Study on Molecular Profiles of Staphylococcus aureus Strains: Spectrometric Approach
Abstract
:1. Introduction
2. Results
2.1. Impact of Culture Conditions and Matrices on the Identification Level
2.2. Analysis of Discriminatory Power Depending on the Culture Medium and Matrix Using the MALDI Biotyper Platform
2.3. Analysis of Discriminatory Power Depending on the Culture Medium and Matrix Using R Environment
3. Discussion
4. Materials and Methods
4.1. Investigated Strains
4.2. Culture Conditions
4.3. MALDI TOF MS Analysis
4.4. Spectra Analysis Using MALDI Biotyper 3.0 Platform
4.5. Self-Developed Statistical and Chemometric Approaches for Spectra Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chessa, D.; Ganau, G.; Mazzarello, V. An overview of Staphylococcus epidermidis and Staphylococcus aureus with a focus on developing. J. Infect. Dev. Ctries. 2015, 9, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Josten, M.; Reif, M.; Szekat, C.; Al-Sabti, N.; Roemer, T.; Sparbier, K.; Kostrzewa, M.; Rohde, H.; Sahl, H.G.; Bierbaum, G. Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J. Clin. Microbiol. 2013, 51, 1809–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasch, P.; Fleige, C.; Stämmler, M.; Layer, F.; Nübel, U.; Witte, W.; Werner, G. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J. Microbiol. Methods 2014, 100, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, C.; Hansen, S.G.K.; Møller, J.K. Rapid first-line discrimination of methicillin resistant Staphylococcus aureus strains using MALDI-TOF MS. Int. J. Med. Microbiol. 2015, 305, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Seyedjavadi, S.S.; Nasiri, M.J.; Goudarzi, H.; Sajadi Nia, R.; Dabiri, H. Molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bacteremia based on MLST, SCCmec, spa, and agr locus types analysis. Microb. Pathog. 2017, 104, 328–335. [Google Scholar] [CrossRef]
- Asadollahi, P.; Farahani, N.N.; Mirzaii, M.; Khoramrooz, S.S.; van Belkum, A.; Asadollahi, K.; Dadashi, M.; Darban-Sarokhalil, D. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and -susceptible Staphylococcus aureus around the world: A review. Front. Microbiol. 2018, 9, 163. [Google Scholar] [CrossRef] [Green Version]
- Parhizgari, N.; Khoramrooz, S.S.; Malek Hosseini, S.A.A.; Marashifard, M.; Yazdanpanah, M.; Emaneini, M.; Gharibpour, F.; Mirzaii, M.; Darban-Sarokhalil, D.; Moein, M.; et al. High frequency of multidrug-resistant Staphylococcus aureus with SCCmec type III and Spa types t037 and t631 isolated from burn patients in southwest of Iran. APMIS 2016, 124, 221–228. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kim, I.; Chung, S.H.; Chung, Y.; Han, M.; Kim, J.-S. Rapid Discrimination of Methicillin-Resistant Staphylococcus aureus by MALDI-TOF MS. Pathogens 2019, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Böhme, K.; Morandi, S.; Cremonesi, P.; Fernández No, I.C.; Barros-Velázquez, J.; Castiglioni, B.; Brasca, M.; Cañas, B.; Calo-Mata, P. Characterization of Staphylococcus aureus strains isolated from Italian dairy products by MALDI-TOF mass fingerprinting. Electrophoresis 2012, 33, 2355–2364. [Google Scholar] [CrossRef]
- Sabat, A.; Malachowa, N.; Miedzobrodzki, J.; Hryniewicz, W. Comparison of PCR-based methods for typing Staphylococcus aureus isolates. J. Clin. Microbiol. 2006, 44, 3804–3807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-Y.; Lee, T.-Y.; Tseng, Y.-J.; Liu, T.-P.; Huang, K.-Y.; Chang, Y.-T.; Chen, C.-H.; Lu, J.-J. A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach. PLoS ONE 2018, 13, e0194289. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.C.; Kuo, A.J.; Liu, K.L.; Wen, Y.H.; Chia, J.H.; Chang, P.Y.; Lee, M.H.; Wu, T.L.; Chang, S.C.; Lu, J.J. Routine identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Success rate, economic analysis, and clinical outcome. J. Microbiol. Immunol. Infect. 2017, 50, 662–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauer, S.; Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 2010, 8, 74–82. [Google Scholar] [CrossRef]
- Doan, N.T.L.; Van Hoorde, K.; Cnockaert, M.; De Brandt, E.; Aerts, M.; Le Thanh, B.; Vandamme, P. Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam. Lett. Appl. Microbiol. 2012, 55, 265–273. [Google Scholar] [CrossRef]
- Wolters, M.; Rohde, H.; Maier, T.; Belmar-Campos, C.; Franke, G.; Scherpe, S.; Aepfelbacher, M.; Christner, M. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int. J. Med. Microbiol. 2011, 301, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Sandrin, T.R.; Goldstein, J.E.; Schumaker, S. MALDI TOF MS profiling of bacteria at the strain level: A review. Mass Spectrom. Rev. 2013, 32, 188–217. [Google Scholar] [CrossRef] [PubMed]
- Camoez, M.; Sierra, J.M.; Dominguez, M.A.; Ferrer-Navarro, M.; Vila, J.; Roca, I. Automated categorization of methicillin-resistant Staphylococcus aureus clinical isolates into different clonal complexes by MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. 2016, 22, e1–e161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, C.R.; Jensen, K.R.; Saichek, N.R.; Voorhees, K.J. Strain-level bacterial identification by CeO2-catalyzed MALDI-TOF MS fatty acid analysis and comparison to commercial protein-based methods. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dubois, D.; Leyssene, D.; Chacornac, J.P.; Kostrzewa, M.; Schmit, P.O.; Talon, R.; Bonnet, R.; Delmas, J. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2010, 48, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Dieckmann, R.; Helmuth, R.; Erhard, M.; Malorny, B. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2008, 74, 7767–7778. [Google Scholar] [CrossRef] [Green Version]
- Edwards-Jones, V.; Claydon, M.A.; Evason, D.J.; Walker, J.; Fox, A.J.; Gordon, D.B. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 2000, 49, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Wieme, A.D.; Spitaels, F.; Aerts, M.; De Bruyne, K.; Van Landschoot, A.; Vandamme, P. Effects of growth medium on matrix-assisted laser desorption-ionization time of flight mass spectra: A case study of acetic acid bacteria. Appl. Environ. Microbiol. 2014, 80, 1528–1538. [Google Scholar] [CrossRef] [Green Version]
- Williamson, Y.M.; Moura, H.; Woolfitt, A.R.; Pirkle, J.L.; Barr, J.R.; Carvalho, M.D.G.; Ades, E.P.; Carlone, G.M.; Sampson, J.S. Differentiation of Streptococcus pneumoniae conjunctivitis outbreak isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2008, 74, 5891–5897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Yang, R.; Guo, Z.; Song, Y.; Wang, J. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2002, 74, 5487–5491. [Google Scholar] [CrossRef] [PubMed]
- Nix, I.D.; Idelevich, E.A.; Storck, L.M.; Sparbier, K.; Drews, O.; Kostrzewa, M.; Becker, K. Detection of Methicillin Resistance in Staphylococcus aureus From Agar Cultures and Directly From Positive Blood Cultures Using MALDI-TOF Mass Spectrometry-Based Direct-on-Target Microdroplet Growth Assay. Front. Microbiol. 2020, 11, 232. [Google Scholar] [CrossRef]
- Wang, Y.R.; Chen, Q.; Cui, S.H.; Li, F.Q. Characterization of staphylococcus aureus isolated from clinical specimens by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Biomed. Environ. Sci. 2013, 26, 430–436. [Google Scholar] [PubMed]
- Sung Kwon, S.; Kuk Hong, S.; Sook Kim, M.; Yong, D.; Lee, K. Performance of Matrix-Assisted Laser Desorption Ionization Time-of-Fight Mass Spectrometry for Rapid Discrimination of Methicillin-Resistant Staphylococcus aureus (MRSA): First Report of a Relation Between Protein Peaks and MRSA spa Type. Ann. Lab. Med. 2017, 37, 553–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Scola, B. Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev. Mol. Diagn. 2011, 11, 287–298. [Google Scholar] [CrossRef]
- Goldstein, J.E.; Zhang, L.; Borror, C.M.; Rago, J.V.; Sandrin, T.R. Culture conditions and sample preparation methods affect spectrum quality and reproducibility during profiling of Staphylococcus aureus with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Lett. Appl. Microbiol. 2013, 57, 144–150. [Google Scholar] [CrossRef]
- Ferroni, A.; Suarez, S.; Beretti, J.L.; Dauphin, B.; Bille, E.; Meyer, J.; Bougnoux, M.E.; Alanio, A.; Berche, P.; Nassif, X. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2010, 48, 1542–1548. [Google Scholar] [CrossRef] [Green Version]
- Giebel, R.A.; Fredenberg, W.; Sandrin, T.R. Characterization of environmental isolates of Enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Water Res. 2008, 42, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.L.; Andrzejewski, D.; Lay, J.O.; Musser, S.M. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J. Am. Soc. Mass Spectrom. 2003, 14, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Vargha, M.; Takáts, Z.; Konopka, A.; Nakatsu, C.H. Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J. Microbiol. Methods 2006, 66, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.N.; Rajakaruna, L.; Ball, G.; Misra, R.; Al-Shahib, A.; Fang, M.; Gharbia, S.E. Tracing the transition of methicillin resistance in sub-populations of Staphylococcus aureus, using SELDI-TOF Mass Spectrometry and Artificial Neural Network Analysis. Syst. Appl. Microbiol. 2011, 34, 81–86. [Google Scholar] [CrossRef]
- Walker, J.; Fox, A.J.; Edwards-Jones, V.; Gordon, D.B. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: Media effects and inter-laboratory reproducibility. J. Microbiol. Methods 2002, 48, 117–126. [Google Scholar] [CrossRef]
- Mather, C.A.; Werth, B.J.; Sivagnanam, S.; Sengupta, D.J.; Butler-Wu, S.M. Rapid Detection of Vancomycin-Intermediate Staphylococcus aureus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2016, 54, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Quirino, A.; Pulcrano, G.; Rametti, L.; Puccio, R.; Marascio, N.; Catania, M.R.; Matera, G.; Liberto, M.C.; Focà, A. Typing of Ochrobactrum anthropi clinical isolates using automated repetitive extragenic palindromic-polymerase chain reaction DNA fingerprinting and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. BMC Microbiol. 2014, 14, 74. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.-R.; Wang, H.-Y.; Lien, F.; Tseng, Y.-J.; Chen, C.-H.; Lee, T.-Y.; Liu, T.-P.; Horng, J.-T.; Lu, J.-J. Incorporating Statistical Test and Machine Intelligence into Strain Typing of Staphylococcus haemolyticus Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Front. Microbiol. 2019, 10, 2120. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Mellmann, A.; Cloud, J.; Maier, T.; Keckevoet, U.; Ramminger, I.; Iwen, P.; Dunn, J.; Hall, G.; Wilson, D.; LaSala, P.; et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 2008, 46, 1946–1954. [Google Scholar] [CrossRef] [Green Version]
- Valentine, N.; Wunschel, S.; Wunschel, D.; Petersen, C.; Wahl, K. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl. Environ. Microbiol. 2005, 71, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Maier, T.; Klepel, S.; Renner, U.; Kostrzewa, M. Fast and reliable MALDI-TOF MS-based microorganism identification. Nat. Methods 2006, 3, i–ii. [Google Scholar] [CrossRef]
- Alispahic, M.; Hummel, K.; Jandreski-Cvetkovic, D.; Nöbauer, K.; Razzazi-Fazeli, E.; Hess, M.; Hess, C. Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J. Med. Microbiol. 2010, 59, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobom, J. Mass Spectrometry: MALDI. In Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1023–1027. [Google Scholar]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Carbonnelle, E.; Beretti, J.L.; Cottyn, S.; Quesne, G.; Berche, P.; Nassif, X.; Ferroni, A. Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2007, 45, 2156–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardo, K.; Pakulat, N.; Macht, M.; Krut, O.; Seifert, H.; Fleer, S.; Hünger, F.; Krönke, M. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Pro. of the Prot. 2002, 2, 747–753. [Google Scholar]
- Davis, J.A.; Farrah, S.R.; Wilkie, A.C. Selective growth of Staphylococcus aureus from flushed dairy manure wastewater using acriflavine-supplemented mannitol salt agar. Lett. Appl. Microbiol. 2006, 42, 606–611. [Google Scholar] [CrossRef]
- Pomastowski, P.; Szultka-Młyńska, M.; Kupczyk, W.; Jackowski, M.; Buszewski, B. Evaluation of Intact Cell Matrix-Assisted Laser Desorption/Ionization Time of- Flight Mass Spectrometry for Capillary Electrophoresis Detection of Controlled Bacterial Clumping. J. Anal. Bioanal. Tech. 2015, S13, 008. [Google Scholar]
- Hsieh, S.-Y.; Tseng, C.-L.; Lee, Y.-S.; Kuo, A.-J.; Sun, C.-F.; Lin, Y.-H.; Chen, J.-K. Highly Efficient Classification and Identification of Human Pathogenic Bacteria by MALDI-TOF MS. Mol. Cell. Proteom. 2008, 7, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Bright, J.J.; Claydon, M.A.; Soufian, M.; Gordon, D.B. Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software. J. Microbiol. Methods 2002, 48, 127–138. [Google Scholar] [CrossRef]
- Šedo, O.; Sedláček, I.; Zdráhal, Z. Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom. Rev. 2011, 30, 417–434. [Google Scholar] [CrossRef]
- Schober, P.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Gries, S.T. Quantitative Linguistics. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Elsevier Inc., 2015; pp. 725–732. ISBN 9780080970875. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Pomastowski, P.; Złoch, M.; Rodzik, A.; Ligor, M.; Kostrzewa, M.; Buszewski, B. Analysis of bacteria associated with honeys of different geographical and botanical origin using two different identification approaches: MALDI-TOF MS and 16S rDNA PCR technique. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
RAW Data | |||||
---|---|---|---|---|---|
Medium | HCCA | DHB | SDHB | General | |
MHA | 2.09 0.12Bb | 2.27 0.13Aa | 2.27 0.09Aa | 2.21 0.14 | |
TSA | 2.11 0.09Bb | 2.29 0.12Aa | 2.26 0.09Aa | 2.22 0.13 | universal |
COL | 2.13 0.11Bb | 2.31 0.14Aa | 2.34 0.11Aa | 2.26 0.15 | |
BHI | 2.07 0.09Bb | 2.29 0.11Aa | 2.27 0.11Aa | 2.21 0.14 | enriched |
BLA | 2.25 0.13Aa | 2.36 0.12Aa | 2.27 0.20Aa | 2.31 0.17 | |
CHRA | 2.27 0.14Aa | 2.30 0.11Aa | 2.18 0.18Aa | 2.24 0.16 | differentiating |
VRE | 2.04 0.07Cb | 2.24 0.15Aa | 2.29 0.15Aa | 2.19 0.17 | selective |
MAN | 1.90 0.15Da | 1.80 0.17Ba | 1.76 0.18Ba | 1.82 0.18 | |
MSP data | |||||
MHA | 1.94 0.12Ab | 2.17 0.18Aa | 2.18 0.11Aa | 2.07 0.18 | |
TSA | 2.12 0.11Ab | 2.30 0.11Aa | 2.26 0.09Aa | 2.20 0.13 | universal |
COL | 2.07 0.10Ab | 2.29 0.12Aa | 2.35 0.24Aa | 2.21 0.20 | |
BHI | 2.00 0.12Ab | 2.22 0.12Aa | 2.23 0.08Aa | 2.13 0.15 | enriched |
BLA | 2.12 0.16Aa | 2.25 0.33Aa | 2.22 0.21Aa | 2.17 0.25 | |
CHRA | 2.10 0.18Aa | 2.21 0.12Aa | 2.14 0.21Aa | 2.13 0.18 | differentiating |
VRE | 2.01 0.11Ab | 2.19 0.15Aa | 2.23 0.12Aa | 2.12 0.16 | selective |
MAN | 1.77 0.21Ba | 1.69 0.21Ba | 1.65 0.24Ba | 1.68 0.22 |
Medium | Matrix | ||
---|---|---|---|
HCCA | DHB | SDHB | |
MHA | 93 | 98 * | 98 * |
TSA | 98 | 100 * | 100 * |
COL | 97 | 99 | 99 |
BHI | 93 | 98 * | 99 * |
BLA | 99 * | 92 | 93 |
CHRA | 87 | 91 | 90 |
VRE | 94 | 100 * | 98 * |
MAN | 84 | 90 | 86 |
Classification Capacities Values [%] Calculated for all Investigated Strains | ||||||||||||
MSPs Dendrograms Analysis | HCA Analysis | PCA Analysis | ||||||||||
Matrix | Matrix | Matrix | ||||||||||
Medium | HCCA | DHB | SDHB | Mean | HCCA | DHB | SDHB | Mean | HCCA | DHB | SDHB | Mean |
MHA | 43 | 29 | 14 | 29 | 43 | 43 | 43 | 43 | 14 | 29 | 0 | 14 |
TSA | 43 | 29 | 14 | 29 | 100 | 86 | 57 | 81 | 43 | 0 | 0 | 14 |
COL | 29 | 71 | 43 | 48 | 57 | 43 | 57 | 52 | 29 | 29 | 29 | 29 |
BHI | 71 | 57 | 29 | 52 | 71 | 57 | 43 | 57 | 29 | 0 | 0 | 10 |
BLA | 71 | 57 | 43 | 57 | 100 | 43 | 86 | 76 | 71 | 14 | 29 | 38 |
CHRA | 29 | 29 | 57 | 38 | 100 | 43 | 14 | 52 | 29 | 14 | 14 | 19 |
VRE | 71 | 29 | 57 | 52 | 100 | 57 | 43 | 67 | 29 | 57 | 43 | 43 |
MAN | 57 | 57 | 57 | 57 | 100 | 71 | 86 | 86 | 71 | 43 | 29 | 48 |
Mean | 52 | 45 | 39 | 84 | 55 | 54 | 39 | 23 | 18 | |||
Classification Capacities Values [%] Calculated for Resistant Strains | ||||||||||||
MSPs Dendrograms Analysis | HCA Analysis | PCA Analysis | ||||||||||
Matrix | Matrix | Matrix | ||||||||||
Medium | HCCA | DHB | SDHB | Mean | HCCA | DHB | SDHB | Mean | HCCA | DHB | SDHB | Mean |
MHA | 66 | 33 | 33 | 44 | 33 | 66 | 33 | 44 | 33 | 33 | 0 | 22 |
TSA | 33 | 66 | 0 | 33 | 100 | 66 | 66 | 77 | 33 | 0 | 0 | 11 |
COL | 33 | 66 | 66 | 55 | 66 | 66 | 66 | 66 | 33 | 33 | 66 | 44 |
BHI | 100 | 66 | 66 | 77 | 66 | 66 | 66 | 66 | 0 | 0 | 0 | 0 |
BLA | 66 | 66 | 66 | 66 | 100 | 33 | 100 | 78 | 100 | 0 | 0 | 33 |
CHRA | 66 | 66 | 33 | 55 | 100 | 66 | 0 | 55 | 33 | 33 | 0 | 22 |
VRE | 66 | 33 | 66 | 55 | 100 | 66 | 66 | 77 | 33 | 100 | 0 | 44 |
MAN | 66 | 66 | 66 | 66 | 100 | 100 | 100 | 100 | 100 | 66 | 33 | 66 |
Mean | 62 | 58 | 50 | 83 | 66 | 62 | 46 | 33 | 12 |
Difference Between the Intrastrain and Interstrain Degree of Similarity (∆) | ||||
---|---|---|---|---|
Medium | HCCA Matrix | DHB Matrix | SDHB Matrix | Mean |
MHA | 0.12 | 0.16 | 0.07 | 0.12 |
TSA | 0.06 | 0.10 | 0.05 | 0.07 |
COL | 0.12 | 0.15 | 0.14 | 0.14 |
BHI | 0.12 | 0.19 | 0.09 | 0.13 |
BLA | 0.26 | 0.17 | 0.20 | 0.21 |
CHRA | 0.15 | 0.15 | 0.25 | 0.18 |
VRE | 0.18 | 0.13 | 0.18 | 0.16 |
MAN | 0.10 | 0.06 | 0.11 | 0.09 |
HCCA Matrix | DHB Matrix | SDHB Matrix | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Media | TTA [%] | TDA [%] | Error | Model Ions | TTA [%] | TDA [%] | Error | Model Ions | TTA [%] | TDA [%] | Error | Model Ions |
MHA | 100 | 90 | 0.06 | 34 | 100 | 80 | 0.03 | 30 | 96 | 60 | 0.54 | 27 |
TSA | 100 | 100 | 0.04 | 29 | 96 | 90 | 0.56 | 39 | 100 | 80 | 0.05 | 35 |
COL | 100 | 60 | 0.05 | 18 | 100 | 100 | 0.08 | 31 | 100 | 90 | 0.04 | 38 |
BHI | 100 | 100 | 0.04 | 53 | 100 | 90 | 0.03 | 57 | 100 | 80 | 0.05 | 30 |
BLA | 100 | 70 | 0.05 | 36 | 100 | 80 | 0.07 | 32 | 100 | 70 | 0.04 | 33 |
CHRA | 100 | 100 | 0.05 | 28 | 100 | 80 | 0.03 | 49 | 100 | 90 | 0.05 | 34 |
VRE | 100 | 80 | 0.08 | 20 | 100 | 100 | 0.04 | 26 | 100 | 80 | 0.05 | 35 |
MAN | 100 | 90 | 0.08 | 36 | 100 | 100 | 0.06 | 35 | 100 | 80 | 0.03 | 31 |
BAA-44 | 43300 | 11632 | U-A2 | U-MT62 | DFI-1 | DFI-2 | NC* | General | |
---|---|---|---|---|---|---|---|---|---|
Relevant Correlations [%] between Replicates–HCCA Matrix | |||||||||
MHA | 16.67 | 33.33 | 0.00 | 16.67 | 50.00 | 0.00 | 16.67 | 0.00 | 19 |
TSA | 83.33 | 66.67 | 100.00 | 66.67 | 50.00 | 50.00 | 50.00 | 0.40 | 67 |
COL | 16.67 | 0.00 | 16.67 | 50.00 | 100.00 | 16.67 | 33.33 | 1.59 | 33 |
BHI | 16.67 | 16.67 | 83.33 | 0.00 | 83.33 | 16.67 | 50.00 | 2.38 | 38 |
BLA | 83.33 | 83.33 | 66.67 | 16.67 | 100.00 | 0.00 | 100.00 | 0.00 | 64 |
CHRA | 66.67 | 100.00 | 100.00 | 0.00 | 50.00 | 50.00 | 33.33 | 0.79 | 57 |
VRE | 33.33 | 16.67 | 16.67 | 50.00 | 33.33 | 16.67 | 16.67 | 0.00 | 26 |
MAN | 16.67 | 100.00 | 33.33 | 33.33 | 100.00 | 0.00 | 16.67 | 1.19 | 43 |
Relevant Correlations [%] between Replicates–DHB Matrix | |||||||||
MHA | 0.00 | 33.33 | 33.33 | 16.67 | 100.00 | 0.00 | 16.67 | 0.40 | 29 |
TSA | 83.33 | 66.67 | 33.33 | 50.00 | 16.67 | 50.00 | 50.00 | 1.98 | 50 |
COL | 16.67 | 16.67 | 16.67 | 50.00 | 16.67 | 16.67 | 33.33 | 1.59 | 24 |
BHI | 16.67 | 16.67 | 66.67 | 0.00 | 50.00 | 0.00 | 50.00 | 1.19 | 29 |
BLA | 16.67 | 33.33 | 16.67 | 66.67 | 33.33 | 16.67 | 100.00 | 2.38 | 40 |
CHRA | 50.00 | 16.67 | 66.67 | 33.33 | 16.67 | 66.67 | 16.67 | 1.59 | 38 |
VRE | 16.67 | 33.33 | 83.33 | 33.33 | 33.33 | 50.00 | 33.33 | 0.79 | 40 |
MAN | 16.67 | 83.33 | 100.00 | 33.33 | 50.00 | 50.00 | 0.00 | 0.99 | 48 |
Relevant Correlations [%] between Replicates–SDHB Matrix | |||||||||
MHA | 0.00 | 16.67 | 16.67 | 33.33 | 33.33 | 0.00 | 50.00 | 8.33 | 21 |
TSA | 33.33 | 66.67 | 0.00 | 83.33 | 0.00 | 83.33 | 100.00 | 10.32 | 52 |
COL | 50.00 | 66.67 | 66.67 | 16.67 | 16.67 | 16.67 | 100.00 | 1.59 | 48 |
BHI | 50.00 | 50.00 | 100.00 | 50.00 | 33.33 | 50.00 | 16.67 | 14.68 | 50 |
BLA | 50.00 | 50.00 | 33.33 | 50.00 | 50.00 | 16.67 | 100.00 | 1.19 | 50 |
CHRA | 83.33 | 33.33 | 16.67 | 33.33 | 16.67 | 50.00 | 16.67 | 3.57 | 36 |
VRE | 83.33 | 33.33 | 16.67 | 33.33 | 16.67 | 50.00 | 16.67 | 3.57 | 36 |
MAN | 0.00 | 33.33 | 66.67 | 83.33 | 0.00 | 66.67 | 16.67 | 1.59 | 38 |
Sample Availability: Samples of the compounds obtained from the tested S. aureus strains are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Złoch, M.; Pomastowski, P.; Maślak, E.; Monedeiro, F.; Buszewski, B. Study on Molecular Profiles of Staphylococcus aureus Strains: Spectrometric Approach. Molecules 2020, 25, 4894. https://doi.org/10.3390/molecules25214894
Złoch M, Pomastowski P, Maślak E, Monedeiro F, Buszewski B. Study on Molecular Profiles of Staphylococcus aureus Strains: Spectrometric Approach. Molecules. 2020; 25(21):4894. https://doi.org/10.3390/molecules25214894
Chicago/Turabian StyleZłoch, Michał, Paweł Pomastowski, Ewelina Maślak, Fernanda Monedeiro, and Bogusław Buszewski. 2020. "Study on Molecular Profiles of Staphylococcus aureus Strains: Spectrometric Approach" Molecules 25, no. 21: 4894. https://doi.org/10.3390/molecules25214894
APA StyleZłoch, M., Pomastowski, P., Maślak, E., Monedeiro, F., & Buszewski, B. (2020). Study on Molecular Profiles of Staphylococcus aureus Strains: Spectrometric Approach. Molecules, 25(21), 4894. https://doi.org/10.3390/molecules25214894