [187,188], while other drugs work on some cell pathways evolving intracellular defense mechanisms [189]. This research on the development of anti-influenza medications also includes identifying traditional medicinal plant extracts and active compounds with anti-influenza activity [190]. These folk drugs were developed as an alternative to synthetic drugs. The exploration of plant-based antivirals against the influenza virus is hopeful, as several plants have been shown to have anti-influenza action. Therefore, the current review paper summarizes the previous findings and efforts of some studies on discovering anti-influenza medications from medicinal plants. A list of plant species with inhibition studies is summarized in Table 5.
Among viral infections, the viruses of the influenza viral infection have the ability to mutate their genome and become resistant to drugs [206]. Thus, the discovery of phytochemicals against the influenza virus is more challenging compared to other viruses. Among the phytochemicals, alkaloids have shown superior activity against flu virus. It is believed that the alkaloids have the ability to kill virus by the induction of interferon of the immune system [207]. Some alkaloids can increase the phagocytosis by macrophages activity, whereas some can inhibit viral protein synthesis [208]. Besides, the inhibition of influenza by lignans [209] and terpenes [210] was well documented. In Table 6, we have mentioned the compounds that exhibited inhibitory activity on viral inhibition with an IC50 dose.

6. Hepatitis C Virus

Hepatitis C virus (HCV) infection is considered as a significant public health problem. It has infected around 180 million people worldwide [217]. In developed nations, the transmission is thought to be through sharing and the unsafe use of needles among drug users. In the meantime, in the other parts of the world, unsafe blood transfusion and unhealthy injection practices contribute to the development of HCV infection [218]. At present, no vaccine against HCV is available, and the presence of a high diversity of viral isolates will possibly make it very hard to develop a vaccine. Over the last five years, direct-acting antiviral agents (DAAs) have revolutionized the treatment of HCV infection with their specific mechanism of action [219]. DAAs were introduced in 2014, provided effective interferon-free therapy combinations for all HCV genotype, and have very few safety considerations. Serious adverse events are rare, but drug-drug interactions are considered a major issue regarding the choice of DAA regimen, which needs drug-drug interaction assessment before starting therapy [220].
Hepatitis C virus belongs to the Hepacivirus genus of the Flaviviridae family. It is a small enveloped virus with single-stranded genomic RNA with two embedded viral glycoproteins [221]. In the perisinusoidal space (between hepatocyte and a sinusoid), the lipo-viral particle is attached to the basolateral surface of the hepatocyte by virtue of a variety of receptors such as proteoglycans, LDL receptor, CD81, and claudin 1. After the endocytosis, the M2 proteins allow a pH-dependent fusion with the lysosome and the protons to move through the viral envelope, causing the uncoating and release of the viral RNA. Then, the viral replication proteins recruit membranes from the Endoplasmic Reticulum (ER) to form the closely ER-associated “Membranous web”, which is the site of viral replication. Afterward, the viral particles will remain in the nucleus or move to the cytosol, where they are translated into viral proteins via the Golgi apparatus. In addition, the viral proteins sometimes are brought back into the nucleus, where they bind with viral RNA and later form new viral genome particles [222,223]. The new virion buds off from the cell in a phospholipid sphere and is released from the cell (Figure 4).
There are synthetic agents available now against HCV, but they have a lack of specific treatment for HCV therapy. Another concern in these cases is the presence of severe side effects and reported poor response rates. To manage and to get these problems under control for better treatment against HCV, new potential agents to be explored. As we see in the cases of other viruses discussed in the review, there are many promising natural products, which have led to the discovery of potent HCV inhibitors. A list of plant species with inhibition studies is summarized in Table 7.
Developing an anti-HCV drug has become an important priority due to the complexity of the disease. Natural compounds always serve as a lead to create new drugs. There is a substantial increase in the reports on phytochemicals that show anti-HCV properties. Both primary and secondary metabolites have shown promising activities. For instance, alkaloids, flavonoids, polyphenols, coumarins, and peptides have been reported to possess anti-HCV activities [241]. We have identified such molecules and listed them in Table 8.

7. Conclusions

Viral infections and pandemic have been recorded as a potential risk for human survival. The lack of proper prophylactic vaccines and drugs for many viruses makes the situation worse in health management. There is a great need for novel antiviral compounds for drug development. This review provides in-depth and insightful information about different species of plants and their families with significant secondary metabolites with evidence-based antiviral properties. Based on the literature, we provided very promising drug candidates that have been investigated through in vitro screening, and cellular targets have been observed. In the current review, we have selected HIV, HSV, HCV and Influenza virus. Looking at the spectrum of plants and isolated compounds, we have seen that there is no significant selectivity among the plants and their compounds in inhibiting DNA or RNA virus. We have found that a similar class of phytochemicals can inhibit both types, but with the ability to inhibit different sites of mechanism. However, these compounds need a lot of further investigation to make them appropriate for clinical use. The pace of new antiviral drugs from natural origin has experienced a substantial upsurge in the last decade. Natural products directly or indirectly support the drug discovery against viruses. Many anti-viral drugs has been discovered from a synthetic source, but originally modeled on a natural product parent structure. Most of the plants we have identified in this review hold other pharmacological benefits, proven long ago, together with their safety profile. This promotes the acceptance of these plants and their phytochemicals for antiviral drug discovery and development programs. Nevertheless, a thorough purification process for identifying new lead compounds and their preclinical and safety testing is a prerequisite. The current COVID-19 pandemic has taught us a more significant lesson: it is difficult to survive in this earth without accepting the probability of more pandemics in the future. Hence, taking the facts in a very comprehensive manner, a cohesive and focused drug discovery approach is warranted.

Funding

This research received no external funding.

Acknowledgments

We would like to thank the deanship of scientific research at Jazan University.

Conflicts of Interest

The authors declare no conflict of interest

References

  1. Wang, S.-X.; Wang, Y.; Lu, Y.-B.; Li, J.-Y.; Song, Y.-J.; Nyamgerelt, M.; Wang, X.-X. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. J. Integr. Med. 2020, 18, 275–283. [Google Scholar] [CrossRef]
  2. Brito, A.F.; Pinney, J.W. Protein-protein interactions in virus—host systems. Front. Microbiol. 2017, 8, 1557. [Google Scholar] [CrossRef] [PubMed]
  3. Virgin, H.W.; Wherry, E.J.; Ahmed, R. Redefining chronic viral infection. Cell 2009, 138, 30–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Deigendesch, N.; Stenzel, W. Acute and chronic viral infections. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Nederlands, 2018; Volume 145, pp. 227–243. [Google Scholar]
  5. Bhutta, Z.A.; Sommerfeld, J.; Lassi, Z.S.; Salam, R.A.; Das, J.K. Global burden, distribution, and interventions for infectious diseases of poverty. Infect. Dis. Poverty 2014, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Ribeiro, R.M.; Bonhoeffer, S.; Nowak, M.A. The frequency of resistant mutant virus before antiviral therapy. AIDS 1998, 12, 461–465. [Google Scholar] [CrossRef]
  7. Martinez, J.; Sasse, F.; Brönstrup, M.; Diez, J.; Meyerhans, A. Antiviral drug discovery: Broad-spectrum drugs from nature. Nat. Prod. Rep. 2015, 32, 29–48. [Google Scholar] [CrossRef] [PubMed]
  8. Farnsworth, N.R.; Akerele, O.; Bingel, A.S.; Soejarto, D.D.; Guo, Z. Medicinal plants in therapy. Bull. World Health Organ. 1985, 63, 965. [Google Scholar] [CrossRef] [Green Version]
  9. Solecki, R.S. Shanidar IV, a Neanderthal flower burial in northern Iraq. Science 1975, 190, 880–881. [Google Scholar] [CrossRef]
  10. Pandey, A.; Galvani, A.P. The global burden of HIV and prospects for control. Lancet HIV 2019, 6, e809–e811. [Google Scholar] [CrossRef] [Green Version]
  11. Lazarus, J.V.; Safreed-Harmon, K.; Barton, S.E.; Costagliola, D.; Dedes, N.; del Amo Valero, J.; Gatell, J.M.; Baptista-Leite, R.; Mendão, L.; Porter, K. Beyond viral suppression of HIV—The new quality of life frontier. BMC Med. 2016, 14, 94. [Google Scholar] [CrossRef]
  12. Frank, T.D.; Carter, A.; Jahagirdar, D.; Biehl, M.H.; Douwes-Schultz, D.; Larson, S.L.; Arora, M.; Dwyer-Lindgren, L.; Steuben, K.M.; Abbastabar, H. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: A systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV 2019, 6, e831–e859. [Google Scholar] [CrossRef] [Green Version]
  13. International Committee on Taxonomy of Viruses. 61.0.6. Lentivirus. National Institutes of Health. Available online: http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/61060000.htm (accessed on 9 October 2020).
  14. Soudeyns, H.; Champagne, P.; Holloway, C.L.; Silvestri, G.U.; Ringuette, N.; Samson, J.; Lapointe, N.; Sékaly, R.-P. Transient T cell receptor β-chain variable region-specific expansions of CD4+ and CD8+ T cells during the early phase of pediatric human immunodeficiency virus infection: Characterization of expanded cell populations by T cell receptor phenotyping. J. Infect. Dis. 2000, 181, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Varmus, H. Regulation of HIV and HTLV gene expression. Genes Dev. 1988, 2, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
  16. Yang, S.S.; Cragg, G.M.; Newman, D.J.; Bader, J.P. Natural product-based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics program. J. Nat. Prod. 2001, 64, 265–277. [Google Scholar] [CrossRef] [PubMed]
  17. Vaishnav, Y.N.; Wong-Staal, F. The biochemistry of AIDS. Annu. Rev. Biochem. 1991, 60, 577–630. [Google Scholar] [CrossRef] [PubMed]
  18. Kuznetsov, Y.G.; McPherson, A. Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol. Mol. Biol. Rev. 2011, 75, 268–285. [Google Scholar] [CrossRef] [Green Version]
  19. Tanser, F.; Bärnighausen, T.; Grapsa, E.; Zaidi, J.; Newell, M.-L. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science 2013, 339, 966–971. [Google Scholar] [CrossRef] [Green Version]
  20. Bangsberg, D.R.; Kroetz, D.L.; Deeks, S.G. Adherence-resistance relationships to combination HIV antiretroviral therapy. Curr. HIV/AIDS Rep. 2007, 4, 65. [Google Scholar] [CrossRef]
  21. Bock, C.; Lengauer, T. Managing drug resistance in cancer: Lessons from HIV therapy. Nat. Rev. Cancer 2012, 12, 494–501. [Google Scholar] [CrossRef]
  22. Cragg, G.; Newman, D. Plants as a source of anti-cancer and anti-HIV agents. Ann. Appl. Biol. 2003, 143, 127–133. [Google Scholar] [CrossRef]
  23. Barreca, M.L.; Ferro, S.; Rao, A.; De Luca, L.; Zappalà, M.; Monforte, A.-M.; Debyser, Z.; Witvrouw, M.; Chimirri, A. Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors. J. Med. Chem. 2005, 48, 7084–7088. [Google Scholar] [CrossRef] [PubMed]
  24. De Clercq, E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antivir. Res. 1998, 38, 153–179. [Google Scholar] [CrossRef]
  25. Nair, V.; Chi, G. HIV integrase inhibitors as therapeutic agents in AIDS. Rev. Med Virol. 2007, 17, 277–295. [Google Scholar] [CrossRef] [PubMed]
  26. Meixenberger, K.; Yousef, K.P.; Smith, M.R.; Somogyi, S.; Fiedler, S.; Bartmeyer, B.; Hamouda, O.; Bannert, N.; von Kleist, M.; Kücherer, C. Molecular evolution of HIV-1 integrase during the 20 years prior to the first approval of integrase inhibitors. Virol. J. 2017, 14, 223. [Google Scholar] [CrossRef] [Green Version]
  27. Tewtrakul, S.; Subhadhirasakul, S.; Kummee, S. Anti-HIV-1 integrase activity of medicinal plants used as self medication by AIDS patients. Songklanakarin J. Sci. Technol. 2006, 28, 785–790. [Google Scholar]
  28. Basu, V.P.; Song, M.; Gao, L.; Rigby, S.T.; Hanson, M.N.; Bambara, R.A. Strand transfer events during HIV-1 reverse transcription. Virus Res. 2008, 134, 19–38. [Google Scholar] [CrossRef]
  29. Flexner, C. HIV-protease inhibitors. N. Engl. J. Med. 1998, 338, 1281–1293. [Google Scholar] [CrossRef]
  30. Gills, J.J.; LoPiccolo, J.; Tsurutani, J.; Shoemaker, R.H.; Best, C.J.; Abu-Asab, M.S.; Borojerdi, J.; Warfel, N.A.; Gardner, E.R.; Danish, M. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin. Cancer Res. 2007, 13, 5183–5194. [Google Scholar] [CrossRef] [Green Version]
  31. Siwe-Noundou, X.; Ndinteh, D.; Olivier, D.; Mnkandhla, D.; Isaacs, M.; Muganza, F.; Mbafor, J.; Van Vuuren, S.; Patnala, S.; Hoppe, H. Biological activity of plant extracts and isolated compounds from Alchornea laxiflora: Anti-HIV, antibacterial and cytotoxicity evaluation. S. Afr. J. Bot. 2019, 122, 498–503. [Google Scholar] [CrossRef]
  32. Suedee, A.; Tewtrakul, S.; Panichayupakaranant, P. Anti-HIV-1 integrase activity of Mimusops elengi leaf extracts. Pharm. Biol. 2014, 52, 58–61. [Google Scholar] [CrossRef] [Green Version]
  33. Kapewangolo, P.; Tawha, T.; Nawinda, T.; Knott, M.; Hans, R. Sceletium tortuosum demonstrates in vitro anti-HIV and free radical scavenging activity. S. Afr. J. Bot. 2016, 106, 140–143. [Google Scholar] [CrossRef]
  34. Kapewangolo, P.; Knott, M.; Shithigona, R.E.; Uusiku, S.L.; Kandawa-Schulz, M. In vitro anti-HIV and antioxidant activity of Hoodia gordonii (Apocynaceae), a commercial plant product. BMC Complement. Altern. Med. 2016, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
  35. Au, T.; Lam, T.; Ng, T.; Fong, W.; Wan, D. A comparison of HIV-1 integrase inhibition by aqueous and methanol extracts of Chinese medicinal herbs. Life Sci. 2001, 68, 1687–1694. [Google Scholar] [CrossRef]
  36. Bunluepuech, K.; Tewtrakul, S. Anti-HIV-1 integrase activity of Thai medicinal plants in longevity preparations. Sonklanakarin J. Sci. Technol. 2011, 33, 693. [Google Scholar]
  37. Lee, J.S.; Kim, H.J.; Lee, Y.S. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med. 2003, 69, 859–861. [Google Scholar] [PubMed]
  38. Matsuse, I.; Lim, Y.; Hattori, M.; Correa, M.; Gupta, M. A search for anti-viral properties in Panamanian medicinal plants: The effects on HIV and its essential enzymes. J. Ethnopharmacol. 1998, 64, 15–22. [Google Scholar] [CrossRef]
  39. Narayan, C.; Rai, R.V.; Tewtrakul, S. A screening strategy for selection of anti-HIV-1 integrase and anti-HIV-1 protease inhibitors from extracts of Indian medicinal plants. Int. J. Phytomed. 2011, 3, 312. [Google Scholar]
  40. Chaniad, P.; Wattanapiromsakul, C.; Pianwanit, S.; Tewtrakul, S. Anti-HIV-1 integrase compounds from Dioscorea bulbifera and molecular docking study. Pharm. Biol. 2016, 54, 1077–1085. [Google Scholar] [CrossRef] [Green Version]
  41. Kim, H.K.; Lee, H.-K.; Shin, C.-G.; Huh, H. HIV integrase inhibitory activity ofAgastache rugosa. Arch. Pharmacal Res. 1999, 22, 520–523. [Google Scholar] [CrossRef]
  42. Geuenich, S.; Goffinet, C.; Venzke, S.; Nolkemper, S.; Baumann, I.; Plinkert, P.; Reichling, J.; Keppler, O.T. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology 2008, 5, 27. [Google Scholar] [CrossRef] [Green Version]
  43. Min, B.S.; Bae, K.H.; Kim, Y.H.; Shimotono, K.; Miyashiro, H.; Hattori, M. Inhibitory activities of Korean plants on HIV-1 protease. Nat. Prod. Sci. 1998, 4, 241–244. [Google Scholar]
  44. Eid, A.M.M.; Elmarzugi, N.A.; El-Enshasy, H.A. A review on the phytopharmacological effect of Swietenia macrophylla. Int. J. Pharm. Pharm. Sci. 2013, 3, 5. [Google Scholar]
  45. Asres, K.; Bucar, F.; Kartnig, T.; Witvrouw, M.; Pannecouque, C.; De Clercq, E. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2001, 15, 62–69. [Google Scholar] [CrossRef]
  46. Rege, A.A.; Ambaye, R.Y.; Deshmukh, R.A. Evaluation of in vitro inhibitory effect of selected plants and Shilajit on HIV-reverse transcriptase. Indian J. Nat. Prod. Resour. 2012, 3, 145–151. [Google Scholar]
  47. Woradulayapinij, W.; Soonthornchareonnon, N.; Wiwat, C. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J. Ethnopharmacol. 2005, 101, 84–89. [Google Scholar] [CrossRef]
  48. Silprasit, K.; Seetaha, S.; Pongsanarakul, P.; Hannongbua, S.; Choowongkomon, K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J. Med. Plants Res 2011, 5, 4194–4201. [Google Scholar]
  49. Grzybek, J.; Wongpanich, V.; Mata-Greenwood, E.; Angerhofer, C.K.; Pezzuto, J.M.; Cordell, G.A. Biological evaluation of selected plants from Poland. Int. J. Pharm. 1997, 35, 1–5. [Google Scholar] [CrossRef]
  50. Mlinaric, A.; Kreft, S.; Umek, A.; Strukelj, B. Screening of selected plant extracts for in vitro inhibitory activity on HIV-1 reverse transcriptase (HIV-1 RT). Die Pharm. 2000, 55, 75–77. [Google Scholar]
  51. Gujjeti, R.P.; Mamidala, E. Anti-HIV activity of phytosterol isolated from Aerva lanata roots. Pharm. J. 2017, 9, 112–116. [Google Scholar] [CrossRef] [Green Version]
  52. Ali, H.; König, G.; Khalid, S.; Wright, A.; Kaminsky, R. Evaluation of selected Sudanese medicinal plants for their in vitro activity against hemoflagellates, selected bacteria, HIV-1-RT and tyrosine kinase inhibitory, and for cytotoxicity. J. Ethnopharmacol. 2002, 83, 219–228. [Google Scholar] [CrossRef]
  53. McMahon, J.B.; Currens, M.J.; Gulakowski, R.J.; Buckheit, R.; Lackman-Smith, C.; Hallock, Y.F.; Boyd, M.R. Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. Antimicrob. Agents Chemother. 1995, 39, 484–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Bicchi, C.; Rubiolo, P.; Ballero, M.; Sanna, C.; Matteodo, M.; Esposito, F.; Zinzula, L.; Tramontano, E. HIV-1-inhibiting activity of the essential oil of Ridolfia segetum and Oenanthe crocata. Planta Med. 2009, 75, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
  55. Esposito, F.; Mandrone, M.; Del Vecchio, C.; Carli, I.; Distinto, S.; Corona, A.; Lianza, M.; Piano, D.; Tacchini, M.; Maccioni, E. Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of Lupeol mode of action. Pathog. Dis. 2017, 75, ftx065. [Google Scholar] [CrossRef]
  56. Rukunga, G.M.; Kofi-Tsekpo, M.W.; Kurokawa, M.; Kageyama, S.; Mungai, G.M.; Muli, J.M.; Tolo, F.M.; Kibaya, R.M.; Muthaura, C.N.; Kanyara, J.N. Evaluation of the HIV-1 reverse transcriptase inhibitory properties of extracts from some medicinal plants in Kenya. Afr. J. Health Sci. 2002, 9, 81–90. [Google Scholar] [CrossRef] [Green Version]
  57. Chukwujekwu, J.; Ndhlala, A.; De Kock, C.; Smith, P.; Van Staden, J. Antiplasmodial, HIV-1 reverse transcriptase inhibitory and cytotoxicity properties of Centratherum punctatum Cass. and its fractions. S. Afr. J. Bot. 2014, 90, 17–19. [Google Scholar] [CrossRef] [Green Version]
  58. Hnatyszyn, O.; Broussalis, A.; Herrera, G.; Muschietti, L.; Coussio, J.; Martino, V.; Ferraro, G.; Font, M.; Monge, A.; Martínez-Irujo, J.J. Argentine plant extracts active against polymerase and ribonuclease H activities of HIV-1 reverse transcriptase. Phytother. Res. 1999, 13, 206–209. [Google Scholar] [CrossRef] [Green Version]
  59. Harnett, S.; Oosthuizen, V.D.V.; Van de Venter, M. Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J. Ethnopharmacol. 2005, 96, 113–119. [Google Scholar] [CrossRef]
  60. Bedoya, L.M.; Beltrán, M.; Sancho, R.; Olmedo, D.A.; Sánchez-Palomino, S.; del Olmo, E.; López-Pérez, J.L.; Muñoz, E.; San Feliciano, A.; Alcamí, J. 4-Phenylcoumarins as HIV transcription inhibitors. Bioorganic Med. Chem. Lett. 2005, 15, 4447–4450. [Google Scholar] [CrossRef]
  61. Chang, C.-W.; Lin, M.-T.; Lee, S.-S.; Liu, K.C.C.; Hsu, F.-L.; Lin, J.-Y. Differential inhibition of reverse transcriptase and cellular DNA polymerase-α activities by lignans isolated from Chinese herbs, Phyllanthus myrtifolius Moon, and tannins from Lonicera japonica Thunb and Castanopsis hystrix. Antivir. Res. 1995, 27, 367–374. [Google Scholar] [CrossRef]
  62. Bessong, P.O.; Obi, C.L.; Andréola, M.-L.; Rojas, L.B.; Pouységu, L.; Igumbor, E.; Meyer, J.M.; Quideau, S.; Litvak, S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005, 99, 83–91. [Google Scholar] [CrossRef]
  63. Mamidala, E.; Paindla, P.; Gurrapu, S. Hiv-1 Reverse Transcriptase Inhibition by Phenolic Compounds Isolated From Acalypha Indica (L.) Plant Leaves Extract. Int. J. Appl. Bioeng. 2017, 11, 17–21. [Google Scholar]
  64. Fang, E.F.; Lin, P.; Wong, J.H.; Tsao, S.W.; Ng, T.B. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of Phaseolus vulgaris cv. extralong autumn purple bean. J. Agric. Food Chem. 2010, 58, 2221–2229. [Google Scholar] [CrossRef]
  65. Thayil Seema, M.; Thyagarajan, S. Methanol and aqueous extracts of Ocimum kilimandscharicum (Karpuratulasi) inhibits HIV-1 reverse transcriptase in vitro. Int. J. Pharm. Pharmacogn. Res. 2016, 8, 1099–1103. [Google Scholar]
  66. Lavignon, M.; Bertrand, J.-R.; Rayner, B.; Imbach, J.-L.; Malvy, C.; Paoletti, C. Inhibition of Moloney murine leukemia virus reverse transcriptase by α-anomeric oligonucleotides. Biochem. Biophys. Res. Commun. 1989, 161, 1184–1190. [Google Scholar] [CrossRef]
  67. Esposito, F.; Sanna, C.; Del Vecchio, C.; Cannas, V.; Venditti, A.; Corona, A.; Bianco, A.; Serrilli, A.M.; Guarcini, L.; Parolin, C. Hypericum hircinum L. components as new single-molecule inhibitors of both HIV-1 reverse transcriptase-associated DNA polymerase and ribonuclease H activities. Pathog. Dis. 2013, 68, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Alam, M.S.; Quader, M.; Rashid, M. HIV-inhibitory diterpenoid from Anisomeles indica. Fitoterapia 2000, 71, 574–576. [Google Scholar] [CrossRef]
  69. Miraj, S.; Azizi, N.; Kiani, S. A review of chemical components and pharmacological effects of Melissa officinalis L. Pharm. Lett. 2016, 8, 229–237. [Google Scholar]
  70. Kapewangolo, P.; Omolo, J.J.; Fonteh, P.; Kandawa-Schulz, M.; Meyer, D. Triterpenoids from Ocimum labiatum activates latent HIV-1 expression in vitro: Potential for use in adjuvant therapy. Molecules 2017, 22, 1703. [Google Scholar] [CrossRef] [Green Version]
  71. Hatano, T.; Yasuhara, T.; Matsuda, M.; Yazaki, K.; Yoshida, T.; Okuda, T. Oenothein B, a dimeric hydrolyzable tannin of cyclic structure. Chem. Pharm. Bull. 1989, 37, 2269–2271. [Google Scholar] [CrossRef] [Green Version]
  72. Ogata, T.; Higuchi, H.; Mochida, S.; Matsumoto, H.; Kato, A.; Endo, T.; Kaji, A.; Kaji, H. HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. Aids Res. Hum. Retrovir. 1992, 8, 1937–1944. [Google Scholar] [CrossRef]
  73. Esposito, F.; Carli, I.; Del Vecchio, C.; Xu, L.; Corona, A.; Grandi, N.; Piano, D.; Maccioni, E.; Distinto, S.; Parolin, C. Sennoside A, derived from the traditional Chinese medicine plant Rheum L. is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine 2016, 23, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
  74. Reutrakul, V.; Krachangchaeng, C.; Tuchinda, P.; Pohmakotr, M.; Jaipetch, T.; Yoosook, C.; Kasisit, J.; Sophasan, S.; Sujarit, K.; Santisuk, T. Cytotoxic and anti-HIV-1 constituents from leaves and twigs of Gardenia tubifera. Tetrahedron 2004, 60, 1517–1523. [Google Scholar] [CrossRef]
  75. Xu, H.X.; Wan, M.; Loh, B.N.; Kon, O.L.; Chow, P.W.; Sim, K.Y. Screening of Traditional Medicines for their Inhibitory Activity against HIV-1 Protease. Phytother. Res. 1996, 10, 207–210. [Google Scholar] [CrossRef]
  76. Kusumoto, I.T.; Nakabayashi, T.; Kida, H.; Miyashiro, H.; Hattori, M.; Namba, T.; Shimotohno, K. Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytother. Res. 1995, 9, 180–184. [Google Scholar] [CrossRef]
  77. Tewtrakul, S.; Subhadhirasakul, S.; Cheenpracha, S.; Karalai, C. HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 1092–1095. [Google Scholar]
  78. Min, B.S.; Bae, K.H.; Kim, Y.H.; Miyashiro, H.; Hattori, M.; Shimotohno, K. Screening of Korean plants against human immunodeficiency virus type 1 protease. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1999, 13, 680–682. [Google Scholar] [CrossRef]
  79. Chingwaru, W.; Vidmar, J.; Kapewangolo, P.T. The potential of sub-saharan african plants in the management of human immunodeficiency virus infections: A review. Phytother. Res. 2015, 29, 1452–1487. [Google Scholar] [CrossRef] [PubMed]
  80. Magadula, J.J.; Tewtrakul, S. Anti-HIV-1 protease activities of crude extracts of some Garcinia species growing in Tanzania. Afr. J. Biotechnol. 2010, 9. [Google Scholar] [CrossRef] [Green Version]
  81. Asres, K.; Seyoum, A.; Veeresham, C.; Bucar, F.; Gibbons, S. Naturally derived anti-HIV agents. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2005, 19, 557–581. [Google Scholar] [CrossRef]
  82. Zhang, C.-F.; Nakamura, N.; Tewtrakul, S.; Hattori, M.; Sun, Q.-S.; Wang, Z.-T.; Fujiwara, T. Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chem. Pharm. Bull. 2002, 50, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
  83. Jiang, C.; Luo, P.; Zhao, Y.; Hong, J.; Morris-Natschke, S.L.; Xu, J.; Chen, C.-H.; Lee, K.-H.; Gu, Q. Carolignans from the aerial parts of Euphorbia sikkimensis and their anti-HIV activity. J. Nat. Prod. 2016, 79, 578–583. [Google Scholar] [CrossRef] [Green Version]
  84. Modi, M.; Dezzutti, C.S.; Kulshreshtha, S.; Rawat, A.K.S.; Srivastava, S.K.; Malhotra, S.; Verma, A.; Ranga, U.; Gupta, S.K. Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol. J. 2013, 10, 309. [Google Scholar]
  85. Wang, H.; Ng, T. Ascalin, a new anti-fungal peptide with human immunodeficiency virus type 1 reverse transcriptase-inhibiting activity from shallot bulbs. Peptides 2002, 23, 1025–1029. [Google Scholar] [CrossRef]
  86. Gómez-Cansino, R.; Espitia-Pinzón, C.I.; Campos-Lara, M.G.; Guzmán-Gutiérrez, S.L.; Segura-Salinas, E.; Echeverría-Valencia, G.; Torras-Claveria, L.; Cuevas-Figueroa, X.M.; Reyes-Chilpa, R. Antimycobacterial and HIV-1 reverse transcriptase activity of Julianaceae and Clusiaceae plant species from Mexico. Evid. Based Complement. Altern. Med. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Narayan, L.C.; Rai, V.R.; Tewtrakul, S. Emerging need to use phytopharmaceuticals in the treatment of HIV. J. Pharm. Res. 2013, 6, 218–223. [Google Scholar] [CrossRef]
  88. Kuo, R.-Y.; Qian, K.; Morris-Natschke, S.L.; Lee, K.-H. Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Nat. Prod. Rep. 2009, 26, 1321–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Bringmann, G.; Steinert, C.; Feineis, D.; Mudogo, V.; Betzin, J.; Scheller, C. HIV-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the Central African liana Ancistrocladus congolensis. Phytochemistry 2016, 128, 71–81. [Google Scholar] [CrossRef]
  90. Tietjen, I.; Gatonye, T.; Ngwenya, B.N.; Namushe, A.; Simonambanga, S.; Muzila, M.; Mwimanzi, P.; Xiao, J.; Fedida, D.; Brumme, Z.L. Croton megalobotrys Müll Arg. and Vitex doniana (Sweet): Traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1. J. Ethnopharmacol. 2016, 191, 331–340. [Google Scholar] [CrossRef] [PubMed]
  91. Sanna, C.; Rigano, D.; Corona, A.; Piano, D.; Formisano, C.; Farci, D.; Franzini, G.; Ballero, M.; Chianese, G.; Tramontano, E. Dual HIV-1 reverse transcriptase and integrase inhibitors from Limonium morisianum Arrigoni, an endemic species of Sardinia (Italy). Nat. Prod. Res. 2019, 33, 1798–1803. [Google Scholar] [CrossRef]
  92. Hisayoshi, T.; Shinomura, M.; Yokokawa, K.; Kuze, I.; Konishi, A.; Kawaji, K.; Kodama, E.N.; Hata, K.; Takahashi, S.; Nirasawa, S. Inhibition of the DNA polymerase and RNase H activities of HIV-1 reverse transcriptase and HIV-1 replication by Brasenia schreberi (Junsai) and Petasites japonicus (Fuki) components. J. Nat. Med. 2015, 69, 432–440. [Google Scholar] [CrossRef] [PubMed]
  93. Wang, Q.; Ding, Z.-H.; Liu, J.-K.; Zheng, Y.-T. Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus. Antivir. Res. 2004, 64, 189–194. [Google Scholar] [CrossRef]
  94. Zhang, H.; Ma, Z.F. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients 2018, 10, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  95. Singh, I.P.; Bharate, S.B.; Bhutani, K. Anti-HIV natural products. Curr. Sci. 2005, 89, 269–290. [Google Scholar]
  96. Pailee, P.; Kuhakarn, C.; Sangsuwan, C.; Hongthong, S.; Piyachaturawat, P.; Suksen, K.; Jariyawat, S.; Akkarawongsapat, R.; Limthongkul, J.; Napaswad, C. Anti-HIV and cytotoxic biphenyls, benzophenones and xanthones from stems, leaves and twigs of Garcinia speciosa. Phytochemistry 2018, 147, 68–79. [Google Scholar] [CrossRef] [PubMed]
  97. Chaturonrutsamee, S.; Kuhakarn, C.; Surawatanawong, P.; Prabpai, S.; Kongsaeree, P.; Jaipetch, T.; Piyachaturawat, P.; Jariyawat, S.; Akkarawongsapat, R.; Suksen, K. Polycyclic polyprenylated acylphloroglucinols and biphenyl derivatives from the roots of Garcinia nuntasaenii Ngerns. & Suddee. Phytochemistry 2018, 146, 63–74. [Google Scholar] [PubMed]
  98. Palamthodi, S.; Lele, S. Nutraceutical applications of gourd family vegetables: Benincasa hispida, Lagenaria siceraria and Momordica charantia. Biomed. Prev. Nutr. 2014, 4, 15–21. [Google Scholar] [CrossRef]
  99. Bekut, M.; Brkić, S.; Kladar, N.; Dragović, G.; Gavarić, N.; Božin, B. Potential of selected Lamiaceae plants in anti (retro) viral therapy. Pharmacol. Res. 2018, 133, 301–314. [Google Scholar] [CrossRef]
  100. Zhao, Q.; Chen, X.-Y.; Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. 2016, 61, 1391–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  101. Looker, K.J.; Welton, N.J.; Sabin, K.M.; Dalal, S.; Vickerman, P.; Turner, K.M.; Boily, M.-C.; Gottlieb, S.L. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: A population attributable fraction analysis using published epidemiological data. Lancet Infect. Dis. 2020, 20, 240–249. [Google Scholar] [CrossRef] [Green Version]
  102. Whitley, R.J.; Roizman, B. Herpes simplex virus infections. The lancet 2001, 357, 1513–1518. [Google Scholar] [CrossRef]
  103. Forni, D.; Pontremoli, C.; Clerici, M.; Pozzoli, U.; Cagliani, R.; Sironi, M. Recent out-of-Africa migration of human herpes simplex viruses. Mol. Biol. Evol. 2020, 37, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
  104. Dropulic, L.K.; Cohen, J.I. Update on new antivirals under development for the treatment of double-stranded DNA virus infections. Clin. Pharmacol. Ther. 2010, 88, 610–619. [Google Scholar] [CrossRef] [Green Version]
  105. van den Pol, A.N.; Ozduman, K.; Wollmann, G.; Ho, W.S.; Simon, I.; Yao, Y.; Rose, J.K.; Ghosh, P. Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor Golgi-like expression. J. Comp. Neurol. 2009, 516, 456–481. [Google Scholar] [CrossRef] [Green Version]
  106. Chuanasa, T.; Phromjai, J.; Lipipun, V.; Likhitwitayawuid, K.; Suzuki, M.; Pramyothin, P.; Hattori, M.; Shiraki, K. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antivir. Res. 2008, 80, 62–70. [Google Scholar] [CrossRef] [PubMed]
  107. Neyts, J.; De Clercq, E. Mechanism of action of acyclic nucleoside phosphonates against herpes virus replication. Biochem. Pharmacol. 1994, 47, 39–41. [Google Scholar] [CrossRef]
  108. Hassan, S.T.; Masarčíková, R.; Berchová, K. Bioactive natural products with anti-herpes simplex virus properties. J. Pharm. Pharmacol. 2015, 67, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
  109. Brady, R.C.; Bernstein, D.I. Treatment of herpes simplex virus infections. Antivir. Res. 2004, 61, 73–81. [Google Scholar] [CrossRef]
  110. Corey, L. Challenges in genital herpes simplex virus management. J. Infect. Dis. 2002, 186 (Suppl. 1), S29–S33. [Google Scholar] [CrossRef]
  111. Benzekri, R.; Limam, F.; Bouslama, L. Combination effect of three anti-HSV-2 active plant extracts exhibiting different modes of action. Adv. Tradit. Med. 2020, 20, 223–231. [Google Scholar] [CrossRef]
  112. Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Smeriglio, A.; Mandalari, G.; Sciortino, M.T. In Vitro Anti-HSV-1 Activity of Polyphenol-Rich Extracts and Pure Polyphenol Compounds Derived from Pistachios Kernels (Pistacia vera L.). Plants 2020, 9, 267. [Google Scholar] [CrossRef] [Green Version]
  113. Reichling, J.; Neuner, A.; Sharaf, M.; Harkenthal, M.; Schnitzler, P. Antiviral activity of Rhus aromatica (fragrant sumac) extract against two types of herpes simplex viruses in cell culture. Die Pharm. Int. J. Pharm. Sci. 2009, 64, 538–541. [Google Scholar]
  114. Karimi, A.; Rafieian-Kopaei, M.; Moradi, M.-T.; Alidadi, S. Anti–Herpes Simplex Virus Type-1 Activity and Phenolic Content of Crude Ethanol Extract and Four Corresponding Fractions of Quercus brantii L Acorn. J. Evid. Based Complement. Altern. Med. 2017, 22, 455–461. [Google Scholar] [CrossRef] [PubMed]
  115. Benassi-Zanqueta, É.; Marques, C.F.; Valone, L.M.; Pellegrini, B.L.; Bauermeister, A.; Ferreira, I.C.P.; Lopes, N.P.; Nakamura, C.V.; Dias Filho, B.P.; Natali, M.R.M. Evaluation of anti-HSV-1 activity and toxicity of hydroethanolic extract of Tanacetum parthenium (L.) Sch. Bip. (Asteraceae). Phytomedicine 2019, 55, 249–254. [Google Scholar] [CrossRef]
  116. Yoosook, C.; Bunyapraphatsara, N.; Boonyakiat, Y.; Kantasuk, C. Anti-herpes simplex virus activities of crude water extracts of Thai medicinal plants. Phytomedicine 2000, 6, 411–419. [Google Scholar] [CrossRef]
  117. Shamsabadipour, S.; Ghanadian, M.; Saeedi, H.; Rahimnejad, M.R.; Mohammadi-Kamalabadi, M.; Ayatollahi, S.M.; Salimzadeh, L. Triterpenes and steroids from Euphorbia denticulata Lam. with anti-Herpes symplex virus activity. Iran. J. Pharm. Res. IJPR 2013, 12, 759. [Google Scholar]
  118. Lipipun, V.; Kurokawa, M.; Suttisri, R.; Taweechotipatr, P.; Pramyothin, P.; Hattori, M.; Shiraki, K. Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Antivir. Res. 2003, 60, 175–180. [Google Scholar] [CrossRef]
  119. El-Toumy, S.A.; Salib, J.Y.; El-Kashak, W.A.; Marty, C.; Bedoux, G.; Bourgougnon, N. Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. Food Sci. Hum. Wellness 2018, 7, 91–101. [Google Scholar] [CrossRef]
  120. Palomino, S.S.; Abad, M.J.; Bedoya, L.M.; García, J.; Gonzales, E.; Chiriboga, X.; Bermejo, P.; Alcami, J. Screening of South American plants against human immunodeficiency virus: Preliminary fractionation of aqueous extract from Baccharis trinervis. Biol. Pharm. Bull. 2002, 25, 1147–1150. [Google Scholar] [CrossRef] [Green Version]
  121. Rezazadeh, F.; Moshaverinia, M.; Motamedifar, M.; Alyaseri, M. Assessment of anti HSV-1 activity of Aloe vera gel extract: An in vitro study. J. Dent. 2016, 17, 49. [Google Scholar]
  122. Padma, P.; Pramod, N.; Thyagarajan, S.; Khosa, R. Effect of the extract of Annona muricata and Petunia nyctaginiflora on Herpes simplex virus. J. Ethnopharmacol. 1998, 61, 81–83. [Google Scholar] [CrossRef]
  123. Andrighetti-Fröhner, C.; Sincero, T.; Da Silva, A.; Savi, L.; Gaido, C.; Bettega, J.; Mancini, M.; De Almeida, M.; Barbosa, R.; Farias, M. Antiviral evaluation of plants from Brazilian atlantic tropical forest. Fitoterapia 2005, 76, 374–378. [Google Scholar] [CrossRef]
  124. Zaharieva, M.M.; Genova-Kalou, P.; Dincheva, I.; Badjakov, I.; Krumova, S.; Enchev, V.; Najdenski, H.; Markova, N. Anti-Herpes Simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: A pilot study. Biotechnol. Biotechnol. Equip. 2019, 33, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
  125. Bisignano, C.; Mandalari, G.; Smeriglio, A.; Trombetta, D.; Pizzo, M.M.; Pennisi, R.; Sciortino, M.T. Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell. Viruses 2017, 9, 178. [Google Scholar] [CrossRef]
  126. Churqui, M.P.; Lind, L.; Thörn, K.; Svensson, A.; Savolainen, O.; Aranda, K.T.; Eriksson, K. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2. J. Ethnopharmacol. 2018, 210, 192–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  127. Nocchi, S.R.; Companhoni, M.V.P.; de Mello, J.C.P.; Dias Filho, B.P.; Nakamura, C.V.; Carollo, C.A.; Silva, D.B.; Ueda-Nakamura, T. Antiviral activity of crude hydroethanolic extract from Schinus terebinthifolia against Herpes simplex Virus Type 1. Planta Med. 2017, 234, 509–518. [Google Scholar] [CrossRef] [Green Version]
  128. Hinkov, A.; Angelova, P.; Marchev, A.; Hodzhev, Y.; Tsvetkov, V.; Dragolova, D.; Todorov, D.; Shishkova, K.; Kapchina-Toteva, V.; Blundell, R. Nepeta nuda ssp. nuda L. water extract: Inhibition of replication of some strains of human alpha herpes virus (genus simplex virus) in vitro, mode of action and NMR-based metabolomics. J. Herb. Med. 2020, 21, 100334. [Google Scholar] [CrossRef]
  129. Lavoie, S.; Côté, I.; Pichette, A.; Gauthier, C.; Ouellet, M.; Nagau-Lavoie, F.; Mshvildadze, V.; Legault, J. Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complement. Altern. Med. 2017, 17, 123. [Google Scholar] [CrossRef]
  130. Boff, L.; Silva, I.; Argenta, D.; Farias, L.; Alvarenga, L.; Pádua, R.; Braga, F.; Leite, J.; Kratz, J.; Simões, C. Strychnos pseudoquina A. St. Hil.: A Brazilian medicinal plant with promising in vitro antiherpes activity. J. Appl. Microbiol. 2016, 121, 1519–1529. [Google Scholar] [CrossRef]
  131. Siqueira, E.M.d.S.; Lima, T.L.; Boff, L.; Lima, S.G.; Lourenço, E.M.; Ferreira, É.G.; Barbosa, E.G.; Machado, P.R.; Farias, K.J.; Ferreira, L.D.S. Antiviral Potential of Spondias mombin L. Leaves Extract Against Herpes Simplex Virus Type-1 Replication Using In Vitro and In Silico Approaches. Planta Med. 2020, 86, 505–515. [Google Scholar] [CrossRef]
  132. Di Sotto, A.; Di Giacomo, S.; Amatore, D.; Locatelli, M.; Vitalone, A.; Toniolo, C.; Rotino, G.L.; Lo Scalzo, R.; Palamara, A.T.; Marcocci, M.E. A polyphenol rich extract from Solanum melongena L. DR2 peel exhibits antioxidant properties and anti-Herpes Simplex Virus Type 1 activity in vitro. Molecules 2018, 23, 2066. [Google Scholar] [CrossRef] [Green Version]
  133. Wang, Y.-Q.; Cai, L.; Zhang, N.; Zhang, J.; Wang, H.-H.; Zhu, W. Protective effect of total flavonoids from Ixeris Sonchifolia on herpes simplex virus keratitis in mice. BMC Complement. Med. Ther. 2020, 20, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  134. Nawawi, A.A.; Nakamura, N.; Hattori, M.; Kurokawa, M.; Shiraki, K. Inhibitory effects of Indonesian medicinal plants on the infection of herpes simplex virus type 1. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1999, 13, 37–41. [Google Scholar] [CrossRef]
  135. Benzekri, R.; Bouslama, L.; Papetti, A.; Hammami, M.; Smaoui, A.; Limam, F. Anti HSV-2 activity of Peganum harmala (L.) and isolation of the active compound. Microb. Pathog. 2018, 114, 291–298. [Google Scholar] [CrossRef] [PubMed]
  136. Ben Sassi, A.; Harzallah-Skhiri, F.; Bourgougnon, N.; Aouni, M. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1. Nat. Prod. Res. 2008, 22, 53–65. [Google Scholar] [CrossRef]
  137. Gavanji, S.; Sayedipour, S.S.; Larki, B.; Bakhtari, A. Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. J. Acute Med. 2015, 5, 62–68. [Google Scholar] [CrossRef] [Green Version]
  138. Donalisio, M.; Cagno, V.; Civra, A.; Gibellini, D.; Musumeci, G.; Rittà, M.; Ghosh, M.; Lembo, D. The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses. J. Ethnopharmacol. 2018, 213, 403–408. [Google Scholar] [CrossRef]
  139. Nakamura, N.; Hattori, M.; Kurokawa, M.; Shiraki, K.; Kashiwaba, N.; Ono, M. Anti-herpes simplex virus activity of alkaloids isolated from Stephania cepharantha. Biol. Pharm. Bull. 1999, 22, 268–274. [Google Scholar]
  140. Ghosh, M.; Civra, A.; Rittà, M.; Cagno, V.; Mavuduru, S.G.; Awasthi, P.; Lembo, D.; Donalisio, M. Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro. Arch. Virol. 2016, 161, 3509–3514. [Google Scholar] [CrossRef]
  141. Verma, H.; Patil, P.; Kolhapure, R.; Gopalkrishna, V. Antiviral activity of the Indian medicinal plant extract, Swertia chirata against herpes simplex viruses: A study by in-vitro and molecular approach. Indian J. Med Microbiol. 2008, 26, 322. [Google Scholar]
  142. Hayashi, K.; Niwayama, S.; Hayashi, T.; Nago, R.; Ochiai, H.; Morita, N. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1. Antivir. Res. 1988, 9, 345–354. [Google Scholar] [CrossRef]
  143. Ojha, D.; Das, R.; Sobia, P.; Dwivedi, V.; Ghosh, S.; Samanta, A.; Chattopadhyay, D. Pedilanthus tithymaloides inhibits HSV infection by modulating NF-κB signaling. PLoS ONE 2015, 10, e0139338. [Google Scholar] [CrossRef] [PubMed]
  144. Wiart, C.; Kumar, K.; Yusof, M.; Hamimah, H.; Fauzi, Z.; Sulaiman, M. Antiviral properties of ent-labdene diterpenes of Andrographis paniculata Nees, inhibitors of herpes simplex virus type 1. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2005, 19, 1069–1070. [Google Scholar]
  145. Hafidh, R.R.; Abdulamir, A.S.; Bakar, F.A.; Sekawi, Z.; Jahansheri, F.; Jalilian, F.A. Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus−1: An in vitro study on virally infected Vero and MRC-5 cell lines. BMC Complement. Altern. Med. 2015, 15, 179. [Google Scholar] [CrossRef] [Green Version]
  146. Karimi, A.; Moradi, M.-T.; Saeedi, M.; Asgari, S.; Rafieian-Kopaei, M. Antiviral activity of Quercus persica L.: High efficacy and low toxicity. Adv. Biomed. Res. 2013, 2, 36. [Google Scholar]
  147. Elanchezhiyan, M.; Rajarajan, S.; Rajendran, P.; Subramanian, S.; Thyagarajan, S. Antiviral properties of the seed extract of an Indian medicinal plant, Pongamia pinnata, Linn., against herpes simplex viruses: In-vitro studies on Vero cells. J. Med. Microbiol. 1993, 38, 262–264. [Google Scholar] [CrossRef] [Green Version]
  148. Cheng, H.-Y.; Lin, T.-C.; Yang, C.-M.; Wang, K.-C.; Lin, C.-C. Mechanism of action of the suppression of herpes simplex virus type 2 replication by pterocarnin A. Microbes Infect. 2004, 6, 738–744. [Google Scholar] [CrossRef]
  149. Namazi, R.; Zabihollahi, R.; Behbahani, M.; Rezaei, A. Inhibitory activity of Avicennia marina, a medicinal plant in Persian folk medicine, against HIV and HSV. Iran. J. Pharm. Res. IJPR 2013, 12, 435. [Google Scholar]
  150. Jadhav, P.; Kapoor, N.; Thomas, B.; Lal, H.; Kshirsagar, N. Antiviral potential of selected Indian medicinal (ayurvedic) plants against herpes simplex virus 1 and 2. N. Am. J. Med Sci. 2012, 4, 641. [Google Scholar] [CrossRef]
  151. Jaime, M.F.V.; Redko, F.; Muschietti, L.V.; Campos, R.H.; Martino, V.S.; Cavallaro, L.V. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol. J. 2013, 10, 245. [Google Scholar] [CrossRef] [Green Version]
  152. Lin, L.-C.; Kuo, Y.-C.; Chou, C.-J. Anti-herpes simplex virus type-1 flavonoids and a new flavanone from the root of Limonium sinense. Planta Med. 2000, 66, 333–336. [Google Scholar] [CrossRef]
  153. Zhang, Y.; But, P.P.-H.; Ooi, V.E.-C.; Xu, H.-X.; Delaney, G.D.; Lee, S.H.; Lee, S.F. Chemical properties, mode of action, and in vivo anti-herpes activities of a lignin—carbohydrate complex from Prunella vulgaris. Antivir. Res. 2007, 75, 242–249. [Google Scholar] [CrossRef] [PubMed]
  154. Konigheim, B.S.; Beranek, M.; Comini, L.R.; Aguilar, J.J.; Marioni, J.; Cabrera, J.L.; Contigiani, M.S.; Montoya, S.C.N. In Vitro antiviral activity of Heterophyllaea pustulata extracts. Nat. Prod. Commun. 2012, 7, 1025–1028. [Google Scholar] [CrossRef] [Green Version]
  155. Lin, Y.-M.; Flavin, M.T.; Schure, R.; Chen, F.-C.; Sidwell, R.; Barnard, D.I.; Huffmann, J.H.; Kern, E.R. Antiviral activities of biflavonoids. Planta Med. 1999, 65, 120–125. [Google Scholar] [CrossRef] [PubMed]
  156. Martin, S.F. The amaryllidaceae alkaloids. In The Alkaloids: Chemistry and Pharmacology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 30, pp. 251–376. [Google Scholar]
  157. Bourne, K.Z.; Bourne, N.; Reising, S.F.; Stanberry, L.R. Plant products as topical microbicide candidates: Assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antivir. Res. 1999, 42, 219–226. [Google Scholar] [CrossRef]
  158. Andersen, D.O.; Weber, N.D.; Wood, S.G.; Hughes, B.G.; Murray, B.K.; North, J.A. In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antivir. Res. 1991, 16, 185–196. [Google Scholar] [CrossRef]
  159. Chokchaisiri, R.; Srijun, J.; Chaichompoo, W.; Cheenpracha, S.; Ganranoo, L.; Suksamrarn, A. Anti-herpes simplex type-1 (HSV-1) activity from the roots of Jatropha multifida L. Med. Chem. Res. 2020, 29, 328–333. [Google Scholar] [CrossRef]
  160. Killingley, B.; Greatorex, J.; Cauchemez, S.; Enstone, J.; Curran, M.; Read, R.; Lim, W.; Hayward, A.; Nicholson, K.; Nguyen-Van-Tam, J. Virus shedding and environmental deposition of novel A (H1N1) pandemic influenza virus: Interim findings. Health Technol Assess 2010, 14, 237–354. [Google Scholar] [CrossRef] [Green Version]
  161. Simonsen, L.; Clarke, M.J.; Schonberger, L.B.; Arden, N.H.; Cox, N.J.; Fukuda, K. Pandemic versus epidemic influenza mortality: A pattern of changing age distribution. J. Infect. Dis. 1998, 178, 53–60. [Google Scholar] [CrossRef]
  162. Jester, B.J.; Uyeki, T.M.; Jernigan, D.B. Fifty Years of Influenza A (H3N2) Following the Pandemic of 1968. Am. J. Public Health 2020, 110, 669–676. [Google Scholar] [CrossRef]
  163. Xue, L.; Zeng, G. An Evaluation of China’s Influenza A (H1N1) Emergency Response Measures. In A Comprehensive Evaluation on Emergency Response in China; Springer: Singapore, 2019; pp. 107–158. [Google Scholar]
  164. Dixit, R. Influenza in Vulnerable Populations. PhD Thesis, Faculty of Medicine, Sydney University, Sydney, Australia, 2018. [Google Scholar]
  165. Chow, A.; Ma, S.; Ling, A.E.; Chew, S.K. Influenza-associated deaths in tropical Singapore. Emerg. Infect. Dis. 2006, 12, 114. [Google Scholar] [CrossRef]
  166. Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010, 7, 440–451. [Google Scholar] [CrossRef] [Green Version]
  167. Chandler, J.D.; Hu, X.; Ko, E.-J.; Park, S.; Fernandes, J.; Lee, Y.-T.; Orr, M.L.; Hao, L.; Smith, M.R.; Neujahr, D.C. Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. Environ. Int. 2019, 127, 720–729. [Google Scholar] [CrossRef]
  168. Su, S.; Gu, M.; Liu, D.; Cui, J.; Gao, G.F.; Zhou, J.; Liu, X. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol. 2017, 25, 713–728. [Google Scholar] [CrossRef]
  169. Nachbagauer, R.; Krammer, F. Universal influenza virus vaccines and therapeutic antibodies. Clin. Microbiol. Infect. 2017, 23, 222–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  170. Zhang, T.; Yin, C.; Boyd, D.F.; Quarato, G.; Ingram, J.P.; Shubina, M.; Ragan, K.B.; Ishizuka, T.; Crawford, J.C.; Tummers, B. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 2020, 180, 1115–1129. [Google Scholar] [CrossRef]
  171. Jang, Y.; Jin, M.; Seo, S.H. Histamine contributes to severe pneumonia in pigs infected with 2009 pandemic H1N1 influenza virus. Arch. Virol. 2018, 163, 3015–3022. [Google Scholar] [CrossRef] [PubMed]
  172. Ng, S.; Nachbagauer, R.; Balmaseda, A.; Stadlbauer, D.; Ojeda, S.; Patel, M.; Rajabhathor, A.; Lopez, R.; Guglia, A.F.; Sanchez, N. Novel correlates of protection against pandemic H1N1 influenza A virus infection. Nat. Med. 2019, 25, 962–967. [Google Scholar] [CrossRef] [PubMed]
  173. Lau, H.; Deng, Y.-M.; Xu, X.; Sessions, W.; Barr, I.G. Rapid detection of new B/Victoria-lineage haemagglutinin variants of influenza B viruses by pyrosequencing. Diagn. Microbiol. Infect. Dis. 2019, 93, 311–317. [Google Scholar] [CrossRef]
  174. Chan, W.M.; Wong, L.H.; So, C.F.; Chen, L.L.; Wu, W.L.; Ip, J.D.; Lam, A.H.Y.; Yip, C.C.; Yuen, K.Y.; To, K.K. Development and evaluation of a conventional RT-PCR for differentiating emerging influenza B/Victoria lineage viruses with hemagglutinin amino acid deletion from B/Yamagata lineage viruses. J. Med Virol. 2019, 92, 382–385. [Google Scholar] [CrossRef]
  175. DiPiazza, A.; Nogales, A.; Poulton, N.; Wilson, P.C.; Martínez-Sobrido, L.; Sant, A.J. Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo. Sci. Rep. 2017, 7, 10857. [Google Scholar] [CrossRef]
  176. Reina, J.; Reina, N. Universal influenza vaccination: Future prospects. Vacunas (Engl. Ed.) 2019, 20, 72–81. [Google Scholar] [CrossRef]
  177. Rafiq, D.; Batool, A.; Bazaz, M. Three months of COVID-19: A systematic review and meta-analysis. Rev. Med. Virol. 2020, 30, e2113. [Google Scholar] [CrossRef] [PubMed]
  178. Glathe, H.; Hilgenfeld, M.; Lebhardt, A.; Strittmatter, H.; Schulze, P.; Brandt, B. The intestine of ferret—A possible site of influenza virus replication. Acta Virol. 1984, 28, 287. [Google Scholar]
  179. Neumann, G.; Brownlee, G.; Fodor, E.; Kawaoka, Y. Orthomyxovirus replication, transcription, and polyadenylation. In Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics; Springer: Heidelberg, Germany, 2004; pp. 121–143. [Google Scholar]
  180. Portela, A.; Zürcher, T.; Nieto, A.; Ortín, J. Replication of orthomyxoviruses. In Advances in Virus Research; Elsevier: Amsteerdam, The Netherlands, 1999; Volume 54, pp. 319–348. [Google Scholar]
  181. Long, C. Challenging contingency: Viruses and the nature of molecular life. Secur. Dialogue 2019, 51, 323–339. [Google Scholar] [CrossRef]
  182. Xue, L.; Zeng, G. Global Strategies and Response Measures to the Influenza A (H1N1) Pandemic. In A Comprehensive Evaluation on Emergency Response in China; Springer: Singapore, 2019; pp. 15–44. [Google Scholar]
  183. Kannan, S.; Kolandaivel, P. Antiviral potential of natural compounds against influenza virus hemagglutinin. Comput. Biol. Chem. 2017, 71, 207–218. [Google Scholar] [CrossRef]
  184. Tochino, Y.; Fujioka, M.; Sakazaki, H.; Ikuno, Y.; Tochino, R.; Yoshii, N.; Shintaku, H.; Hirata, K. Current usage and effectiveness of influenza medications and factors regarding the time taken to alleviate fever based on postcard questionnaire survey. J. Gen. Fam. Med. 2017, 18, 386–392. [Google Scholar] [CrossRef] [PubMed]
  185. Paul, D.; Bartenschlager, R. Architecture and biogenesis of plus-strand RNA virus replication factories. World J. Virol. 2013, 2, 32. [Google Scholar] [CrossRef]
  186. Ludwig, S.; Planz, O.; Pleschka, S.; Wolff, T. Influenza-virus-induced signaling cascades: Targets for antiviral therapy? Trends Mol. Med. 2003, 9, 46–52. [Google Scholar] [CrossRef]
  187. Garman, E.; Laver, G. Controlling influenza by inhibiting the virus’s neuraminidase. Curr. Drug Targets 2004, 5, 119–136. [Google Scholar] [CrossRef]
  188. Müller, B.; Kräusslich, H.-G. Antiviral strategies. In Antiviral Strategies; Springer: Singapore, 2009; pp. 1–24. [Google Scholar]
  189. Weiss, G.; Schaible, U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 2015, 264, 182–203. [Google Scholar] [CrossRef] [Green Version]
  190. Wang, X.; Jia, W.; Zhao, A.; Wang, X. Anti-influenza agents from plants and traditional Chinese medicine. Phytother. Res. 2006, 20, 335–341. [Google Scholar] [CrossRef] [PubMed]
  191. Droebner, K.; Ehrhardt, C.; Poetter, A.; Ludwig, S.; Planz, O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antivir. Res. 2007, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
  192. Ji Na, W.; Seo Yong, L.; Dae Sub, S.; Har Young, P. Antiviral Activity of the Plant Extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii Against Influenza Virus A/PR/8/34. J. Microbiol. Biotechnol. 2013, 23, 125–130. [Google Scholar]
  193. GabAllah, M.; Kandeil, A.; Mousa, A.E.-B.; Ahmed Ali, M. Antiviral activity of water extracts of some medicinal and nutritive plants from the Apiaceae family. Nov. Res. Microbiol. J. 2020, 4, 725–735. [Google Scholar] [CrossRef]
  194. Ombito, J.O.; Salano, E.N.; Yegon, P.K.; Ngetich, W.K.; Mwangi, E.M.; Koe, G. A review of the chemistry of some species of genus Aloe (Xanthorrhoeaceae family). J. Sci. Innov. Res. 2015, 4, 49–53. [Google Scholar]
  195. Moradi, M.-T.; Karimi, A.; Shahrani, M.; Hashemi, L.; Ghaffari-Goosheh, M.-S. Anti-Influenza Virus Activity and Phenolic Content of Pomegranate (Punica granatum L.) Peel Extract and Fractions. Avicenna J. Med. Biotechnol. 2019, 11, 285–291. [Google Scholar]
  196. Choi, J.-G.; Kim, Y.S.; Kim, J.H.; Chung, H.-S. Antiviral activity of ethanol extract of Geranii Herba and its components against influenza viruses via neuraminidase inhibition. Sci. Rep. 2019, 9, 12132. [Google Scholar] [CrossRef]
  197. Rajasekaran, D.; Palombo, E.A.; Chia Yeo, T.; Lim Siok Ley, D.; Lee Tu, C.; Malherbe, F.; Grollo, L. Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS ONE 2013, 8, e79293. [Google Scholar] [CrossRef] [Green Version]
  198. Tran, T.T.; Kim, M.; Jang, Y.; Lee, H.W.; Nguyen, H.T.; Nguyen, T.N.; Park, H.W.; Le Dang, Q.; Kim, J.-C. Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense. BMC Complement. Altern. Med. 2017, 17, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  199. Shi, Y.; Zhang, B.; Lu, Y.; Qian, C.; Feng, Y.; Fang, L.; Ding, Z.; Cheng, D. Antiviral activity of phenanthrenes from the medicinal plant Bletilla striata against influenza A virus. BMC Complement. Altern. Med. 2017, 17, 273. [Google Scholar] [CrossRef]
  200. Shoji, M.; Woo, S.-Y.; Masuda, A.; Win, N.N.; Ngwe, H.; Takahashi, E.; Kido, H.; Morita, H.; Ito, T.; Kuzuhara, T. Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. collected in Myanmar. BMC Complement. Altern. Med. 2017, 17, 96. [Google Scholar] [CrossRef] [Green Version]
  201. He, W.; Han, H.; Wang, W.; Gao, B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol. J. 2011, 8, 538. [Google Scholar] [CrossRef] [Green Version]
  202. Zhang, T.; Lo, C.-Y.; Xiao, M.; Cheng, L.; Pun Mok, C.K.; Shaw, P.-C. Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities. J. Ethnopharmacol. 2020, 253, 112671. [Google Scholar] [CrossRef] [PubMed]
  203. Mohamed, M.S.; Idriss, M.T.; Alruwaili, N.K.; Alotaibi, N.H.; Elsaman, T.; Mohamed, M.A. Investigation of the potential anti-influenza activity of five plants grown in Sudan and used folklorically for respiratory infections. J. Appl. Pharm. Sci. 2020, 10, 054–061. [Google Scholar]
  204. Moradi, M.-T.; Karimi, A.; Rafieian-Kopaei, M.; Rabiei-Faradonbeh, M.; Momtaz, H. Pomegranate peel extract inhibits internalization and replication of the influenza virus: An in vitro study. Avicenna J. Phytomed. 2020, 10, 143–151. [Google Scholar]
  205. Zhang, L.; Chen, J.; Ke, C.; Zhang, H.; Zhang, S.; Tang, W.; Liu, C.; Liu, G.; Chen, S.; Hu, A.; et al. Ethanol Extract of Caesalpinia decapetala Inhibits Influenza Virus Infection In Vitro and In Vivo. Viruses 2020, 12, 557. [Google Scholar] [CrossRef]
  206. Brown, E. Influenza virus genetics. Biomed. Pharm. 2000, 54, 196–209. [Google Scholar] [CrossRef]
  207. Ghildiyal, R.; Prakash, V.; Chaudhary, V.; Gupta, V.; Gabrani, R. Phytochemicals as Antiviral Agents: Recent Updates. In Plant-Derived Bioactives; Springer: Singapore, 2020; pp. 279–295. [Google Scholar]
  208. Moradi, M.-T.; Karimi, A.; Lorigooini, Z. Alkaloids as the natural anti-influenza virus agents: A systematic review. Toxin Rev. 2018, 37, 11–18. [Google Scholar] [CrossRef]
  209. Hazra, S.; Chattopadhyay, S. An overview of lignans with special reference to podophyllotoxin, a cytotoxic lignan. Chem. Biol. Lett. 2016, 3, 1–8. [Google Scholar]
  210. Kazakova, O.; Smirnova, I.; Baltina, L.; Boreko, E.; Savinova, O.; Pokrovskii, A. Antiviral activity of acyl derivatives of betulin and betulinic and dihydroquinopimaric acids. Russ. J. Bioorganic Chem. 2018, 44, 740–744. [Google Scholar] [CrossRef]
  211. Liu, G.; Xiong, S.; Xiang, Y.-F.; Guo, C.-W.; Ge, F.; Yang, C.-R.; Zhang, Y.-J.; Wang, Y.-F.; Kitazato, K. Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus. Arch Virol. 2011, 156, 1359–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  212. Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses 2016, 8, 6. [Google Scholar] [CrossRef]
  213. Sithisarn, P.; Michaelis, M.; Schubert-Zsilavecz, M.; Cinatl Jr, J. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antivir. Res. 2013, 97, 41–48. [Google Scholar] [CrossRef]
  214. Bang, S.; Ha, T.K.Q.; Lee, C.; Li, W.; Oh, W.-K.; Shim, S.H. Antiviral activities of compounds from aerial parts of Salvia plebeia R. Br. J. Ethnopharmacol. 2016, 192, 398–405. [Google Scholar] [CrossRef] [PubMed]
  215. Zhang, G.; Zhang, B.; Zhang, X.; Bing, F. Homonojirimycin, an alkaloid from dayflower inhibits the growth of influenza A virus in vitro. Acta Virol. 2013, 57, 85–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  216. Li, R.; Liu, T.; Liu, M.; Chen, F.; Liu, S.; Yang, J. Anti-influenza A virus activity of dendrobine and its mechanism of action. J. Agric. Food Chem. 2017, 65, 3665–3674. [Google Scholar] [CrossRef]
  217. Soriano, V.; Vispo, E.; Poveda, E.; Labarga, P.; Martin-Carbonero, L.; Fernandez-Montero, J.V.; Barreiro, P. Directly acting antivirals against hepatitis C virus. J. Antimicrob. Chemother. 2011, 66, 1673–1686. [Google Scholar] [CrossRef] [Green Version]
  218. Smyth, B.; O’Connor, J.; Barry, J.; Keenan, E. Retrospective cohort study examining incidence of HIV and hepatitis C infection among injecting drug users in Dublin. J. Epidemiol. Community Health 2003, 57, 310–311. [Google Scholar] [CrossRef] [Green Version]
  219. Kurniawan, J. Pangenotypic Direct Acting Antivirals Treatment for Chronic Hepatitis C Infection. Indones. J. Gastroenterol. Hepatol. Dig. Endosc. 2020, 21, 1–2. [Google Scholar] [CrossRef]
  220. Pietri, O.; Trottier-Tellier, F.; Bourlière, M. While direct-acting antivirals are effective, are there any unique safety considerations? Clin. Dilemmas in Viral Liver Dis. 2020, 97–105. [Google Scholar]
  221. Agnello, V.; Ábel, G.; Elfahal, M.; Knight, G.B.; Zhang, Q.-X. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 1999, 96, 12766–12771. [Google Scholar] [PubMed] [Green Version]
  222. Lindenbach, B.D.; Rice, C.M. Unravelling hepatitis C virus replication from genome to function. Nature 2005, 436, 933–938. [Google Scholar] [CrossRef] [PubMed]
  223. Denaro, M.; Smeriglio, A.; Barreca, D.; De Francesco, C.; Occhiuto, C.; Milano, G.; Trombetta, D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother. Res. 2020, 34, 742–768. [Google Scholar] [PubMed]
  224. Yousaf, T.; Rafique, S.; Wahid, F.; Rehman, S.; Nazir, A.; Rafique, J.; Aslam, K.; Shabir, G.; Shah, S.M. Phytochemical profiling and antiviral activity of Ajuga bracteosa, Ajuga parviflora, Berberis lycium and Citrus lemon against Hepatitis C Virus. Microb. Pathog. 2018, 118, 154–158. [Google Scholar] [CrossRef] [PubMed]
  225. Wahyuni, T.S.; Tumewu, L.; Permanasari, A.A.; Apriani, E.; Adianti, M.; Rahman, A.; Widyawaruyanti, A.; Lusida, M.I.; Fuad, A.; Fuchino, H. Antiviral activities of Indonesian medicinal plants in the East Java region against hepatitis C virus. Virol. J. 2013, 10, 259. [Google Scholar] [PubMed] [Green Version]
  226. Ravikumar, Y.; Ray, U.; Nandhitha, M.; Perween, A.; Naika, H.R.; Khanna, N.; Das, S. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Res. 2011, 158, 89–97. [Google Scholar]
  227. Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kakiuchi, N.; Shimotohno, K. Inhibitory effects of Sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2000, 14, 510–516. [Google Scholar] [CrossRef]
  228. Ratnoglik, S.L.; Aoki, C.; Sudarmono, P.; Komoto, M.; Deng, L.; Shoji, I.; Fuchino, H.; Kawahara, N.; Hotta, H. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus. Microbiol. Immunol. 2014, 58, 188–194. [Google Scholar]
  229. Wagoner, J.; Negash, A.; Kane, O.J.; Martinez, L.E.; Nahmias, Y.; Bourne, N.; Owen, D.M.; Grove, J.; Brimacombe, C.; McKeating, J.A. Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology 2010, 51, 1912–1921. [Google Scholar] [CrossRef] [Green Version]
  230. Hsu, W.-C.; Chang, S.-P.; Lin, L.-C.; Li, C.-L.; Richardson, C.D.; Lin, C.-C.; Lin, L.-T. Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antivir. Res. 2015, 118, 139–147. [Google Scholar] [CrossRef]
  231. Yang, X.-Y.; Zhang, Y.-Y.; Xie, W.-R.; He, S.H.; Wu, L.-H.; He, X.-X.; Xia, H.H.-X. Herbal Medicines for Hepatitis C Virus Infection: The Exploratory Journey from Bench to Bedside Still Has a Long Way to Go. J. Explor. Res. Pharmacol. 2019, 4, 9–18. [Google Scholar] [CrossRef]
  232. Hung, T.-C.; Jassey, A.; Lin, C.-J.; Liu, C.-H.; Lin, C.-C.; Yen, M.-H.; Lin, L.-T. Methanolic extract of Rhizoma Coptidis inhibits the early viral entry steps of hepatitis C virus infection. Viruses 2018, 10, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  233. Javed, T.; Ashfaq, U.A.; Riaz, S.; Rehman, S.; Riazuddin, S. In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus. Virol. J. 2011, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  234. Bachmetov, L.; Gal-Tanamy, M.; Shapira, A.; Vorobeychik, M.; Giterman-Galam, T.; Sathiyamoorthy, P.; Golan-Goldhirsh, A.; Benhar, I.; Tur-Kaspa, R.; Zemel, R. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J. Viral Hepat. 2012, 19, e81–e88. [Google Scholar] [CrossRef]
  235. Lin, C.-W.; Lo, C.-W.; Tsai, C.-N.; Pan, T.-C.; Chen, P.-Y.; Yu, M.-J. Aeginetia indica decoction inhibits hepatitis C virus life cycle. Int. J. Mol. Sci. 2018, 19, 208. [Google Scholar] [CrossRef] [Green Version]
  236. Zuo, G.; Li, Z.; Chen, L.; Xu, X. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antivir. Res. 2007, 76, 86–92. [Google Scholar] [CrossRef]
  237. Qian, X.-J.; Zhang, X.-L.; Zhao, P.; Jin, Y.-S.; Chen, H.-S.; Xu, Q.-Q.; Ren, H.; Zhu, S.-Y.; Tang, H.-L.; Zhu, Y.-Z. A Schisandra-derived compound schizandronic acid inhibits entry of Pan-HCV genotypes into human hepatocytes. Sci. Rep. 2016, 6, 27268. [Google Scholar] [CrossRef]
  238. Chen, S.-R.; Wang, A.-Q.; Lin, L.-G.; Qiu, H.-C.; Wang, Y.-T.; Wang, Y. In vitro study on anti-hepatitis C virus activity of Spatholobus suberectus Dunn. Molecules 2016, 21, 1367. [Google Scholar] [CrossRef] [Green Version]
  239. Lee, S.; Yoon, K.D.; Lee, M.; Cho, Y.; Choi, G.; Jang, H.; Kim, B.; Jung, D.H.; Oh, J.G.; Kim, G.W. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br. J. Pharm. 2016, 173, 191–211. [Google Scholar] [CrossRef]
  240. Li, S.; Kodama, E.N.; Inoue, Y.; Tani, H.; Matsuura, Y.; Zhang, J.; Tanaka, T.; Hattori, T. Procyanidin B1 purified from Cinnamomi cortex suppresses hepatitis C virus replication. Antivir. Chem. Chemother. 2010, 20, 239–248. [Google Scholar] [CrossRef] [Green Version]
  241. Sola, M.A.W.M.; Permanasari, A.A.; Adianti, M.; Tumewu, L.; Widyawaruyanti, A.; Hafid, A.F. The Activity of Sterculia quadrifida R. br Stembark against Hepatitis C Virus. In Proceedings of the BROMO Conference (BROMO 2018), East Java, Indonesia, 11–12 July 2018; pp. 106–110. [Google Scholar] [CrossRef]
  242. Wagoner, J.; Morishima, C.; Graf, T.N.; Oberlies, N.H.; Teissier, E.; Pécheur, E.-I.; Tavis, J.E.; Polyak, S.J. Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation. PLoS ONE 2011, 6, e16464. [Google Scholar] [CrossRef] [PubMed]
  243. Poon, T.Y.C.; Ong, K.L.; Cheung, B.M.Y. Review of the effects of the traditional Chinese medicine Rehmannia Six Formula on diabetes mellitus and its complications. J. Diabetes 2011, 3, 184–200. [Google Scholar] [CrossRef] [PubMed]
  244. Nahmias, Y.; Goldwasser, J.; Casali, M.; Van Poll, D.; Wakita, T.; Chung, R.T.; Yarmush, M.L. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 2008, 47, 1437–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  245. Lin, Y.-T.; Wu, Y.-H.; Tseng, C.-K.; Lin, C.-K.; Chen, W.-C.; Hsu, Y.-C.; Lee, J.-C. Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation. PLoS ONE 2013, 8, e54466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  246. Ashfaq, U.A.; Idrees, S. Medicinal plants against hepatitis C virus. World J. Gastroenterol. WJG 2014, 20, 2941. [Google Scholar] [CrossRef]
  247. Liu, M.-M.; Zhou, L.; He, P.-L.; Zhang, Y.-N.; Zhou, J.-Y.; Shen, Q.; Chen, X.-W.; Zuo, J.-P.; Li, W.; Ye, D.-Y. Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy. Eur. J. Med. Chem. 2012, 52, 33–43. [Google Scholar] [CrossRef]
  248. Lan, K.H.; Wang, Y.W.; Lee, W.P.; Lan, K.L.; Tseng, S.H.; Hung, L.R.; Yen, S.H.; Lin, H.C.; Lee, S.D. Multiple effects of Honokiol on the life cycle of hepatitis C virus. Liver Int. 2012, 32, 989–997. [Google Scholar] [CrossRef]
  249. Wu, S.F.; Lin, C.K.; Chuang, Y.S.; Chang, F.R.; Tseng, C.K.; Wu, Y.C.; Lee, J.C. Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems. J. Viral Hepat. 2012, 19, 364–370. [Google Scholar] [CrossRef]
  250. Calland, N.; Sahuc, M.-E.; Belouzard, S.; Pène, V.; Bonnafous, P.; Mesalam, A.A.; Deloison, G.; Descamps, V.; Sahpaz, S.; Wychowski, C. Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. J. Virol. 2015, 89, 10053–10063. [Google Scholar] [CrossRef] [Green Version]
  251. Lee, W.-P.; Lan, K.-L.; Liao, S.-X.; Huang, Y.-H.; Hou, M.-C.; Lan, K.-H. Inhibitory effects of amentoflavone and orobol on daclatasvir-induced resistance-associated variants of hepatitis C virus. Am. J. Chin. Med. 2018, 46, 835–852. [Google Scholar] [CrossRef]
  252. Hassan, S.T.; Berchová-Bímová, K.; Petráš, J. Plumbagin, a Plant-Derived Compound, Exhibits Antifungal Combinatory Effect with Amphotericin B against Candida albicans Clinical Isolates and Anti-hepatitis C Virus Activity. Phytother. Res. 2016, 30, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
  253. Batista, M.N.; Carneiro, B.M.; Braga, A.C.S.; Rahal, P. Caffeine inhibits hepatitis C virus replication in vitro. Arch. Virol. 2015, 160, 399–407. [Google Scholar] [CrossRef] [PubMed]
  254. Ma, C.-M.; Wei, Y.; Wang, Z.-G.; Hattori, M. Triterpenes from Cynomorium songaricium—Analysis of HCV protease inhibitory activity, quantification, and content change under the influence of heating. J. Nat. Med. 2009, 63, 9–14. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Human immunodeficiency virus structure and replication mechanism. The HIV structure in this figure has been modified from the source www.istockphoto.com.
Figure 1. Human immunodeficiency virus structure and replication mechanism. The HIV structure in this figure has been modified from the source www.istockphoto.com.
Molecules 25 04878 g001
Figure 2. Herpes simplex virus structure and replication mechanism. The HSV structure in this figure has been modified from the source https://pnghut.com.
Figure 2. Herpes simplex virus structure and replication mechanism. The HSV structure in this figure has been modified from the source https://pnghut.com.
Molecules 25 04878 g002
Figure 3. Orthomyxovirus structure and replication mechanism. The Orthomyxovirus structure in this figure has been modified from the source https://viralzone.expasy.org/.
Figure 3. Orthomyxovirus structure and replication mechanism. The Orthomyxovirus structure in this figure has been modified from the source https://viralzone.expasy.org/.
Molecules 25 04878 g003
Figure 4. Hepatitis C virus structure and replication mechanism. The Ortomyxovirus structure in this figure has been modified from the source https://www.gettyimages.ae/.
Figure 4. Hepatitis C virus structure and replication mechanism. The Ortomyxovirus structure in this figure has been modified from the source https://www.gettyimages.ae/.
Molecules 25 04878 g004
Table 1. Review of the plants that have shown anti-HIV activities with their prospective family, part, type of extract, and inhibition target.
Table 1. Review of the plants that have shown anti-HIV activities with their prospective family, part, type of extract, and inhibition target.
No.PlantFamilyPartExtractInhibition TargetRef.
1Alchornea laxifloraEuphorbiaceaeRootMethanolHIV integrase[31]
2Mimusops elengiSapotaceaeLeafEthanol HIV integrase[32]
3Sceletium tortuosumAizoaceaeWhole plant Ethanol HIV integrase[33]
4Hoodia gordoniiApocynaceaeWhole plantEthanol HIV integrase[34]
5Panax notoginsengAraliaceaeWhole plantMethanol HIV integrase[35]
6Arctium lappaAsteraceaeAerialMethanol HIV integrase[35]
7Blumea balsamiferaAsteraceaeWhole plantEthanol HIV integrase[36]
8Chrysanthemum indicumAsteraceaeCapitulumMethanol HIV integrase[35]
9Chrysanthemum morifoliumAsteraceaeCapitulumEthanol HIV integrase[37]
10Eclipta prostrateAsteraceaeWhole plantChloroform HIV integrase[27]
11Senecio scandensAsteraceaeWhole plantMethanol HIV integrase[34]
12Boraginaceae CordiaSpinescensLeaf Methanol, AqueousHIV integrase[38]
13Calophyllum inophyllumClusiaceae Bark Methanol HIV integrase[39]
14Dioscorea bulbiferaDioscoreaceaeWhole plant Methanol HIV integrase[40]
15Albizia proceraFabaceaeWhole plantMethanol HIV integrase[35]
16Caesalpinia sappanFabaceaeStem Methanol HIV integrase[35]
17Agastache rugosaLamiaceaeWhole plant Aqueous methanolHIV integrase[41]
18Salvia miltiorrhizaLamiaceaeRoot AqueousHIV integrase[42]
19Lindera aggregateLamiaceaeStem MethanolHIV integrase[43]
20Aglaia lawiiMeliaceaeLeaf Methanol HIV integrase[44]
21Bersama abyssinicaMelianthaceaeRoot Aqueous HIV integrase[45]
22Avicennia officinalisAcanthaceaeLeaf Methanol HIV-reverse transcription[46]
23Justicia gendarussaAcanthaceaeAerialEthanol HIV-reverse transcription[47]
24Rhinacanthus nasutusAcanthaceaeAerialHexane HIV-reverse transcription[48]
25Acorus calamusAcoraceaeRhizome Hexane HIV-reverse transcription[48]
26Sambucus nigraAdoxaceaeWhole plant Methanol HIV-reverse transcription[49]
27Sambucus racemosaAdoxaceaeLeafMethanol HIV-reverse transcription[50]
28Aerva lanataAmaranthaceaeRoot Hexane HIV-reverse transcription[51]
29Crinum amabileAmaryllidaceaeBulb Methanol HIV-reverse transcription[52]
30Ancistrocladus korupensisAncistrocladaceaeRoot Methanol HIV-reverse transcription[53]
31Polyalthia suberosaAnnonaceaeStemMethanol HIV-reverse transcription[47]
32Ridolfia segetumApiaceaeWhole plantEssential oil HIV-reverse transcription[54]
33Hemidesmus indicusApocynaceaeWhole plant Methanol HIV-reverse transcription[55]
34Tabernaemontana stapfianaApocynaceaeWhole plantEthanol HIV-reverse transcription[56]
35Calendula officinalisAsteraceaeLeaf DichloromethaneHIV-reverse transcription[57]
36Gamochaeta simplicicaulisAsteraceaeWhole plant Pet etherHIV-reverse transcription[58]
37Lobostemon trigonusBoraginaceaeWhole plant Aqueous HIV-reverse transcription[59]
38Brassica rapaBrassicaceaeWhole plant Methanol HIV-reverse transcription[60]
39Lonicera japonicaCaprifoliaceaeFlower Ethanol HIV-reverse transcription[61]
40Gymnosporia buchananiiCelastraceaeWhole plant Methanol HIV-reverse transcription[56]
41Salacia chinensisCelastraceaeStem Methanol HIV-reverse transcription[48]
42Combretum molleCombretaceaeRoot Aqueous HIV-reverse transcription[62]
43Ipomoea aquaticConvolvulaceaeWhole plant80% ethanol HIV-reverse transcription[47]
44Ipomoea cairicaConvolvulaceaeAerial Water HIV-reverse transcription[47]
45Ipomoea carneaConvolvulaceaeAerialWater HIV-reverse transcription[47]
46Chamaesyce hyssopifoliaEuphorbiaceaeWhole plantMethanol HIV-reverse transcription[38]
47Acalypha IndicaEuphorbiaceaeWhole plantMethanol HIV-reverse transcription[63]
48Euphorbia polyacanthaEuphorbiaceaeWhole plantAqueous HIV-reverse transcription[52]
49Mallotus philippensisEuphorbiaceaeFlower Methanol HIV-reverse transcription[48]
50Bauhinia variegataFabaceaeWhole plantEthanol HIV-reverse transcription[60]
51Phaseolus vulgarisFabaceaeSeed Methanol HIV-reverse transcription[64]
52Pterocarpus marsupiumFabaceaeWhole plant Aqueous HIV-reverse transcription[65]
53Tripterospermum lanceolatumGentianaceaeWhole plant Methanol HIV-reverse transcription[66]
54Hypericum hircinumHypericaceaeWhole plant Ethanol HIV-reverse transcription[67]
55Ajuga decumbensLamiaceaeWhole plantMethanol HIV-reverse transcription[68]
56Hyssopus officinalisLamiaceaeLeaf Methanol HIV-reverse transcription[69]
57Ocimum kilimandscharicumLamiaceaeWhole plant Methanol HIV-reverse transcription[70]
58Ximenia caffraOlacaceaeWhole plant Aqueous HIV-reverse transcription[71]
59Phyllanthus amarusPhyllanthaceaeWhole plant Aqueous HIV-reverse transcription[72]
60Scoparia dulcisPlantaginaceaeLeaf Methanol HIV-reverse transcription[73]
61Canthium coromandelicumRubiaceaeLeaf Methanol HIV-reverse transcription[74]
62Alisma plantago-aquaticaAlismataceaeRhizomeAqueous HIV-protease[75]
63Toxicodendron acuminatumAnacardiaceaeWhole Methanol HIV-protease[76]
64Xylopia frutescensAnnonaceaeBark AqueousHIV-protease[38]
65Ammi visnagaApiaceaeFruit Methanol HIV-protease[77]
66Anethum graveolensApiaceaeSeedMethanol HIV-protease[76]
67Angelica grosseserrataApiaceaeAerial Aqueous HIV-protease[78]
68Torilis japonicaApiaceaeSeed Methanol HIV-protease[78]
69Gymnema sylvestreApocynaceaeWhole plantMethanol HIV-protease[79]
70Garcinia buchneriClusiaceaeSteam Methanol HIV-protease[80]
71Garcinia kingaensisClusiaceaeSteam Methanol HIV-protease[80]
Table 2. Bioactive compounds derived from plants with anti-HIV activities.
Table 2. Bioactive compounds derived from plants with anti-HIV activities.
No.CompoundActivityDose/IC50Ref.
1Ellagic acid Inhibition of HIV integrase90.23 μM[30]
2GallocatechinInhibition of HIV integrase35.0 µM [31]
3Hernandonine Inhibition of HIV integrase16.3 μM[82]
4LaurolistineInhibition of HIV integrase7.7 μM[82]
57-oxohernangerineInhibition of HIV integrase18.2 μM[82]
6Lindechunine AInhibition of HIV integrase21.1 μM[82]
7QuercitrinRT inhibition 60 μM[83]
8Gallic acidViral infection inhibition0.36 μg/mL[84]
9Erythro-7′-methylcarolignan EViral infection inhibition6.3 μM[83]
10Ascalin RT inhibition10 μM[85]
11Justiprocumins A RT inhibition200 μg/mL [47]
12Robustaflavone RT inhibition65 μM[86]
13Hinokiflavone RT inhibition65 μM[86]
14Agathisflavone RT inhibition119 μM[86]
15Morelloflavone RT inhibition100 μM[86]
16Michellamines A RT inhibition1 μM[87]
17Betulinic acid RT inhibition13 μM [88]
18Michellamines A2RT inhibition29.6 μM[89]
19Michellamines A3RT inhibition15.2 μM[89]
20Michellamines A4RT inhibition35.9 μM[89]
21Michellamines BRT inhibition20.4 μM[89]
22Lupeol RT inhibition3.8 μM[55]
23Lupeol acetate RT inhibition6.4 μM[55]
24Chlorogenic acid RT inhibition4.7 μM[55]
25Artemisinin RT inhibition100 μM[90]
26Luteolin RT inhibition12.8 μM[91]
27Gossypetin RT inhibition2 μg/mL[92]
28Xanthohumol RT inhibition0.5 μg/mL[93]
29Kaempferol 3-rhamnosyl-rutinosidRT inhibition0.23 μM[94]
30Robustaflavone RT inhibition65 μM[95]
31ProtostanesRT inhibition5.8 μg/mL[96]
32Morelloflavone RT inhibition86 μM[97]
33Anolignan A RT inhibition156 μg/mL[95]
34CucurbitacinsRT inhibition28 μM[98]
35Oleanolic acidRT inhibition2 μg/mL[99]
36p-cymene RT inhibition7.6 μg/mL[99]
37Baicalein RT inhibition2 μg/mL[100]
Table 3. Review of the plants that show anti-herpes simplex virus activities with their prospective family, part, type of extract, and inhibition target.
Table 3. Review of the plants that show anti-herpes simplex virus activities with their prospective family, part, type of extract, and inhibition target.
No.PlantFamily PartExtractMode of Action/VirusRef.
1Peganum harmalaNitrariaceaeSeed Methanol Virucidal action/HSV2[111]
2Pistacia veraAnacardiaceaeSeed Methanol Viral DNA synthesis inhibition/HSV1[112]
3Rhus aromaticaAnacardiaceaeRoot Aqueous Inhibit the virus penetration/HSV1[113]
4Quercus brantiiCynipidaeFruit Chloroform Inhibit virus entry/HSV1[114]
5Tanacetum partheniumAsteraceaeArial AqueousVirus replication imbibition/HSV1[115]
6Centella asiaticaUmbelliferaeAerialAqueous Inhibition of viral replication/HSV2[116]
7Pistacia lentiscusAnacardiaceaeStem Methanol Virus absorption imbibition/HSV2[111]
8Mangifera indicaAnacardiaceaeLeavesAqueous Inhibition of viral replication/HSV2[116]
9Eucalyptus denticulataMyrtaceaeAerial Acetone Inhibit virus entry/HSV1[117]
10Aglaia odorataMeliaceaeLeafEthanolInhibition of viral replication/HSV2[118]
11Euphorbia coopireEuphorbiaceaeFlowersChloroform/methylene chlorideInhibition of viral replication/HSV1[119]
12Rhus aromaticaAnacardiaceaeBark Aqueous Inhibit virus entry/HSV2[113]
13Anacardium occidentaleAnacardiaceaeLeafAqueousInhibition of viral replication/HSV2[120]
14Phoradendron crassifoliumLoranthaceaeLeafEthanol Inhibition of viral replication/HSV2[120]
15Morus albaMoraceaeLeafAqueous methanol Inhibition of viral replication/HSV1[119]
16Aloe veraLiliaceaeLeafGelReplication inhibition/HSV1[121]
17Annona muricataAnnonaceaeStembarkPetroleum etherInhibition of viral replication/HSV2[122]
18Petunia nyctaginifloraSolanaceaeStembarkPetroleum etherInhibition of viral replication/HSV2[122]
19Cuphea carthagenensisLythraceaeArielEthanolInhibition of viral replication/HSV1[123]
20Graptopetalum paraguayenseCrassulaceaeLeaf Methanol/water Inhibition of viral replication/HSV1[124]
21Prunus dulcisRosaceaeAlmond skinMethanol/HclBlock virus entry[125]
22Equisetum giganteumEquisetaceaeRoot and stem Ethanol/waterInhibition of viral cell attachment and entry/HSV2[126]
23Schinus terebinthifoliaAnacardiaceaeBark Ethanol/waterInhibition of viral attachment and penetration/HSV1[127]
24Nepeta nudaLamiaceae Aerial AqueousInhibition of viral absorption and replication/HSV1[128]
25Cornus canadensisCornaceaeLeaf Aqueous Virus absorption inhibition/HSV1[129]
26Strychnos pseudoquina LoganiaceaeStem Ethyl acetateInterference with various
steps of virus cycle/HSV1
[130]
27Tillandsia usneoidesBromeliaceaeFruits Ethanol Inhibition of viral replication/HSV1[123]
28Copaifera reticulateFabaceaeLeaf Ethanol/waterInhibition of viral cell attachment and entry/HSV2[126]
29Spondias mombinAnacardiaceaeLeaf MethanolInhibition of viral cell attachment/HSV1[131]
30Solanum melongenaSolanaceaePeel EthanolReduction of viral protein
Expression/HSV1
[132]
31Ixeris SonchifoliaCompositaeWhole plantMethanolInhibition of viral replication/HSV1[133]
32Eurycoma longifoliaSimaroubaceaeStem MethanolInhibition of viral replication/HSV1[134]
33Garcinia mangostanaGuttiferaeLeaf MethanolInhibition of viral replication/HSV1[134]
34Peganum harmalaNitrariaceaeSeed MethanolBlock virus entry/HSV2[135]
35Erica multifloraEricaceaeAriel MethanolInhibition of viral replication/HSV1[136]
36Toona sureniMeliaceaeLeafMethanolInhibition of viral replication/HSV1[134]
37Eucalyptus caesiaMyrtaceaeAerial Hydro-distillationVirucidal activity/HSV1[137]
38Vachellia niloticaFabaceaeBark MethanolBlock virus attachment/HSV2[138]
39Stephania cepharanthaMenispermaceaeRoot MethanolVirucidal effect/HSV1[139]
40Zygophyllum albumZygophyllaceaeWhole plantAcetoneVirucidal effect/HSV1[136]
41Ficus religiosaMoraceaeBark MethanolVirucidal effect/HSV1[140]
42Eucalyptus albaMyrtaceaeFruit AqueousVirucidal effect/HSV1[134]
43Swertia chirataRenunculaceaeLeaf AqueousVirucidal effect/HSV1[141]
44Scoparia dulcisPlantaginaceaeLeaf MethanolInhibit the viral replication/HSV1[142]
45Pedilanthus tithymaloidesEuphorbiaceaeLeaves Methanolinhibition of viral replication/HSV2[143]
46Melaleuca leucadendronMyrtaceaeFruit AqueousVirucidal effect/HSV1[134]
47Andrographis paniculataAcanthaceaeLeaf EthanolVirucidal effect/HSV1[144]
48Artemisia kermanensisAsteraceaeAerial Hydro-distillationVirucidal activity/HSV1[137]
49Vigna radiataFabaceaeSpout MethanolVirucidal activity/HSV1[145]
50Schleichera oleosaSapindaceaeFruit AqueousVirucidal activity/HSV1[134]
51Quercus persicaFagaceaeFruit Hydro alcoholic Viral attachment inhibition/HSV1[146]
52Pongamia pinnataPapillionaceaeSeed AqueousVirucidal activity/HSV1[147]
53Pterocarya stenopteraJuylandaceaeBark MethanolViral attachment and penetration inhibition/HSV2[148]
54Avicennia marinaAvicenniaceaeLeafMethanolViral replication inhibition/HSV1[149]
55Nephelium lappaceumSapindaceaePericarp Water/methanolVirucidal activity/HSV1[134]
56Zataria multifloraLabiataeAerial Hydro-distillationVirucidal activity/HSV1[137]
57Ocimum sanctumLamiaceaeAerial MethanolViral infection inhibition/HSV1[150]
58Artocarpus lakoochaMoraceaeWood Methanol Viral infection inhibition/HSV1[106]
59Scaevola gaudichaudianaAsteraceaeAerialDichloromethane Viral absorption inhibition/HSV1[151]
60Rosmarinus officinalisLamiaceaeAerial Hydro-distillationVirucidal activity/HSV1[137]
61Limonium sinensePlumbaginaceae Root Ethanol Virucidal activity/HSV1[152]
62Prunella vulgarisLamiaceaeFruit spikesAqueousBlock HSV-1 binding[153]
63Heterophyllaea pustulataRubiaceaeFruit Dried powder Viral absorption inhibition/HSV1[154]
64Filicium decipiensSapindaceaeStem barkWater/methanolVirucidal activity/HSV1[134]
65Punica granatumPunicaceaePericarp Water/methanol Virucidal activity/HSV1[134]
66Satureja hotensisLamiaceaeAerial HydrodistillationVirucidal activity/HSV1[137]
Table 4. Bioactive compounds derived from plants with anti-HSV activities.
Table 4. Bioactive compounds derived from plants with anti-HSV activities.
No.Compound Activity Dose/IC50Ref.
14E-jatrogrossidentadionViral inhibition/HSV 12.05 μg/mL[159]
27-galloyl catechin Viral inhibition/HSV 143.2 μg/mL[119]
3Gallic acidViral inhibition/HSV 149.8 μg/mL[119]
4Kaempferol 3-O-β-(6″-O-galloyl)-glucopyranosideViral inhibition/HSV 1124.1 μg/mL[119]
5Quercetin 3-O-β-(6″-O-galloyl)-glucopyranosideViral inhibition/HSV 1175.6 μg/mL[119]
6Curcumin Viral inhibition/HSV 149.8 μg/mL[119]
7Quercetin Viral inhibition/HSV 178.1 μg/mL[119]
8Kaempferol Viral inhibition/HSV 176.1 μg/mL[119]
93,4-DehydrocycleanineViral inhibition/HSV 143.2 μg/mL[139]
10(−)-CycleanineViral inhibition/HSV 126.3 μg/mL[139]
11(−)-NorcycleanineViral inhibition/HSV 118.1 μg/mL[139]
122-NorcepharanolineViral inhibition/HSV 126.3 μg/mL[139]
13ObaberineViral inhibition/HSV 114.8 μg/mL[139]
14Homoaromoline Viral inhibition/HSV 115.1 μg/mL[139]
15Aromoline Viral inhibition/HSV 120.4 μg/mL[139]
16Isotetrandrine Viral inhibition/HSV 117.4 μg/mL[139]
17Berbamine Viral inhibition/HSV 117.4 μg/mL[139]
18Thalrugosine Viral inhibition/HSV 116.8 μg/mL[139]
19ObamegineViral inhibition/HSV 123.5 μg/mL[139]
202-NorberbamineViral inhibition/HSV 116.8 μg/mL[139]
213’,4’-DihydrostephasubineViral inhibition/HSV 127.4 μg/mL[139]
22PalmatineViral inhibition/HSV 134.0 μg/mL[139]
23CephakicineViral inhibition/HSV 144.5 μg/mL[139]
24N-MethylcrotsparineViral inhibition/HSV 18.3 μg/mL[139]
25AndrographolideViral inhibition/HSV 18.28 μg/mL[144]
26NeoandrographolideViral inhibition/HSV 17.97 μg/mL[144]
2714-Deoxy-11,12-didehydroandrographolideViral inhibition/HSV 111.1 μg/mL[144]
28OxyresveratrolInhibitory activity at the early phase and late phase of replication/HSV124 μg/mL[106]
29Samarangenin BInhibition of viral replication/HSV111.4 μg/mL[152]
30(−)-epigallocatechin 3-O-gallateViral inhibition/HSV 138.6 μg/mL[152]
31Pterocarnin AViral attachment inhibition/HSV 15.4 μM[148]
32Scopadulcic acid BViral attachment inhibition/HSV 10.012 μM[142]
Table 5. Review of the plants that have shown anti-flu virus activities with their prospective family, part, type of extract, and inhibition target.
Table 5. Review of the plants that have shown anti-flu virus activities with their prospective family, part, type of extract, and inhibition target.
No.PlantFamilyPartExtract Inhibition TargetRef.
1Cistus incanusCistaceae Whole plantPolyphenol-rich plant extractMDCK cell-based assay[191]
2Thuja orientalisCupressaceaeLeaves Methanol Blockage of attachment to the host cells and inhibition of replication[192]
3Pimpeniella anisumApiaceaeSeeds AqueousDirect effect on replication[193]
4Aloe sinanaXanthorrhoeaceaeRoot and leaf latex Methanol Induced CPE and increased the cell viability of Vero cells[194]
5Punica granatum L.LythraceaePeel Ethanol Inhibit influenza A virus replication [195]
6Geranium thunbergiiGeranii HerbaDried aerial partEthanol Neuraminidase (NA) inhibitors[196]
7Mussaenda elmeriRubiaceaeWhole plantDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
8Trigonopleura malayanaEuphorbiaceaeLeavesDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
9Mussaenda elmeriRubiaceaeWhole plantDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
10Santiria apiculataBurseraceaeWhole plantDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
11Anisophyllea distichaAnisophylleaceaeStemsDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
12Trivalvaria macrophyllaAnnonaceaeRootsDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
13Baccaurea angulataEuphorbiaceaeStemsDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
14Tetracera macrophyllaDilleniaceaeLeavesDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
15Calophyllum lanigerumClusiaceaeWhole plantDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
16Calophyllum lanigerumClusiaceaeStemsDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
17Albizia corniculataFabaceaeStemsDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
18Mussaenda elmeriRubiaceaeWhole plantDichloromethane and methanol in a 1/1 (v/v) ratioInhibition of hemagglutination [197]
19Polygonum chinensePolygonaceaeWhole plantMethanol Inhibited viral replication viral neuraminidase[198]
20Bletilla striataOrchidaceaeRhizomesEthanol Viability assay[199]
21Jatropha multifida LinnEuphorbiaceaeStems70% aqueous ethanolVirus-infected MDCK cells-based assay[200]
22DandelionAsteraceaeWhole plantAqueousInhibit polymerase activity and reduce virus nucleoprotein (NP) RNA level.[201]
23Radix Paeoniae Alba PaeoniaceaeRootsAqueousInhibit the replication [202]
24Balanites aegyptiaca,ZygophyllaceaeLeavesAqueous or 70% methanolInhibited the virus-induced hemagglutination of chicken RBCs [203]
25Cordia africana,BoraginaceaeBarkAqueous or 70% methanolInhibited the virus-induced hemagglutination of chicken RBCs [203]
26Aristolochia bracteolataAristolochiaceaeWhole plantAqueous or 70% methanolInhibited the virus-induced hemagglutination of chicken RBCs [203]
27Boscia senegalensisCapparaceaeLeavesAqueous or 70% methanolInhibited the virus-induced hemagglutination of chicken RBCs [203]
28Leptadenia arboreaApocynaceaeRootsAqueous or 70% methanolInhibited the virus-induced hemagglutination of chicken RBCs [203]
29Punica granatumL.LythraceaePeelEthyl alcohol extract Inhibition of viral adsorption and viral RNA transcription[204]
30Caesalpinia decapetalaFabaceaeLeaves75% aqueous ethanolInhibit replication [205]
Table 6. Bioactive compounds derived from plants with anti-flu activities.
Table 6. Bioactive compounds derived from plants with anti-flu activities.
No.CompoundActivityDose/IC50Ref.
1Pentagalloylglucose Inhibited the virus-induced hemagglutination of chicken RBCs11.3 µg/mL[211]
2QuercetinInhibit the entry of the H5N1 virus7.75 µg/mL[212]
3 Apigenin Inhibited viral replication viral neuraminidase21.54 µM[213]
4 Baicalein Inhibited H5N1 viral replication viral neuraminidase18.79 µM[213]
5 Biochanin A Inhibited H5N1 viral replication viral neuraminidase8.92 µM[213]
6Hispidulin Inhibition against H1N1 neuraminidase 11.18 µM[214]
7NepetinInhibition against H1N1 neuraminidase 12.54 µM[214]
8Rosmarinic acid methyl esterInhibition against H1N1 neuraminidase 15.47 µM[214]
9LuteolinInhibition against H1N1 neuraminidase 19.83 µM[214]
10HomonojirimycinInhibition against H1N1 neuraminidase10.4 µg/mL[215]
11DendrobineInhibited early steps in the H1N1 viral replication cycle3.39 µg/mL[216]
Table 7. Review of the plants that have shown anti-HCV activities with their prospective family, part, type of extract, and inhibition target.
Table 7. Review of the plants that have shown anti-HCV activities with their prospective family, part, type of extract, and inhibition target.
No.PlantFamily PartExtractInhibition TargetRef.
1Ajuga bracteosaLamiaceaeLeaves Methanol HCV infection
Replication
[224]
2Ajuga parvifloraLamiaceaeLeavesMethanol HCV infection
Replication
[224]
3Berberis lyciumLamiaceaeRoots Methanol HCV infection
Replication
[224]
4Toona sureniMeliaceaeLeaves 80% EthanolHCV infection
Replication
[225]
5Melicope latifoliaRutaceaeLeaves 80% EthanolHCV infection
Replication
[225]
6Melanolepis multiglandulosaEuphorbiaceaeStems80% EthanolHCV infection
Replication
[225]
7Ficus fistulosaMoraceaeLeaves 80% EthanolHCV infection
Replication
[225]
8Phyllanthus amarusPhyllanthaceaeWhole plantMethanolInhibition of HCV RNA replication[226]
9Acacia niloticaMimosaceaeBark MethanolHepatitis C virus (HCV) protease inhibition [227]
10Boswellia carteriiBurseraceaeRoot MethanolHepatitis C virus (HCV) protease inhibition [227]
11Embelia schimperiMyrsinaceaeFruit MethanolHepatitis C virus (HCV) protease inhibition [227]
12Piper cubebaPiperaceaeFruit Aqueous Hepatitis C virus (HCV) protease inhibition [227]
13Quercus infectoriaFagaceaeGall MethanolHepatitis C virus (HCV) protease inhibition [227]
14Syzygium aromaticumMyrtaceaeFruit AqueousHepatitis C virus (HCV) protease inhibition [227]
15Trachyspermum ammiApiaceaeFruit MethanolHepatitis C virus (HCV) protease inhibition [227]
16Morinda citrifoliaRubioideaeLeavesMethanol Hepatitis C virus (HCV) protease inhibition [228]
17Silybum marianumAsteraceaeFlower Methanol Hepatitis C virus (HCV) protease inhibition [229]
18Limonium sinensePlumbaginaceae Flower Aqueous HCV infection
Replication
[230]
19Bupleurum kaoiApiaceaeRoot Methanol Inhibit HCV entry[231]
20Rhizoma coptidisRanunculaceaeWhole Methanol Inhibit HCV entry[232]
21Schisandra sphenantheraSchisandraceaeRhizome Methanol Inhibit HCV entry[232]
22Solanum nigrumSolanaceaeSeed Chloroform NS3 protease inhibition [233]
23Terminalia arjunaCombretaceaeBark Methanol NS3 protease inhibition[226]
24Embelia ribesMyrsinaceaeLeaf AqueousNS3 protease inhibition[234]
25Aeginetia indicaOrobanchaceaeWhole AqueousNS5B polymerase inhibition[235]
26Rhodiola kirilowiiCrassulaceaeFlower Ethanol NS3 protease inhibition[236]
27Schisandra sphenantheraSchisandraceaeFruit Ethanol Inhibition of HCV entry[237]
28Spatholobus suberectusFabaceaeLeaf Ethanol NS3 protease inhibition[238]
29Vitis viniferaVitaceaeRoot Ethanol NS3 helicase inhibition[239]
30Cinnamomi cortexLauraceaeBark Methanol Inhibition of HCV replication and RNA synthesis[240]
Table 8. Bioactive compounds derived from plants with anti-HCV activities.
Table 8. Bioactive compounds derived from plants with anti-HCV activities.
No.Compound ActivityDose/IC50Ref.
1EmbelinHepatitis C virus (HCV) protease inhibition21 µM[227]
2SilymarinNS5B polymerase inhibition 40 µM[242]
35-O-MethylembelinHepatitis C virus (HCV) protease inhibition46 µM[227]
4Pheophorbide aHepatitis C virus (HCV) protease inhibition0.3 μg/mL[228]
5PentagalloylglucoseInhibit viral attachment 2.2 µM[243]
6Quercetininhibitory effect of NS3 catalytic activity10 µg/mL[234]
7Naringenin Hepatitis C virus (HCV) protease inhibition 200 μM [244]
8(+)-EpicatechinInhibition of HCV replication 75 μM [245]
9(−)-EpicatechinInhibition of HCV replication 75 μM [245]
10Ladaneininhibition of the post attachment entry step of HCV 2.5 μM [246]
11LuteolinInhibition of HCV infection
Replication in NS5B polymerase
7.9 μM[247]
12HonokiolInhibition of HCV infection
Replication in NS5B polymerase
4.5 μM[248]
133-Hydroxy caruilignan CInhibition of HCV replication37.5 μM[249]
14Gallic acidInhibition of viral entry 24.31 μM[230]
15Saikosaponin b2Inhibition of viral entry16.13 μM[231]
16Delphinidin Inhibition of viral entry3.7 µM[250]
17Amentoflavone Inhibition of viral entry42 µM[251]
187,40-Dihydroxyflavanone Inhibition of viral entry42 µM[251]
19Orobol Inhibition of viral entry42 µM[251]
203,3′-DigalloylproprodelphinidinNS3 protease inhibition0.77 μM[236]
21B2, 3,3′-DigalloylprocyanidinNS3 protease inhibition0.91 μM[236]
22B2, (−)-Epigallocatechin-3-O-gallate, (−)-Epicatechin-NS3 protease inhibition8.51 μM[236]
233-O-gallateNS3 protease inhibition18.55 μM[236]
24Schizandronic acidInhibition of HCV entry5.27 μg/mL[237]
25Vitisin BNS3 helicase inhibition0.006 μM[239]
26Procyanidin B1Inhibition of HCV replication and RNA synthesis29 μM[240]
27PlumbaginInhibition of HCV infection
Replication in NS5B polymerase
0.57 μM[252]
28CaffeineInhibition of HCV infection
Replication in NS5B polymerase
0.726 mM[253]
29Ursolic acidInhibition of HCV infection
Replication in NS5B polymerase
16 μg/mL[254]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Mohan, S.; Elhassan Taha, M.M.; Makeen, H.A.; Alhazmi, H.A.; Al Bratty, M.; Sultana, S.; Ahsan, W.; Najmi, A.; Khalid, A. Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules. Molecules 2020, 25, 4878. https://doi.org/10.3390/molecules25214878

AMA Style

Mohan S, Elhassan Taha MM, Makeen HA, Alhazmi HA, Al Bratty M, Sultana S, Ahsan W, Najmi A, Khalid A. Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules. Molecules. 2020; 25(21):4878. https://doi.org/10.3390/molecules25214878

Chicago/Turabian Style

Mohan, Syam, Manal Mohamed Elhassan Taha, Hafiz A. Makeen, Hassan A. Alhazmi, Mohammed Al Bratty, Shahnaz Sultana, Waquar Ahsan, Asim Najmi, and Asaad Khalid. 2020. "Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules" Molecules 25, no. 21: 4878. https://doi.org/10.3390/molecules25214878

Article Metrics

Back to TopTop