Antibacterial, Antifungal and Ecotoxic Effects of Ammonium and Imidazolium Ionic Liquids Synthesized in Microwaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of 1-Butyl-3-Methylimidazolium Bromide
2.3. Synthesis of 1-Alkyl-(Triethyl)Ammonium Bromide
2.4. Ion Exchange (Metathesis)
2.5. Product Analysis
2.6. Biocide Tests
2.7. Ecotoxicity Tests
3. Results and Discussion
3.1. Ionic Liquid Syntheses
3.2. Biocide and Ecotoxic Effects
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brennecke, J.F.; Maginn, E.J. Ionic liquids: Innovative fluids for chemical processing. AIChE J. 2001, 47, 2384–2389. [Google Scholar] [CrossRef]
- Dong, S.Y.; Zhang, P.H.; Tian, A.X.; Huang, T.L. Synthesis and Characterization of Quaternary Ammonium-Based Ionic Liquid. Adv. Mater. Res. 2012, 433–440, 178–182. [Google Scholar] [CrossRef]
- Jing, L.; Ai, H.; Siyi, L.; Lirong, N.; Wei, Z.; Shun, Y. Synthesis, Purification and Recycling of Ionic Liquid. Mini-Rev. Org. Chem. 2015, 12, 435–448. [Google Scholar] [CrossRef]
- Varma, R.S.; Namboodiri, V.V. An expeditious solvent-free route to ionic liquids using microwaves. Chem. Commun. 2001, 643–644. [Google Scholar] [CrossRef]
- Deetlefs, M.; Seddon, K.R. Improved preparations of ionic liquids using microwave irradiation. Green Chem. 2003, 5, 181–186. [Google Scholar] [CrossRef]
- Khadilkar, B.M.; Rebeiro, G.L. Microwave-Assisted Synthesis of Room-Temperature Ionic Liquid Precursor in Closed Vessel. Org. Process Res. Dev. 2002, 6, 826–828. [Google Scholar] [CrossRef]
- Bhatt, D.R.; Maheria, K.C.; Parikh, J.K. A microwave assisted one pot synthesis of novel ammonium based dicationic ionic liquids. RSC Adv. 2015, 5, 12139–12143. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- AlSaleem, S.S.; Zahid, W.M.; Alnashef, I.M.; Haider, H. Extraction of halogenated hydrocarbons using hydrophobic ionic liquids. Sep. Purif. Technol. 2017, 184, 231–239. [Google Scholar] [CrossRef]
- Cacho, J.I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. J. Chromatogr. A 2018, 1559, 95–101. [Google Scholar] [CrossRef]
- Yao, C.; Li, T.; Twu, P.; Pitner, W.R.; Anderson, J.L. Selective extraction of emerging contaminants from water samples by dispersive liquid–liquid microextraction using functionalized ionic liquids. J. Chromatogr. A 2011, 1218, 1556–1566. [Google Scholar] [CrossRef]
- Cull, S.G.; Holbrey, J.D.; Vargas-Mora, V.; Seddon, K.R.; Lye, G.J. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng. 2000, 69, 227–233. [Google Scholar] [CrossRef]
- Manic, M.S.; da Ponte, M.N.; Najdanovic-Visak, V. Recovery of erythromycin from aqueous solutions with an ionic liquid and high-pressure carbon dioxide. Chem. Eng. J. 2011, 171, 904–911. [Google Scholar] [CrossRef]
- Mohammed, S.; Zouli, N.; Al-Dahhan, M. Removal of phenolic compounds from synthesized produced water by emulsion liquid membrane stabilized by the combination of surfactant and ionic liquid. Desalin. Water Treat. 2018, 110, 168–179. [Google Scholar] [CrossRef]
- Goyal, R.K.; Jayakumar, N.S.; Hashim, M.A. Chromium removal by emulsion liquid membrane using [BMIM]+[NTf2]− as stabilizer and TOMAC as extractant. Desalination 2011, 278, 50–56. [Google Scholar] [CrossRef]
- Kermanioryani, M.; Abdul Mutalib, M.I.; Gonfa, G.; El-Harbawi, M.; Mazlan, F.A.; Lethesh, K.C.; Leveque, J.-M. Using tunability of ionic liquids to remove methylene blue from aqueous solution. J. Environ. Chem. Eng. 2016, 4, 2327–2332. [Google Scholar] [CrossRef]
- Bhosale, V.K.; Patil, N.V.; Kulkarni, P.S. Treatment of energetic material contaminated wastewater using ionic liquids. RSC Adv. 2015, 5, 20503–20510. [Google Scholar] [CrossRef]
- Isosaari, P.; Srivastava, V.; Sillanpää, M. Ionic liquid-based water treatment technologies for organic pollutants: Current status and future prospects of ionic liquid mediated technologies. Sci. Total Environ. 2019, 690, 604–619. [Google Scholar] [CrossRef]
- Thuy Pham, T.P.; Cho, C.-W.; Yun, Y.-S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Radošević, K.; Radojčić Redovniković, I.; Halambek, J.; Gaurina Srček, V. A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol. Environ. Saf. 2014, 99, 1–12. [Google Scholar] [CrossRef]
- Grzonkowska, M.; Sosnowska, A.; Barycki, M.; Rybinska, A.; Puzyn, T. How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Chemosphere 2016, 159, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Syguda, A.; Wyrwas, B.; Chrzanowski, Ł.; Heipieper, H.J. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida. Chemosphere 2017, 167, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, Q.; Bottoms, S.; Hinchman, L.; McIlwain, S.; Li, S.; Myers, C.L.; Boone, C.; Coon, J.J.; Hebert, A.; Sato, T.K.; et al. Mechanism of imidazolium ionic liquidstoxicity in Saccharomyces cerevisiae and rationalengineering of a tolerant, xylose-fermenting strain. Microb. Cell Factories 2016, 15, 17. [Google Scholar] [CrossRef] [Green Version]
- Stasiewicz, M.; Mulkiewicz, E.; Tomczak-Wandzel, R.; Kumirska, J.; Siedlecka, E.M.; Gołebiowski, M.; Gajdus, J.; Czerwicka, M.; Stepnowski, P. Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol. Environ. Saf. 2008, 71, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Nan, P.; Li, L.; Qi, M.; Jia, Y.; Yan, S.; Du, Q.; Chang, Z. Oxidative stress and genotoxicity of 1-methyl-3-octylimidazolium chloride on loach (Misgurnus anguillicaudatus). Toxicol. Environ. Chem. 2013, 95, 1546–1553. [Google Scholar] [CrossRef]
- Quraishi, K.S.; Bustam, M.A.; Krishnan, S.; Aminuddin, N.F.; Azeezah, N.; Ghani, N.A.; Uemura, Y.; Lévêque, J.M. Ionic liquids toxicity on fresh water microalgae, Scenedesmus quadricauda, Chlorella vulgaris & Botryococcus braunii; selection criterion for use in a two-phase partitioning bioreactor (TPPBR). Chemosphere 2017, 184, 642–651. [Google Scholar] [CrossRef]
- McDonnell, G.; Russell, A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 2001, 14, 227. [Google Scholar] [CrossRef] [Green Version]
- Salton, M.R. Lytic agents, cell permeability, and monolayer penetrability. J. Gen. Physiol. 1968, 52, 227–252. [Google Scholar] [CrossRef]
- Wan, W.; Yeow, J.T.W. Antibacterial Properties of Poly(Quaternary Ammonium) Modified Gold and Titanium Dioxide Nanoparticles. J. Nanosci. Nanotechnol. 2012, 12, 4601–4606. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D. Activity of biocides against mycobacteria. Soc. Appl. Bacteriol. Symp. Ser. 1996, 25, 87s–101s. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Kampf, G.; Cinatl, J.; Doerr, H.W. Efficacy of various disinfectants against SARS coronavirus. J. Hosp. Infect. 2005, 61, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, A.; Payne, D. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J. Hosp. Infect. 1998, 38, 283–295. [Google Scholar] [CrossRef]
- Saknimit, M.; Inatsuki, I.; Sugiyama, Y.; Yagami, K. Virucidal efficacy of physico-chemical treatments against coronaviruses and parvoviruses of laboratory animals. Exp. Anim. 1988, 37, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Pratelli, A. Action of disinfectants on canine coronavirus replication in vitro. Zoonoses Public Health 2007, 54, 383–386. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. Ionic Liquids Toxicity—Benefits and Threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef]
- Stolte, S.; Matzke, M.; Arning, J.; Böschen, A.; Pitner, W.-R.; Welz-Biermann, U.; Jastorff, B.; Ranke, J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007, 9, 1170–1179. [Google Scholar] [CrossRef]
- Cao, L.; Zhu, P.; Zhao, Y.; Zhao, J. Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids. J. Hazard. Mater. 2018, 352, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Erfurt, K.; Markiewicz, M.; Siewniak, A.; Lisicki, D.; Zalewski, M.; Stolte, S.; Chrobok, A. Biodegradable Surface Active D-Glucose Based Quaternary Ammonium Ionic Liquids in the Solventless Synthesis of Chloroprene. ACS Sustain. Chem. Eng. 2020, 8, 10911–10919. [Google Scholar] [CrossRef]
- Alvarez-Guerra, M.; Irabien, A. Design of ionic liquids: An ecotoxicity (Vibrio fischeri) discrimination approach. Green Chem. 2011, 13, 1507–1516. [Google Scholar] [CrossRef]
- Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Silva Pereira, C. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.-S.; Yu, Z.-Y.; Zhang, J. Time-dependent hormetic effects of 1-alkyl-3-methylimidazolium bromide on Vibrio qinghaiensis sp.-Q67: Luminescence, redox reactants and antioxidases. Chemosphere 2013, 91, 462–467. [Google Scholar] [CrossRef]
- Parvez, S.; Venkataraman, C.; Mukherji, S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 2006, 32, 265–268. [Google Scholar] [CrossRef]
- Motulsky, H.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- ISO. ISO 11348-1:2007 Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test)—Part 1: Method Using Freshly Prepared Bacteria; ISO: Geneva, Switzerland, 2007; p. 23. [Google Scholar]
- Wu, W.; Li, W.; Han, B.; Zhang, Z.; Jiang, T.; Liu, Z. A green and effective method to synthesize ionic liquids: Supercritical CO2 route. Green Chem. 2005, 7, 701–704. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Yuan, L.; Cui, Z.; Peng, J.; Li, J.; Zhai, M.; Liu, W. Towards understanding the color change of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide during gamma irradiation: An experimental and theoretical study. Phys. Chem. Chem. Phys. 2014, 16, 18729–18735. [Google Scholar] [CrossRef]
- Ghatee, M.; Bahrami, M.; Khanjari, N. Measurement and study of density, surface tension, and viscosity of quaternary ammonium-based ionic liquids ([N222(n)]Tf2N). J. Chem. Thermodyn. 2013, 65, 42–52. [Google Scholar] [CrossRef]
- Machanová, K.; Wagner, Z.; Andresová, A.; Rotrekl, J.; Boisset, A.; Jacquemin, J.; Bendová, M. Thermal Properties of Alkyl-triethylammonium bis{(trifluoromethyl)sulfonyl}imide Ionic Liquids. J. Solut. Chem. 2015, 44, 790–810. [Google Scholar] [CrossRef]
- Reddy, G.K.K.; Nancharaiah, Y.V.; Venugopalan, V.P. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms. Colloids Surf. B Biointerfaces 2017, 155, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Ranke, J.; Mölter, K.; Stock, F.; Bottin-Weber, U.; Poczobutt, J.; Hoffmann, J.; Ondruschka, B.; Filser, J.; Jastorff, B. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol. Environ. Saf. 2004, 58, 396–404. [Google Scholar] [CrossRef]
- Rosen, M.J.; Li, F.; Morrall, S.W.; Versteeg, D.J. The Relationship between the Interfacial Properties of Surfactants and Their Toxicity to Aquatic Organisms. Environ. Sci. Technol. 2001, 35, 954–959. [Google Scholar] [CrossRef]
- Atefi, F.; Garcia, M.T.; Singer, R.D.; Scammells, P.J. Phosphonium ionic liquids: Design, synthesis and evaluation of biodegradability. Green Chem. 2009, 11, 1595–1604. [Google Scholar] [CrossRef] [Green Version]
- Sütterlin, H.; Alexy, R.; Kümmerer, K. The toxicity of the quaternary ammonium compound benzalkonium chloride alone and in mixtures with other anionic compounds to bacteria in test systems with Vibrio fischeri and Pseudomonas putida. Ecotoxicol. Environ. Saf. 2008, 71, 498–505. [Google Scholar] [CrossRef]
- Pretti, C.; Chiappe, C.; Baldetti, I.; Brunini, S.; Monni, G.; Intorre, L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol. Environ. Saf. 2009, 72, 1170–1176. [Google Scholar] [CrossRef]
- Couling, D.J.; Bernot, R.J.; Docherty, K.M.; Dixon, J.K.; Maginn, E.J. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem. 2006, 8, 82–90. [Google Scholar] [CrossRef]
- Sandbacka, M.; Christianson, I.; Isomaa, B. The acute toxicity of surfactants on fish cells, Daphnia magna and fish—A comparative study. Toxicol. Vitr. 2000, 14, 61–68. [Google Scholar] [CrossRef]
Anion | [Br] | [Ntf2] | |||||||
---|---|---|---|---|---|---|---|---|---|
Reaction | Conventional | Microwave | Metathesis | ||||||
Cation | Purity (wt.%) | Yield (wt.%) | Time (min) | Purity (wt.%) | Yield (wt.%) | Time (min) | Purity (wt.%) | Yield (wt.%) | Time (min) |
[C4MIM] | 98.3 | 62.9 | 240 | 99.6 | 74.8 | 180 | 97.7 | 56.3 | 1200 |
[N2224] | 95.4 | 21.9 | 1400 | 99.7 | 85.6 | 560 | 96.0 | 57.9 | 300 |
[N2228] | 97.5 | 26.8 | 1440 | 99.1 | 63.4 | 700 | 96.5 | 53.6 | 360 |
[N222,12] | 99.8 | 30.2 | 2880 | 98.2 | 58.2 | 480 | 99.2 | 57.0 | 300 |
Ionic Liquid | 15 min EC50 (mg.L−1) | 30 min EC50 (mg.L−1) |
---|---|---|
[C4MIM][Br] | 375.96 ± 17.78 | 341.66 ± 19.05 |
[N2224][Br] | 2.70 ± 0.28 | 2.99 ± 0.43 |
[N2228][Br] | 1588.32 ± 28.06 | 1179.51 ± 34.97 |
[N222,12][Br] | 0.40 ± 0.04 | 0.37 ± 0.07 |
[C4MIM][NTf2] | 18.47 ± 0.31 | 14.97 ± 1.36 |
[N2224][NTf2] | 142.33 ± 18.92 | 120.93 ± 17.87 |
[N2228][NTf2] | 0.27 ± 0.04 | 0.31 ± 0.03 |
[N222,12][NTf2] | 0.51 ± 0.03 | 0.45 ± 0.01 |
Sample Availability: Samples of the compounds [C4MIM][Br], [N2224][Br], [N2228][Br], [N222,12][Br], [C4MIM][NTf2], [N2224][NTf2], [N2228][NTf2], [N222,12][NTf2] are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fojtášková, J.; Koutník, I.; Vráblová, M.; Sezimová, H.; Maxa, M.; Obalová, L.; Pánek, P. Antibacterial, Antifungal and Ecotoxic Effects of Ammonium and Imidazolium Ionic Liquids Synthesized in Microwaves. Molecules 2020, 25, 5181. https://doi.org/10.3390/molecules25215181
Fojtášková J, Koutník I, Vráblová M, Sezimová H, Maxa M, Obalová L, Pánek P. Antibacterial, Antifungal and Ecotoxic Effects of Ammonium and Imidazolium Ionic Liquids Synthesized in Microwaves. Molecules. 2020; 25(21):5181. https://doi.org/10.3390/molecules25215181
Chicago/Turabian StyleFojtášková, Jana, Ivan Koutník, Martina Vráblová, Hana Sezimová, Milan Maxa, Lucie Obalová, and Petr Pánek. 2020. "Antibacterial, Antifungal and Ecotoxic Effects of Ammonium and Imidazolium Ionic Liquids Synthesized in Microwaves" Molecules 25, no. 21: 5181. https://doi.org/10.3390/molecules25215181
APA StyleFojtášková, J., Koutník, I., Vráblová, M., Sezimová, H., Maxa, M., Obalová, L., & Pánek, P. (2020). Antibacterial, Antifungal and Ecotoxic Effects of Ammonium and Imidazolium Ionic Liquids Synthesized in Microwaves. Molecules, 25(21), 5181. https://doi.org/10.3390/molecules25215181