Occurrence of Biogenic Amines Producers in the Wastewater of the Dairy Industry
Abstract
:1. Introduction
2. Results
2.1. Identification of Bacteria Isolated from Wastewater Samples
2.2. Bacterial Decarboxylase Activity, Determination of Biogenic Amines
2.3. Wastewater Monitored Parameters
3. Discussion
4. Materials and Methods
4.1. Wastewater Sample Characteristics
4.2. Isolation of Bacteria from the Wastewater Samples and Their Identification
4.3. Determination of Biogenic Amines
4.4. Wastewater Monitored Parameters
4.4.1. Determination of Nitrites
4.4.2. Determination of Nitrates
4.4.3. Determination of Phosphates
4.4.4. Determination of Proteins
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Santos, M.S. Biogenic amines: Their importance in foods. Int. J. Food Microbiol. 1996, 29, 213–231. [Google Scholar] [CrossRef]
- Fernández, M.; Del Río, B.; Linares, D.M.; Martín, M.C.; Alvarez, M.A. Real-time polymerase chain reaction for quantitative detection of histamine-producing bacteria: Use in cheese production. J. Dairy Sci. 2006, 89, 3763–3769. [Google Scholar] [CrossRef] [Green Version]
- Landete, J.M.; de las Rivas, B.; Marcobal, A.; Muñoz, R. Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol. 2007, 117, 258–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladero, V.; Cañedo, E.; Pérez, M.; Martín, M.C.; Fernández, M.; Alvarez, M.A. Multiplex qPCR for the detection and quantification of putrescine-producing lactic acid bacteria in dairy products. Food Control 2012, 27, 307–313. [Google Scholar] [CrossRef]
- Pachlová, V.; Buňka, F.; Buňková, L.; Purkrtová, S.; Havlíková, Š.; Němečková, I. Biogenic amines and their producers in Akawi white cheese. Int. J. Dairy Technol. 2016, 69, 386–392. [Google Scholar] [CrossRef]
- Zuljan, F.A.; Mortera, P.; Alarcón, S.H.; Blancato, V.S.; Espariz, M.; Magni, C. Lactic acid bacteria decarboxylation reactions in cheese. Int. Dairy J. 2016, 62, 53–62. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, R.K.; Granner, D.K.; Mayes, P.A.; Rodwell, V.W. Harper’s Biochemistry, 23rd ed.; Appleton & Lange, a Publishing Division of Prentice-Hall International Inc.: East Norwalk, CT, USA, 1993; pp. 344–348. [Google Scholar]
- Farooqui, T.; Farooqui, A.A. (Eds.) Biogenic Amines: Pharmacological, Neurochemical and Molecular Aspects in the CNS, 1st ed.; Nova Science Publishers Inc.: New York, NY, USA, 2010. [Google Scholar]
- Novella-Rodríguez, S.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Biogenic amines and polyamines in milks and cheeses by ion-pair high performance liquid chromatography. J. Agric. Food Chem. 2000, 48, 5117–5123. [Google Scholar] [CrossRef] [PubMed]
- Buňková, L.; Adamcová, G.; Hudcová, K.; Velichová, H.; Pachlová, V.; Lorencová, E.; Buňka, F. Monitoring of biogenic amines in cheeses manufactured at small-scale farms and in fermented dairy products in the Czech Republic. Food Chem. 2013, 141, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Gardini, F.; Martuscelli, M.; Caruso, M.C.; Galgano, F.; Crudele, M.A.; Favati, F.; Guerzoni, M.E.; Suzzi, G. Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int. J. Food Microbiol. 2001, 64, 105–117. [Google Scholar] [CrossRef]
- Cid, S.B.; Miguélez-Arrizado, M.J.; Becker, B.; Holzapfel, W.H.; Vidal-Carou, M.C. Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability. Food Microbiol. 2008, 25, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Buňková, L.; Buňka, F.; Pollaková, E.; Podešvová, T.; Dráb, V. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis. Int. J. Food Microbiol. 2011, 147, 112–119. [Google Scholar] [CrossRef]
- Arena, M.E.; Manca De Nadra, M.C. Biogenic amine production by Lactobacillus. J. Appl. Microbiol. 2001, 90, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Cortesi, M.L.; Vollano, L.; Peruzy, M.F.; Marrone, R.; Mercogliano, R. Determination of nitrate and nitrite levels in infant foods marketed in Southern Italy. CYTA J. Food. 2015, 13, 629–634. [Google Scholar] [CrossRef]
- Shivsharan, V.S.; Wani, M.P.; Kulkarani, S.W. Isolation of Microorganism from Dairy Effluent for Activated Sludge Treatment. IJCER 2013, 3, 161–167. [Google Scholar]
- Shivsharan, V.S.; Wani, M.; Khetmalas, M.B. Isolation of Microorganisms from Dairy Effluent. Br. Microbiol. Res. J. 2013, 3, 346–354. [Google Scholar] [CrossRef]
- Barnali, A.; Subhankar, P. Isolation and characterization of lactic acid bacteria from dairy effluents. J. Environ. Res. Dev. 2010, 4, 983–991. [Google Scholar]
- Prakashveni, R.; Jagadeesan, M. Isolation identification and distribution of bacteria in Dairy Effluent. Adv. Appl. Sci. Res. 2012, 3, 1316–1318. [Google Scholar]
- Linares, D.M.; del Río, B.; Ladero, V.; Martínez, N.; Fernández, M.; Martín, M.C.; Álvarez, M.A. Factors influencing biogenic amines accumulation in dairy products. Front. Microbiol. 2012, 3, 180. [Google Scholar] [CrossRef] [Green Version]
- Torracca, B.; Pedonese, F.; Turchi, B.; Fratini, F.; Nuvoloni, R. Qualitative and quantitative evaluation of biogenic amines in vitro production by bacteria isolated from ewes’ milk cheeses. Eur. Food Res. Technol. 2018, 244, 721–728. [Google Scholar] [CrossRef]
- Bonetta, S.; Bonetta, S.; Carraro, E.; Coïsson, J.D.; Travaglia, F.; Arlorio, M. Detection of biogenic amine producer bacteria in a typical Italian goat cheese. J. Food Prot. 2008, 71, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Calles-Enríquez, M.; Eriksen, B.H.; Andersen, P.S.; Rattray, F.P.; Johansen, A.H.; Fernández, M.; Ladero, V.; Álvarez, M.A. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: Factors that affect differential hdcA expression. Appl. Environ. Microbiol. 2010, 76, 6231–6238. [Google Scholar] [CrossRef] [Green Version]
- Ladero, V.; Rattray, F.P.; Mayo, B.; Martín, M.C.; Fernández, M.; Álvarez, M.A. Putrescine producing Lactococcus lactis: Sequencing and transcriptional analysis of the biosynthesis gene cluster. Appl. Environ. Microbiol. 2011, 77, 5507–5511. [Google Scholar] [CrossRef] [Green Version]
- Buňková, L.; Buňka, F.; Mantlová, G.; Čablová, A.; Sedláček, I.; Švec, P.; Pachlová, V.; Kráčmar, S. The effect of ripening and storage conditions on the distribution of tyramine, putrescine and cadaverine in Edam-cheese. Food Microbiol. 2010, 27, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Linares, D.M.; Martín, M.C.; Ladero, V.; Álvarez, M.A.; Fernández, M. Biogenic amines in dairy products. Crit. Rev. Food Sci. Nutr. 2011, 51, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Glória, M.B.A.U. Bioactive amines. In Handbook of Food Science, Technology, and Engineering, 1st ed.; Hui, Y.H., Sherkat, F., Eds.; CRC Press: Boca Raton, FL, USA, 2005; Volume 4, pp. 25–27. [Google Scholar]
- Marino, M.; Maifreni, M.; Moret, S.; Rondinini, G. The capacity of Enterobacteriaceae species to produce biogenic amines in cheese. Lett. Appl. Microbiol. 2000, 31, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Gubartallah, E.A.; Makahleh, A.; Quirino, J.P.; Saad, B. Determination of Biogenic Amines in Seawater Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Molecules 2018, 23, 1112. [Google Scholar] [CrossRef] [Green Version]
- Slavov, A.K. General Characteristics and Treatment Possibilities of Dairy Wastewater—A Review. Food Technol. Biotechnol. 2017, 55, 14–28. [Google Scholar] [CrossRef]
- Porwal, H.J.; Mane, A.V.; Velhal, S.G. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resour. Ind. 2015, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Guinee, T.P.; Carić, M.; Kaláb, M. Pasteurized processed cheese and substitute/imitation cheese products. In Cheese: Chemistry, Physics and Microbiology, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Academic Press: San Diego, CA, USA, 2004; Volume 2, pp. 349–394. [Google Scholar]
- De Wit, J.N. Lecturer´s Handbook on Whey and Whey Products, 1st ed.; European Whey Products Association: Brussels, Belgium, 2001; pp. 12–15. [Google Scholar]
- Solak, B.B.; Akin, N. Health Benefits of Whey Protein: A Review. J. Food Sci. Eng. 2012, 2, 129–137. [Google Scholar] [CrossRef]
- Westgate, P.J.; Park, C. Evaluation of Proteins and Organic Nitrogen in Wastewater Treatment Effluents. Environ. Sci. Technol. 2010, 44, 5352–5357. [Google Scholar] [CrossRef] [PubMed]
- Kántor, A.; Mareček, J.; Ivanišová, E.; Terentjeva, M.; Kačániová, M. Microorganisms of grape berries. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2017, 71, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Lorencová, E.; Buňková, L.; Matoulková, D.; Dráb, V.; Pleva, P.; Kubáň, V.; Buňka, F. Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer. Int. J. Food Sci. Technol. 2012, 47, 2086–2091. [Google Scholar] [CrossRef]
- Dadáková, E.; Křížek, M.; Pelikánová, T. Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chem. 2009, 116, 365–370. [Google Scholar] [CrossRef]
- Aydin, A.; Ercan, O.; Tascioglu, S. A novel method for the spectrophotometric determination of nitrite in water. Talanta 2005, 66, 1181–1186. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. (Eds.) Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017; Part 4000; pp. 124–161. [Google Scholar]
- Patnaik, P. Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 343–346. [Google Scholar]
- Le, C.; Kunacheva, C.; Stuckey, D.C. “Protein” Measurement in Biological Wastewater Treatment Systems: A Critical Evaluation. Environ. Sci. Technol. 2016, 50, 3074–3081. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Sample Type | Bacteria Present | |
---|---|---|
A | production line of processed cheese and heat treated quark-type spreads | Arthrobacter ilicis, Enterococcus casseliflavus, Lactococcus lactis, Leuconostoc mesenteroides, Lactobacillus sp., unidentified gram-positive coccus; Enterobacter asburiae, Enterobacter cloacae, Acinetobacter junii, Aeromonas caviae, Aeromonas eucrenophila, Pseudomonas pseudoalcaligenes, Pseudomonas gessardii, Pseudomonas brenneri, Pseudomonas fragi, Chryseobacterium scophthalmum |
B | rinsing water from forms for the production of natural cheeses | Staphylococcus hominis, Staphylococcus carnosus, unidentified gram-positive coccus; Acinetobacter johnsonii, Acinetobacter radioresistens, Pseudomonas taetrolens |
C | production of cream soft cheese | Enterococcus faecalis, Kocuria rhizophila, Lactococcus lactis, Lactococcus raffinolactis, unidentified gram-positive bacillus; Acinetobacter baumannii, Acinetobacter schindleri, Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica, Brevundimonas vesicularis, Pseudomonas graminis, Pseudomonas azotoformans |
D | outdoor drain water | Microbacterium liquefaciens, Staphylococcus carnosus, Lactococcus lactis, unidentified gram-positive cocci; Kocuria rhizophila, Kocuria varians, Microbacterium mitrae, Exiguobacterium sp., Aeromonas veronii, Aeromonas caviae, Aeromonas media, Acinetobacter johnsonii, Acinetobacter schindleri, Acinetobacter lwoffii, Comamonas aquatica, Chryseobacterium scophthalmum, Pseudomonas fragi, unidentified gram-negative bacilli |
E | production of natural cheese | Lactococcus lactis, Microbacterium lacticum, Lactobacillus sp., unidentified gram-positive coccus; Acinetobacter johnsonii, Enterobacter asburiae, Klebsiella oxytoca, Leclercia adecarboxylata, Chryseobacterium joostei |
F | rinsing water from quark production | Microbacterium oxydans, unidentified gram-positive coccus |
N a | TRM | PHM | PUT | CAD | HIM | TYM | SPD | SPE | |
---|---|---|---|---|---|---|---|---|---|
Acinetobacter sp. | 15 | ND–73.1 | ND–16.9 | 4.1–625.2 | ND–277.6 | ND–20.5 | 18.1–249.0 | ND–33.8 | 27.8–79.9 |
Aeromonas sp. | 6 | ND–103.7 | 3.4–41.1 | ND–1092.8 | 2.1–82.0 | 1.6–10.4 | 17.3–99.7 | ND–14.6 | 21.3–61.3 |
Brevundimonas sp. | 1 | 28.5 ± 0.2 | 8.1 ± 0.1 | 12.1 ± 0.1 | 6.5 ± 0.1 | 6.5 ± 0.1 | 42.1 ± 0.3 | ND | 55.8 ± 0.2 |
Chryseobacterium sp. | 4 | 12.9–101.3 | 5.1–36.5 | 4.7–13.3 | ND–170.3 | ND–28.5 | 19.0–40.8 | ND–3.1 | 29.2–55.8 |
Comamonas sp. | 1 | 32.8 ± 0.3 | 4.0 ± 0.1 | ND | 7.2 ± 0.1 | ND | 37.0 ± 0.2 | ND | 56.0 ± 0.3 |
Enterobacter sp. | 3 | 27.4–76.0 | 3.9–6.9 | 20.1–514.3 | 24.1–32.4 | ND–7.6 | 24.7–33.0 | ND–26.2 | 46.1–61.8 |
Klebsiella sp. | 3 | 20.7–135.1 | 2.0–11.8 | 6.4–486.3 | 61.3–334.0 | 1.4–11.0 | 29.7–90.0 | ND | 47.6–244.5 |
Leclercia sp. | 1 | 14.9 ± 0.2 | 7.0 ± 0.1 | 14.8 ± 0.3 | 7.1 ± 0.2 | 3.9 ± 0.2 | 20.9 ± 0.8 | ND | 47.1 ± 0.5 |
Pseudomonas sp. | 8 | ND–43.3 | 2.0–21.5 | 2.8–23.5 | 1.6–67.3 | ND–11.2 | 10.2–701.2 | ND | 26.8–55.9 |
Raoultella sp. | 1 | 48.6 ± 0.6 | 6.9 ± 0.2 | 13.6 ± 0.4 | 160.8 ± 3.1 | 6.1 ± 0.1 | 20.1 ± 0.3 | ND | 35.5 ± 0.3 |
unidentified gram-negative bacteria | 2 | 51.5–53.6 | 3.7–7.3 | 190.5–792.7 | 5.7–68.2 | 2.6–6.5 | 25.1–36.7 | ND | 51.5–70.7 |
Arthrobacter sp. | 1 | 32.5 ± 0.4 | ND | ND | ND | 3.4 ± 0.1 | 15.6 ± 0.4 | ND | 33.5 ± 0.7 |
Enterococcus sp. | 3 | 29.3–40.4 | 7.2–19.9 | 19.4–33.6 | ND–27.0 | 5.1–9.5 | 21.4–405.9 | ND–2.5 | 34.6–49.3 |
Exiguobacterium sp. | 1 | 64.0 ± 1.2 | 29.4 ± 0.6 | 23.7 ± 0.4 | 14.4 ± 0.3 | 16.7 ± 0.2 | 779.3 ± 15.1 | ND | 20.7 ± 1.1 |
Kocuria sp. | 3 | 35.2–75.5 | 8.3–20.7 | 23.8–91.8 | 11.1–422.3 | ND–13.3 | 44.2–327.3 | ND | 31.6–67.8 |
Lactobacillus sp. | 2 | ND–50.4 | 4.5–7.0 | 7.6–14.4 | 2.6–85.3 | 2.0–4.5 | 19.2–27.9 | ND | 37.0–42.9 |
Lactococcus sp. | 12 | ND–73.45 | ND–15.1 | 2.5–1042.5 | 3.8–171.7 | ND–14.3 | 11.9–515.5 | ND–18.0 | 29.7–49.8 |
Leuconostoc sp. | 1 | ND | 10.6 ± 0.3 | 4.7 ± 0.1 | 3.6 ± 0.1 | 2.0 ± 0.1 | 27.4 ± 1.5 | ND | 55.5 ± 2.3 |
Microbacterium sp. | 4 | 17.9–69.4 | 5.9–22.5 | 4.95–275.5 | ND–64.0 | 3.1–23.4 | 23.9–588.4 | ND | 28.6–51.5 |
Staphylococcus sp. | 7 | 34.0–72.7 | ND–27.8 | 7.4–1178.0 | ND–94.8 | ND–19.8 | 15.7–713.3 | ND–23.1 | 23.9–64.8 |
unidentified gram-positive bacteria | 7 | 39.8–462.4 | ND–205.2 | 32.6–882.1 | 25.8–104.0 | ND–107.8 | 20.4–570.5 | ND–21.6 | 29.9–52.8 |
Sample Type | Nitrite | Nitrate | Phosphates | Protein |
---|---|---|---|---|
A | 0.1 ± 0.1 | 21.0 ± 0.4 | 21.0 ± 0.5 | 97.9 ± 0.8 |
B | ND | 41.5 ± 0.5 | 0.8 ± 0.1 | ND |
C | 0.5 ± 0.1 | 27.3 ± 0.4 | 37.0 ± 1.1 | ND |
D | 1.5 ± 0.1 | 13.0 ± 0.5 | 25.2 ± 0.4 | ND |
E | 1.0 ± 0.1 | 54.1 ± 1.2 | 662.4 ± 10.9 | 127.3 ± 1.6 |
F | 1.0 ± 0.1 | 40.4 ± 0.6 | 43.8 ± 1.2 | 37.0 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jančová, P.; Pachlová, V.; Čechová, E.; Cedidlová, K.; Šerá, J.; Pištěková, H.; Buňka, F.; Buňková, L. Occurrence of Biogenic Amines Producers in the Wastewater of the Dairy Industry. Molecules 2020, 25, 5143. https://doi.org/10.3390/molecules25215143
Jančová P, Pachlová V, Čechová E, Cedidlová K, Šerá J, Pištěková H, Buňka F, Buňková L. Occurrence of Biogenic Amines Producers in the Wastewater of the Dairy Industry. Molecules. 2020; 25(21):5143. https://doi.org/10.3390/molecules25215143
Chicago/Turabian StyleJančová, Petra, Vendula Pachlová, Erika Čechová, Karolína Cedidlová, Jana Šerá, Hana Pištěková, František Buňka, and Leona Buňková. 2020. "Occurrence of Biogenic Amines Producers in the Wastewater of the Dairy Industry" Molecules 25, no. 21: 5143. https://doi.org/10.3390/molecules25215143
APA StyleJančová, P., Pachlová, V., Čechová, E., Cedidlová, K., Šerá, J., Pištěková, H., Buňka, F., & Buňková, L. (2020). Occurrence of Biogenic Amines Producers in the Wastewater of the Dairy Industry. Molecules, 25(21), 5143. https://doi.org/10.3390/molecules25215143