Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction
Abstract
:1. Introduction
2. Extraction and Clean-Up of PPCPs in Water
2.1. SPE
2.1.1. Sorbents and Formats
2.1.2. SPE Activation, Washing and Elution
2.1.3. Water Sample Pretreatment before SPE
2.2. Online SPE
2.3. SPE Disk
2.4. Other Extraction Approaches
3. Environmental Applications
4. Conclusions and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Pereira, A.M.P.T.; Silva, L.J.G.; Lino, C.M.; Meisel, L.M.; Pena, A. A critical evaluation of different parameters for estimating pharmaceutical exposure seeking an improved environmental risk assessment. Sci. Total Environ. 2017, 603–604, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dan, X.; Lu, G.; Shen, J.; Wu, D.; Yan, Z. Investigation of pharmaceutically active compounds in an urban receiving water: Occurrence, fate and environmental risk assessment. Ecotoxicol. Environ. Saf. 2018, 154, 214–220. [Google Scholar] [CrossRef]
- Parezanović, G.Š.; Lalic-Popovic, M.; Golocorbin-Kon, S.; Vasovic, V.; Milijašević, B.; Al-Salami, H.; Mikov, M. Environmental Transformation of Pharmaceutical Formulations: A Scientific Review. Arch. Environ. Contam. Toxicol. 2019, 77, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Carmona, E.; Andreu, V.; Picó, Y. Multi-residue determination of 47 organic compounds in water, soil, sediment and fish—Turia River as case study. J. Pharm. Biomed. Anal. 2017, 146, 117–125. [Google Scholar] [CrossRef]
- aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef]
- Palma, P.; Fialho, S.; Lima, A.; Novais, M.H.; Costa, M.J.; Montemurro, N.; Pérez, S.; de Alda, M.L. Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment. Sci. Total Environ. 2020, 709, 136205. [Google Scholar] [CrossRef] [PubMed]
- Barra Caracciolo, A.; Patrolecco, L.; Grenni, P.; Di Lenola, M.; Ademollo, N.; Rauseo, J.; Rolando, L.; Spataro, F.; Plutzer, J.; Monostory, K.; et al. Chemical mixtures and autochthonous microbial community in an urbanized stretch of the River Danube. Microchem. J. 2019, 147, 985–994. [Google Scholar] [CrossRef]
- Zhang, L.; Carvalho, P.N.; Bollmann, U.E.; Ei-taliawy, H.; Brix, H.; Bester, K. Enhanced removal of pharmaceuticals in a biofilter: Effects of manipulating co-degradation by carbon feeding. Chemosphere 2019, 236, 124303. [Google Scholar] [CrossRef]
- Jeeva, M.P.; Usha, K.A.; Charuvila, T.A. Use of Antibiotics in Animals and Its Possible Impacts in the Environment. In Handbook of Research on Social Marketing and Its Influence on Animal Origin Food Product Consumption; Diana, B., Dora, M., Talia, R., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 77–91. [Google Scholar]
- Xiang, L.; Wu, X.-L.; Jiang, Y.-N.; Yan, Q.-Y.; Li, Y.-W.; Huang, X.-P.; Cai, Q.-Y.; Mo, C.-H. Occurrence and risk assessment of tetracycline antibiotics in soil from organic vegetable farms in a subtropical city, south China. Environ. Sci. Pollut. Res. 2016, 23, 13984–13995. [Google Scholar] [CrossRef]
- Du, X.; Bayliss, S.C.; Feil, E.J.; Liu, Y.; Wang, C.; Zhang, G.; Zhou, D.; Wei, D.; Tang, N.; Leclercq, S.O.; et al. Real time monitoring of Aeromonas salmonicida evolution in response to successive antibiotic therapies in a commercial fish farm. Environ. Microbiol. 2019, 21, 1113–1123. [Google Scholar] [CrossRef]
- Yang, Y.; Ok, Y.S.; Kim, K.-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- Kumar, R.; Sarmah, A.K.; Padhye, L.P. Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train. J. Environ. Manag. 2019, 233, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef]
- Maryam, B.; Büyükgüngör, H. Wastewater reclamation and reuse trends in Turkey: Opportunities and challenges. J. Water Process. Eng. 2019, 30, 100501. [Google Scholar] [CrossRef]
- Salgueiro-González, N.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Trends in analytical methodologies for the determination of alkylphenols and bisphenol A in water samples. Anal. Chim. Acta 2017, 962, 1–14. [Google Scholar] [CrossRef]
- Lin, T.; Yu, S.; Chen, W. Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China. Chemosphere 2016, 152, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Mohd Rashid, M.Z.; Mohd Nasir, F.A.; Sze Yee, W.; Aris, A.Z. Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicol. Environ. Saf. 2019, 180, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Krakkó, D.; Licul-Kucera, V.; Záray, G.; Mihucz, V.G. Single-run ultra-high performance liquid chromatography for quantitative determination of ultra-traces of ten popular active pharmaceutical ingredients by quadrupole time-of-flight mass spectrometry after offline preconcentration by solid phase extraction from drinking and river waters as well as treated wastewater. Microchem. J. 2019, 148, 108–119. [Google Scholar]
- Fatta-Kassinos, D.; Vasquez, M.I.; Kümmerer, K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 2011, 85, 693–709. [Google Scholar] [CrossRef]
- Boras, J.A.; Vaqué, D.; Maynou, F.; Sà, E.L.; Weinbauer, M.G.; Sala, M.M. Factors shaping bacterial phylogenetic and functional diversity in coastal waters of the NW Mediterranean Sea. Estuar. Coast. Shelf Sci. 2015, 154, 102–110. [Google Scholar] [CrossRef]
- Matilainen, A.; Sillanpää, M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 2010, 80, 351–365. [Google Scholar] [CrossRef]
- Rushing, B.; Wooten, A.; Shawky, M.; Selim, M.I. Comparison of LC-MS and GC-MS for the Analysis of Pharmaceuticals and Personal Care Products in Surface Water and Treated Wastewaters. Spectroscopy 2016, 14, 8–14. [Google Scholar]
- Kachhawaha, A.S.; Nagarnaik, P.M.; Labhasetwar, P.; Banerjee, K. A Review of Recently Developed LC-MS/MS Methods for the Analysis of Pharmaceuticals and Personal Care Products in Water. J. Aoac Int. 2020, 103, 9–22. [Google Scholar] [CrossRef]
- Knoll, S.; Rosch, T.; Huhn, C. Trends in sample preparation and separation methods for the analysis of very polar and ionic compounds in environmental water and biota samples. Anal. Bioanal. Chem. 2020, 412, 6149–6165. [Google Scholar] [CrossRef]
- Matich, E.K.; Soria, N.G.C.; Aga, D.S.; Atilla-Gokcumen, G.E. Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. J. Hazard. Mater. 2019, 373, 527–535. [Google Scholar] [CrossRef]
- Sereshti, H.; Duman, O.; Tunc, S.; Nouri, N.; Khorram, P. Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Microchim. Acta 2020, 187, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Büyüktiryaki, S.; Keçili, R.; Hussain, C.M. Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. TrAC Trends Anal. Chem. 2020, 127, 115893. [Google Scholar]
- Wei, X.; Wang, Y.; Chen, J.; Xu, F.; Liu, Z.; He, X.; Li, H.; Zhou, Y. Adsorption of pharmaceuticals and personal care products by deep eutectic solvents-regulated magnetic metal-organic framework adsorbents: Performance and mechanism. Chem. Eng. J. 2020, 392, 124808. [Google Scholar] [CrossRef]
- Font, G.; Mañes, J.; Moltó, J.C.; Picó, Y. Solid-phase extraction in multi-residue pesticide analysis of water. J. Chromatogr. A 1993, 642, 135–161. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, L.; Wang, B.; Liu, C.S.; Jia, Y.; Zhai, N.; Blaney, L.; Yu, G. Efficient multiresidue determination method for 168 pharmaceuticals and metabolites: Optimization and application to raw wastewater, wastewater effluent, and surface water in Beijing, China. Environ. Pollut. 2020, 261, 114113. [Google Scholar] [CrossRef]
- Hong, B.; Yu, S.; Niu, Y.; Ding, J.; Lin, Q.; Lin, X.; Hu, W. Spectrum and environmental risks of residual pharmaceuticals in stream water with emphasis on its relation to epidemic infectious disease and anthropogenic activity in watershed. J. Hazard. Mater. 2020, 385, 121594. [Google Scholar] [CrossRef]
- Fan, X.; Gao, J.; Li, W.; Huang, J.; Yu, G. Determination of 27 pharmaceuticals and personal care products (PPCPs) in water: The benefit of isotope dilution. Front. Environ. Sci. Eng. 2020, 14, 8. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Zioris, I.; Danis, T.; Bikiaris, D.; Lambropoulou, D. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Sci. Total Environ. 2019, 694, 133565. [Google Scholar] [CrossRef]
- Guzel, E.Y.; Cevik, F.; Daglioglu, N. Determination of pharmaceutical active compounds in Ceyhan River, Turkey: Seasonal, spatial variations and environmental risk assessment. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1980–1995. [Google Scholar] [CrossRef]
- Koçoğlu, E.S.; Sözüdoğru, O.; Komesli, O.T.; Yılmaz, A.E.; Bakırdere, S. Simultaneous determination of drug active compound, hormones, pesticides, and endocrine disruptor compounds in wastewater samples by GC-MS with direct calibration and matrix matching strategies after preconcentration with dispersive liquid-liquid microextraction. Environ. Monit. Assess. 2019, 191, 653. [Google Scholar]
- Gumbi, B.P.; Moodley, B.; Birungi, G.; Ndungu, P.G. Target, Suspect and Non-Target Screening of Silylated Derivatives of Polar Compounds Based on Single Ion Monitoring GC-MS. Int. J. Environ. Res. Public Health 2019, 16, 4022. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Wang, T.; Qi, C.; Peng, G.; Lu, M.; Huang, J.; Blaney, L.; Yu, G. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per-and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters. J. Chromatogr. A 2019, 1602, 350–358. [Google Scholar]
- Liang, Y.; Liu, J.; Zhong, Q.; Yu, D.; Yao, J.; Huang, T.; Zhu, M.; Zhou, T. A fully automatic cross used solid-phase extraction online coupled with ultra-high performance liquid chromatography–tandem mass spectrometry system for the trace analysis of multi-class pharmaceuticals in water samples. J. Pharm. Biomed. Anal. 2019, 174, 330–339. [Google Scholar] [CrossRef]
- Miossec, C.; Lanceleur, L.; Monperrus, M. Multi-residue analysis of 44 pharmaceutical compounds in environmental water samples by solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2019, 42, 1853–1866. [Google Scholar] [CrossRef]
- Vreys, N.; Amé, M.; Filippi, I.; Cazenave, J.; Valdés, M.; Bistoni, M. Effect of Landscape Changes on Water Quality and Health Status of Heptapterus mustelinus (Siluriformes, Heptapteridae). Arch. Environ. Contam. Toxicol. 2019, 76, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Hao, H.; Xu, N.; Liang, X.; Gao, D.; Xu, Y.; Gao, Y.; Tao, H.; Wong, M. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and health risk assessment. Sci. Total Environ. 2019, 659, 230–239. [Google Scholar] [CrossRef]
- Abdallah, M.A.-E.; Nguyen, K.-H.; Ebele, A.J.; Atia, N.N.; Ali, H.R.H.; Harrad, S. A single run, rapid polarity switching method for determination of 30 pharmaceuticals and personal care products in waste water using Q-Exactive Orbitrap high resolution accurate mass spectrometry. J. Chromatogr. A 2019, 1588, 68–76. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Opeolu, B.O.; Genthe, B.; Olatunji, O.S. Multi-residue method for the determination of selected veterinary pharmaceutical residues in surface water around Livestock Agricultural farms. Heliyon 2018, 4, e01066. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Alvarez, I.; Islas-Flores, H.; Gómez-Oliván, L.M.; Barceló, D.; De Alda, M.L.; Solsona, S.P.; Sánchez-Aceves, L.; SanJuan-Reyes, N.; Galar-Martínez, M. Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. Environ. Pollut. 2018, 240, 330–341. [Google Scholar] [CrossRef]
- Marube, L.C.; Caldas, S.S.; Santos, E.O.D.; Michaelsen, A.; Primel, E.G. Multi-residue method for determination of thirty-five pesticides, pharmaceuticals and personal care products in water using ionic liquid-dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. J. Braz. Chem. Soc. 2018, 29, 1349–1359. [Google Scholar] [CrossRef]
- Krizman-Matasic, I.; Kostanjevecki, P.; Ahel, M.; Terzic, S. Simultaneous analysis of opioid analgesics and their metabolites in municipal wastewaters and river water by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1533, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Mijangos, L.; Ziarrusta, H.; Olivares, M.; Zuloaga, O.; Möder, M.; Etxebarria, N.; Prieto, A. Simultaneous determination of 41 multiclass organic pollutants in environmental waters by means of polyethersulfone microextraction followed by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 615–632. [Google Scholar] [CrossRef]
- Pivetta, R.C.; Rodrigues-Silva, C.; Ribeiro, A.R.; Rath, S. Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks. Sci. Total Environ. 2020, 727, 138661. [Google Scholar] [CrossRef] [PubMed]
- Gopal, C.M.; Bhat, K.; Praveenkumarreddy, Y.; Shailesh; Kumar, V.; Basu, H.; Joshua, D.I.; Singhal, R.K.; Balakrishna, K. Evaluation of selected pharmaceuticals and personal care products in water matrix using ion trap mass spectrometry: A simple weighted calibration curve approach. J. Pharm. Biomed. Anal. 2020, 185, 113214. [Google Scholar] [CrossRef]
- Zhu, F.; Yao, Z.; Ji, W.; Liu, D.; Zhang, H.; Li, A.; Huo, Z.; Zhou, Q. An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters. Front. Environ. Sci. Eng. 2020, 14, 51. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Bletsou, A.A.; Damalas, D.E.; Aalizadeh, R.; Alygizakis, N.A.; Singer, H.P.; Hollender, J.; Thomaidis, N.S. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 2020, 387, 121712. [Google Scholar] [CrossRef]
- Castillo Meza, L.; Piotrowski, P.; Farnan, J.; Tasker, T.L.; Xiong, B.; Weggler, B.; Murrell, K.; Dorman, F.L.; Vanden Heuvel, J.P.; Burgos, W.D. Detection and removal of biologically active organic micropollutants from hospital wastewater. Sci. Total Environ. 2020, 700, 134469. [Google Scholar] [CrossRef] [PubMed]
- Nantaba, F.; Wasswa, J.; Kylin, H.; Palm, W.-U.; Bouwman, H.; Kümmerer, K. Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda. Chemosphere 2020, 239, 124642. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef]
- Sadutto, D.; Álvarez-Ruiz, R.; Picó, Y. Systematic assessment of extraction of pharmaceuticals and personal care products in water and sediment followed by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Jakab, G.; Szalai, Z.; Michalkó, G.; Ringer, M.; Filep, T.; Szabó, L.; Maász, G.; Pirger, Z.; Ferincz, Á.; Staszny, Á.; et al. Thermal baths as sources of pharmaceutical and illicit drug contamination. Environ. Sci. Pollut. Res. 2020, 27, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Afsa, S.; Hamden, K.; Lara Martin, P.A.; Mansour, H.B. Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environ. Sci. Pollut. Res. 2020, 27, 1941–1955. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Pacheco-Juárez, J.; Sosa-Ferrera, Z.; Santana-Rodríguez, J. A Survey of the Presence of Pharmaceutical Residues in Wastewaters. Evaluation of Their Removal using Conventional and Natural Treatment Procedures. Molecules 2020, 25, 1639. [Google Scholar] [CrossRef] [Green Version]
- Hou, F.; Tian, Z.; Peter, K.T.; Wu, C.; Gipe, A.D.; Zhao, H.; Alegria, E.A.; Liu, F.; Kolodziej, E.P. Quantification of organic contaminants in urban stormwater by isotope dilution and liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 7791–7806. [Google Scholar] [CrossRef]
- Caban, M.; Lis, H.; Kobylis, P.; Stepnowski, P. The triple-sorbents solid-phase extraction for pharmaceuticals and estrogens determination in wastewater samples. Microchem. J. 2019, 149, 103965. [Google Scholar] [CrossRef]
- Maasz, G.; Mayer, M.; Zrinyi, Z.; Molnar, E.; Kuzma, M.; Fodor, I.; Pirger, Z.; Takács, P. Spatiotemporal variations of pharmacologically active compounds in surface waters of a summer holiday destination. Sci. Total Environ. 2019, 677, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.H.; Reinhard, M.; Khan, E.; Chen, H.; Nguyen, V.T.; Li, Y.; Goh, S.G.; Nguyen, Q.B.; Saeidi, N.; Gin, K.Y.-H. Emerging contaminants in wastewater, stormwater runoff, and surface water: Application as chemical markers for diffuse sources. Sci. Total Environ. 2019, 676, 252–267. [Google Scholar] [CrossRef]
- Xu, M.; Huang, H.; Li, N.; Li, F.; Wang, D.; Luo, Q. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicol. Environ. Saf. 2019, 175, 289–298. [Google Scholar] [CrossRef]
- Reis, E.O.; Foureaux, A.F.S.; Rodrigues, J.S.; Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.S.; Amaral, M.C.S.; Lange, L.C. Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environ. Pollut. 2019, 250, 773–781. [Google Scholar] [CrossRef]
- Coelho, M.M.; Lado Ribeiro, A.R.; Sousa, J.C.G.; Ribeiro, C.; Fernandes, C.; Silva, A.M.T.; Tiritan, M.E. Dual enantioselective LC–MS/MS method to analyse chiral drugs in surface water: Monitoring in Douro River estuary. J. Pharm. Biomed. Anal. 2019, 170, 89–101. [Google Scholar] [CrossRef]
- Hong, Y.; Lee, I.; Lee, W.; Kim, H. Mass-balance-model-based evaluation of sewage treatment plant contribution to residual pharmaceuticals in environmental waters. Chemosphere 2019, 225, 378–387. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.A.; Izeppi, L.J.P.; Loose, R.F.; Muenchen, D.K.; Prestes, O.D.; Zanella, R. A multiclass method for the determination of pharmaceuticals in drinking water by solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Anal. Methods 2019, 11, 2333–2340. [Google Scholar] [CrossRef]
- Peng, Y.; Gautam, L.; Hall, S.W. The detection of drugs of abuse and pharmaceuticals in drinking water using solid-phase extraction and liquid chromatography-mass spectrometry. Chemosphere 2019, 223, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Vanryckeghem, F.; Huysman, S.; Van Langenhove, H.; Vanhaecke, L.; Demeestere, K. Multi-residue quantification and screening of emerging organic micropollutants in the Belgian Part of the North Sea by use of Speedisk extraction and Q-Orbitrap HRMS. Mar. Pollut. Bull. 2019, 142, 350–360. [Google Scholar] [CrossRef]
- Singh, R.R.; Angeles, L.F.; Butryn, D.M.; Metch, J.W.; Garner, E.; Vikesland, P.J.; Aga, D.S. Towards a harmonized method for the global reconnaissance of multi-class antimicrobials and other pharmaceuticals in wastewater and receiving surface waters. Environ. Int. 2019, 124, 361–369. [Google Scholar] [CrossRef]
- Semreen, M.H.; Shanableh, A.; Semerjian, L.; Alniss, H.; Mousa, M.; Bai, X.; Acharya, K. Simultaneous determination of pharmaceuticals by solid-phase extraction and liquid chromatography-tandem mass spectrometry: A case study from sharjah sewage treatment plant. Molecules 2019, 24, 633. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lin, H.; Li, H.; Wang, M.; Qiu, B.; Yang, Z. Influence of filtration during sample pretreatment on the detection of antibiotics and non-steroidal anti-inflammatory drugs in natural surface waters. Sci. Total Environ. 2019, 650, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Česen, M.; Ahel, M.; Terzić, S.; Heath, D.J.; Heath, E. The occurrence of contaminants of emerging concern in Slovenian and Croatian wastewaters and receiving Sava river. Sci. Total Environ. 2019, 650, 2446–2453. [Google Scholar] [CrossRef]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, L.; Chen, Y.; Ye, B.; Han, J.; Jin, N. Occurrence and distribution of pharmaceuticals in raw, finished, and drinking water from seven large river basins in China. J. Water Health 2019, 17, 477–489. [Google Scholar] [CrossRef]
- Chauveheid, E.; Scholdis, S. Removal of pharmaceuticals by a surface water treatment plant. Water Supply 2019, 19, 1793–1801. [Google Scholar] [CrossRef]
- Męczykowska, H.; Stepnowski, P.; Caban, M. Impact of humic acids, temperature and stirring on passive extraction of pharmaceuticals from water by trihexyl(tetradecyl)phosphonium dicyanamide. Microchem. J. 2019, 144, 500–505. [Google Scholar] [CrossRef]
- Pemberton, J.A.; Lloyd, C.E.M.; Arthur, C.J.; Johnes, P.J.; Dickinson, M.; Charlton, A.J.; Evershed, R.P. Untargeted characterisation of dissolved organic matter contributions to rivers from anthropogenic point sources using direct-infusion and high-performance liquid chromatography/Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom. 2019, 34, e8618. [Google Scholar] [CrossRef] [Green Version]
- Arsand, J.B.; Hoff, R.B.; Jank, L.; Dallegrave, A.; Galeazzi, C.; Barreto, F.; Pizzolato, T.M. Wide-Scope Determination of Pharmaceuticals and Pesticides in Water Samples: Qualitative and Confirmatory Screening Method Using LC-qTOF-MS. Water Air Soil Pollut. 2018, 229, 399. [Google Scholar] [CrossRef]
- López-García, E.; Mastroianni, N.; Postigo, C.; Barceló, D.; López de Alda, M. A fully automated approach for the analysis of 37 psychoactive substances in raw wastewater based on on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1576, 80–89. [Google Scholar] [CrossRef]
- Botero-Coy, A.M.; Martínez-Pachón, D.; Boix, C.; Rincón, R.J.; Castillo, N.; Arias-Marín, L.P.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total Environ. 2018, 642, 842–853. [Google Scholar] [CrossRef]
- Li, W.-L.; Zhang, Z.-F.; Ma, W.-L.; Liu, L.-Y.; Song, W.-W.; Li, Y.-F. An evaluation on the intra-day dynamics, seasonal variations and removal of selected pharmaceuticals and personal care products from urban wastewater treatment plants. Sci. Total Environ. 2018, 640–641, 1139–1147. [Google Scholar] [CrossRef]
- Česen, M.; Heath, D.; Krivec, M.; Košmrlj, J.; Kosjek, T.; Heath, E. Seasonal and spatial variations in the occurrence, mass loadings and removal of compounds of emerging concern in the Slovene aqueous environment and environmental risk assessment. Environ. Pollut. 2018, 242, 143–154. [Google Scholar] [CrossRef] [PubMed]
- González-Mariño, I.; Castro, V.; Montes, R.; Rodil, R.; Lores, A.; Cela, R.; Quintana, J.B. Multi-residue determination of psychoactive pharmaceuticals, illicit drugs and related metabolites in wastewater by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1569, 91–100. [Google Scholar] [CrossRef]
- Asghar, M.A.; Zhu, Q.; Sun, S.; Peng, Y.E.; Shuai, Q. Suspect screening and target quantification of human pharmaceutical residues in the surface water of Wuhan, China, using UHPLC-Q-Orbitrap HRMS. Sci. Total Environ. 2018, 635, 828–837. [Google Scholar] [CrossRef]
- Fantuzzi, G.; Aggazzotti, G.; Righi, E.; Predieri, G.; Castiglioni, S.; Riva, F.; Zuccato, E. Illicit drugs and pharmaceuticals in swimming pool waters. Sci. Total Environ. 2018, 635, 956–963. [Google Scholar] [CrossRef] [PubMed]
- López-Serna, R.; Marín-de-Jesús, D.; Irusta-Mata, R.; García-Encina, P.A.; Lebrero, R.; Fdez-Polanco, M.; Muñoz, R. Multiresidue analytical method for pharmaceuticals and personal care products in sewage and sewage sludge by online direct immersion SPME on-fiber derivatization—GCMS. Talanta 2018, 186, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Qaim, F.F.; Mussa, Z.H.; Yuzir, A. Development and validation of a comprehensive solid-phase extraction method followed by LC-TOF/MS for the analysis of eighteen pharmaceuticals in influent and effluent of sewage treatment plants. Anal. Bioanal. Chem. 2018, 410, 4829–4846. [Google Scholar] [CrossRef]
- Diuzheva, A.; Balogh, J.; Jekő, J.; Cziáky, Z. Application of liquid-liquid microextraction for the effective separation and simultaneous determination of 11 pharmaceuticals in wastewater samples using high-performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 2870–2877. [Google Scholar] [CrossRef]
- Tröger, R.; Klöckner, P.; Ahrens, L.; Wiberg, K. Micropollutants in drinking water from source to tap—Method development and application of a multiresidue screening method. Sci. Total Environ. 2018, 627, 1404–1432. [Google Scholar] [CrossRef]
- Tomai, P.; Martinelli, A.; Morosetti, S.; Curini, R.; Fanali, S.; Gentili, A. Oxidized Buckypaper for Stir-Disc Solid Phase Extraction: Evaluation of Several Classes of Environmental Pollutants Recovered from Surface Water Samples. Anal. Chem. 2018, 90, 6827–6834. [Google Scholar] [CrossRef]
- Klančar, A.; Trontelj, J.; Roškar, R. Development of a Multi-Residue Method for Monitoring 44 Pharmaceuticals in Slovene Surface Water by SPE-LC-MS/MS. Water Air Soil Pollut. 2018, 229, 192. [Google Scholar] [CrossRef]
- Yao, B.; Yan, S.; Lian, L.; Yang, X.; Wan, C.; Dong, H.; Song, W. Occurrence and indicators of pharmaceuticals in Chinese streams: A nationwide study. Environ. Pollut. 2018, 236, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Wiest, L.; Chonova, T.; Bergé, A.; Baudot, R.; Bessueille-Barbier, F.; Ayouni-Derouiche, L.; Vulliet, E. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environ. Sci. Pollut. Res. 2018, 25, 9207–9218. [Google Scholar] [CrossRef]
- Monteiro, M.A.; Spisso, B.F.; Ferreira, R.G.; Pereira, M.U.; Grutes, J.V.; de Andradec, B.R.; d’Avila, L.A. Development and validation of liquid chromatography-tandem mass spectrometry methods for determination of beta-lactams, macrolides, fluoroquinolones, sulfonamides and tetracyclines in surface and drinking water from Rio de Janeiro, Brazil. J. Braz. Chem. Soc. 2017, 29, 801–813. [Google Scholar] [CrossRef]
- Castiglioni, S.; Davoli, E.; Riva, F.; Palmiotto, M.; Camporini, P.; Manenti, A.; Zuccato, E. Mass balance of emerging contaminants in the water cycle of a highly urbanized and industrialized area of Italy. Water Res. 2018, 131, 287–298. [Google Scholar] [CrossRef]
- Chau, H.T.C.; Kadokami, K.; Duong, H.T.; Kong, L.; Nguyen, T.T.; Nguyen, T.Q.; Ito, Y. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam. Environ. Sci. Pollut. Res. 2018, 25, 7147–7156. [Google Scholar] [CrossRef]
- Souza, F.S.; Da Silva, V.V.; Rosin, C.K.; Hainzenreder, L.; Arenzon, A.; Pizzolato, T.; Jank, L.; Féris, L.A. Determination of pharmaceutical compounds in hospital wastewater and their elimination by advanced oxidation processes. J. Environ. Sci. Health Part A 2018, 53, 213–221. [Google Scholar] [CrossRef]
- Rivera-Jaimes, J.A.; Postigo, C.; Melgoza-Alemán, R.M.; Aceña, J.; Barceló, D.; López de Alda, M. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Sci. Total Environ. 2018, 613–614, 1263–1274. [Google Scholar] [CrossRef]
- Salas, D.; Borrull, F.; Fontanals, N.; Marcé, R.M. Combining cationic and anionic mixed-mode sorbents in a single cartridge to extract basic and acidic pharmaceuticals simultaneously from environmental waters. Anal. Bioanal. Chem. 2018, 410, 459–469. [Google Scholar] [CrossRef]
- Kafeenah, H.I.S.; Osman, R.; Bakar, N.K.A. Disk solid-phase extraction of multi-class pharmaceutical residues in tap water and hospital wastewater, prior to ultra-performance liquid chromatographic-tandem mass spectrometry (UPLC-MS/MS) analyses. Rsc Adv. 2018, 8, 40358–40368. [Google Scholar] [CrossRef] [Green Version]
- Kanama, K.M.; Daso, A.P.; Mpenyana-Monyatsi, L.; Coetzee, M.A.A. Assessment of Pharmaceuticals, Personal Care Products, and Hormones in Wastewater Treatment Plants Receiving Inflows from Health Facilities in North West Province, South Africa. J. Toxicol. 2018, 2018, 3751930. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.C.; Oliveira, C.C. Development of Micellar HPLC-UV Method for Determination of Pharmaceuticals in Water Samples. J. Anal. Methods Chem. 2018, 2018, 9143730. [Google Scholar] [CrossRef]
- Bade, R.; White, J.M.; Gerber, C. Qualitative and quantitative temporal analysis of licit and illicit drugs in wastewater in Australia using liquid chromatography coupled to mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 529–542. [Google Scholar] [CrossRef]
- Trinh, A.; Marlatt, L.; Bell, D.S. Controlling SPE Selectivity Through pH and Organic Modifier Manipulation. Reporter EU 2020, 21. Available online: https://www.sigmaaldrich.com/technical-documents/articles/reporter-eu/controlling-spe-selectivity.html (accessed on 6 November 2020).
- Moldenhauer, J. Disinfection and Decontamination: A Practical Handbook; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kumari, P.K.; Akhila, S.; Rao, Y.S.; Devi, B.R. Alternative to Artificial Preservatives. Syst. Rev. Pharm. 2019, 10, 99–102. [Google Scholar]
- Paíga, P.; Santos, L.H.M.L.M.; Delerue-Matos, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2017, 135, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Basaglia, G.; Pietrogrande, M.C. Optimization of a SPME/GC/MS Method for the Simultaneous Determination of Pharmaceuticals and Personal Care Products in Waters. Chromatographia 2012, 75, 361–370. [Google Scholar] [CrossRef]
Matrix * | No. of PPCPs | Preservation | Volume (mL) | Extraction Method | Sorbent or Cartridge | Detection | Recovery % | Reference |
---|---|---|---|---|---|---|---|---|
WW, SF | 168 | Na4EDTA | 50 | SPE | Clearnert PEP-2 | HPLC-MS/MS | 0.05–127 | [32] |
WW, SF | 168 | Na4EDTA | - | Direct injection | - | HPLC-MS/MS | 0.05–127 | [32] |
SF | 59 | Na2EDTA | 1000 | SPE | Oasis HLB | HPLC-MS/MS | 52–137 | [33] |
WW, SF, DW | 27 | - | - | SPE | Cleanert PEP | HPLC-MS/MS | 74–120 | [34] |
WW | 55 | Na2EDTA | 150 | SPE | Oasis HLB | HPLC-MS/MS | 9–119 | [35] |
SW | 91 | - | 1000 | SPE | Oasis HLB | HPLC-MS/MS | 70–110 | [36] |
WW | 12 | - | 7.9 | DLLME | - | GC-MS/MS | 91–115 | [37] |
WW, SW | 12 | - | 1000 | SPE | Oasis HLB | GC-MS/MS | 65–115 | [38] |
WW, SF, DW | 58 | - | 1.8 | Online-SPE | PLRP-s | HPLC-MS/MS | 70–120 (82% of total) | [39] |
SW | 62 | - | ≤20 | Online-SPE | Oasis HLB | HPLC-MS/MS | 81–120 | [40] |
SW | 62 | - | 200 | SPE | Oasis HLB | HPLC-MS/MS | 81–121 | [40] |
WW, SW | 44 | Na2EDTA | 200 | SPE | Oasis HLB | HPLC-MS/MS | 8–239 | [41] |
SW | 11 | - | 200 | SPE | Strata-X | HPLC-MS/MS | 40–120 | [42] |
SW | 34 | Na2EDTA | 400 | SPE | Oasis HLB | HPLC-MS/MS | 41–125 | [43] |
WW, SW | 30 | Na2EDTA | 250 | SPE | Oasis MCX | HPLC-MS/MS | 78–106 | [44] |
SW | 10 | - | 500 | SPE | Oasis HLB | HPLC-MS/MS | 69–88 | [45] |
WW | 11 | - | - | Online-SPE | TurboFlow™ column | HPLC-MS/MS | 45–150 | [46] |
SW | 16 | - | 10 | DLLME | - | HPLC-MS/MS | 70–120 | [47] |
WW, SW | 27 | Na2EDTA | 125–500 | SPE | Oasis MCX | HPLC-MS/MS | 73–116 | [48] |
WW, SW | 25 (of 41) | Na2EDTA | 120 | PES microextraction | - | HPLC-MS/MS | 80–119 | [49] |
WW, SW | 25 (of 41) | Na2EDTA | 100–250 | SPE | Oasis HLB | HPLC-MS/MS | 71–131 | [49] |
WW, SW | 10 | - | 20 uL | Online-SPE | Oasis HLB | HPLC-MS/MS | - | [50] |
SW | 12 | - | 500 | SPE | Oasis HLB | HPLC-MS/MS | 55–120 | [51] |
WW, SW | 44 | - | 500 | SPE innovative | GCHM, Oasis HLB | HPLC-MS/MS | 76 | [52] |
WW | 190 | - | 100 | SPE innovative | Oasis HLB, Isolute ENV+, | UPLC-Q-TOF-MS/MS | 57–120 | [53] |
Strata-X-AW, Strata-X-CV | ||||||||
WW | 52 | - | 100 | Disk SPE | BAKERBOND C18 Polar Plus | GC-TOF-MS | - | [54] |
SW | 24 | Na2EDTA | 1000 | SPE | Chromabond HR-X | HPLC-MS/MS | 52–117 | [55] |
SW | 13 | Na2EDTA | 250 | SPE | Strata-X | HPLC-MS/MS | 51–102 | [56] |
SW | 32 | - | 200 | SPE | Strata-X | HPLC-MS/MS | 36–119 | [57] |
SW | 32 | - | 200 | SPE | Strata-X-CW | HPLC-MS/MS | 25–110 | [57] |
SP | 111 | - | 150 | SPE | Strata-X-CW | SFC-MS/MS | 77 (average) | [58] |
WW, SW | 40 | - | 250 | SPE | Oasis HLB | HPLC-MS/MS | 17–146 | [59] |
WW | 11 | - | 250 | SPE | Oasis HLB | HPLC-MS/MS | 53–124 | [60] |
SW | 39 | - | 1000 | SPE | Oasis HLB | HPLC-MS/MS | 1–125 | [61] |
WW | 15 | - | 250 | SPE innovative | Strata-X, PSA, Alumina | GC-MS | 19–103 | [62] |
SW | 69 | - | 100 | SPE | Strata X-CW | SFC-MS/MS | 76 | [63] |
WW, SW | 31 | - | 100–500 | SPE | Chromabond HR-X | HPLC-MS/MS | 32–97 | [64] |
SW | 130 | Na2EDTA | 2000 | SPE innovative | Oasis WAX, Oasis HLB, | HPLC-MS/MS | 50–150 | [65] |
Sep-Pak Plus AC 2 | ||||||||
WW, DW | 28 | - | 1000 | SPE | C18 Cartridges | HPLC-MS/MS | n.r.–293 | [66] |
WW, SW | 10 | Na2EDTA | 500 | SPE | Oasis HLB | UPLC-Q-TOF-MS/MS | n.r.–128 | [20] |
WW, SW | 23 | - | 500 | SPE | Oasis MCX | HPLC-MS/MS | 54–117 | [67] |
WW | 52 | Na2EDTA | 10 | Online-SPE | Shim-pack MAYI-ODS | HPLC-MS/MS | 74–104 | [68] |
SW | 20 | Na2EDTA | 100 | SPE | Strata-X | HPLC-MS/MS | 70–119 | [69] |
WW, SW | 20 | - | 200 | SPE | Strata-X-Drug B | HPLC-MS/MS | 39–102 | [70] |
SW | 61 | Na2EDTA | 1000 | Disk SPE | Speedisk® | HPLC-MS/MS | - | [71] |
SW | 61 | Na2EDTA | 200 | SPE | Oasis HLB | HPLC-MS/MS | - | [71] |
WW | 26 | Na2EDTA | 500 | SPE | Oasis HLB | HPLC-MS/MS | - | [72] |
WW | 10 | - | - | SPE | Oasis HLB | HPLC-MS/MS | 85–94 | [73] |
SW | 35 | Na2EDTA | 1000 | SPE | Oasis HLB | HPLC-MS/MS | 58–194 | [74] |
WW, SW | 20 | - | 300–400 | SPE | Oasis HLB Prime | GC-MS | ≥40% | [75] |
WW | 83 | Na2EDTA | 50–100 | SPE | Strata-X | HPLC-MS/MS | n.r.–122 | [76] |
WW | 59 | Ascorbic acid; Na2EDTA | 1000 | SPE | Oasis HLB | HPLC-MS/MS | 9–143 | [77] |
WW | 20 | Sodium thiosulfate | 500 | Online-SPE | Oasis HLB | HPLC-MS/MS | - | [78] |
WW | 20 | Sodium thiosulfate | - | Direct injection | - | HPLC-MS/MS | - | [78] |
SW | 13 | - | - | Passive sampling | PES membranes | LC-DAD | - | [79] |
WW | 21 | - | 1000 | SPE | Oasis HLB | LC-HRMS | 40 (average) | [80] |
WW, SW | 103 (of 300) | Formaldehyde | 250 | SPE innovative | Strata-X | UPLC- Q-TOF-MS/MS | - | [81] |
WW | 37 | - | 0.5 | Online-SPE | PLRPs | HPLC-MS/MS | 5–132 | [82] |
WW | 20 | - | 2 | Direct injection | - | HPLC-MS/MS | 60–124 | [83] |
WW | 12 | - | 20–100 | SPE | Oasis HLB | HPLC-MS/MS | 77–115 | [84] |
WW, SW | 48 | - | 300–400 | SPE | Oasis HLB Prime | GC-MS | >40 | [85] |
WW | 38 | - | 100 | SPE | Oasis MCX | HPLC-MS/MS | 65–134 | [86] |
SW | 33 | - | 200 | SPE innovative | Oasis HLB, LC18 column | HPLC-MS/MS | 50–106 | [87] |
SP | 48 | Na4EDTA | 200 | SPE | Oasis MCX | HPLC-MS/MS | 71–122 | [88] |
WW | 22 | NaCl | 100 | Online SPE | DVB/CAR/PDMS | GC-MS | 6–104 | [89] |
WW | 19 | - | 250 | SPE | Oasis HLB | LC-TOF/MS | 5–111 | [90] |
WW | 11 | - | 0.9 | DLLME | - | HPLC-MS/MS | n.r.–124 | [91] |
WW, SW | 40 (of 139) | - | 1000 | SPE | Oasis HLB | HPLC-MS/MS | n.r.–99 | [92] |
WW, SW | 41 (of 139) | - | 1000 | SPE | Bond-Elut ENV | HPLC-MS/MS | n.r.–99 | [92] |
SW | 10 (of 28) | - | 500 | Buckypaper Device | - | HPLC-MS/MS | n.r.–102 | [93] |
SW | 44 | - | 200 | SPE | Strata-X | HPLC-MS/MS | 85–100 | [94] |
SW | 45 | Na2EDTA | 1000 | SPE | Strata-X | HPLC-MS/MS | 38–112 | [95] |
WW | 13 | - | 150–300 | SPE | Oasis HLB | HPLC-MS/MS | 40–115 | [96] |
SW | 42 | Na2EDTA; ASA(DW) | 50 | SPE | Oasis HLB | HPLC-MS/MS | 33–117 | [97] |
WW, SW | 39 (of 80) | - | 500–100 | SPE | Oasis MCX; Oasis HLB | HPLC-MS/MS | 31–131 | [98] |
SW | 110 (of 1153) | Phosphate buffer | 1000 | Disk SPE | Glass microfiber, | GC-TOF-MS/MS | - | [99] |
Empore™ SDB-XD, Empore™ AC | ||||||||
WW | 82 | - | 250 | SPE | Oasis HLB | LC–Q-TOF-MS | 66–149 | [100] |
SW | 35 | - | 100–500 | SPE | Oasis HLB | HPLC-MS/MS | 2–132 | [101] |
WW, SW | 10 | - | 50–100 | SPE innovative | Oasis MCX, Oasis MAX | LC-HRMS | 60–109 | [102] |
WW, SW | 10 | Sodium azide; | 200–1000 | Disk SPE | Atlantic HLB | HPLC-MS/MS | 48–122 | [103] |
ascorbic acid | ||||||||
WW, SW | 10 | Sodium azide | 200-1000 | SPE | Oasis HLB | HPLC-MS/MS | 1–110 | [103] |
ascorbic acid | ||||||||
WW | 17 | - | 250 | SPE | Oasis HLB | HPLC-MS/MS | <40% | [104] |
SW | 10 | Citric acid | 1000 | SPE | C18 | HPLC-MS/MS | 97–101 | [105] |
WW | 100 | - | 200 | SPE | UCT XRDAH | LC-Q-TOF-MS/MS | - | [106] |
Brand Name | Mechanism | Sorbent | Target |
---|---|---|---|
Oasis HLB, HLB Prime | RP | divinylbenzene-co-N-vinylpyrrolidone | acidic, basic, and neutral compounds |
STRATA-X | RP | styrene-divinylbenzene-co-N-vinylpyrrolidone | acidic, basic, and neutral compounds |
Cleanert PEP | RP | divinylbenzene-co-N-vinylpyrrolidone-Urea | acidic, basic, and neutral compounds |
Isolute ENV+ | RP | polystyrene-divinylbenzene (PS-DVB) | polar compounds |
Bond-Elut ENV | RP | polystyrene-divinylbenzene (PS-DVB) | polar compounds |
Chromabond HR-X | RP | polystyrene-divinylbenzene (PS-DVB) | polar compounds |
Oasis MCX | IC | mixed-mode CATION-exchange polymer-based | basic compounds, particularly strong bases |
Oasis WAX | IC | mixed-mode ANION-exchange sorbent polymer-based | acidic compounds |
Strata-X-CW | IC | mixed-mode CATION-exchange polymer-based | basic compounds, particularly strong bases |
Strata-X-AW | IC | mixed-mode ANION-exchange sorbent Polymer-based | acidic compounds |
Strata-X-Drug B | IC | mixed-mode strong CATION-exchange polymer-based | basic compounds, particularly strong bases |
UCT XRDAH | IC | mixed-mode CATION-exchange polymer-based | basic compounds, particularly strong bases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadutto, D.; Picó, Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules 2020, 25, 5204. https://doi.org/10.3390/molecules25215204
Sadutto D, Picó Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules. 2020; 25(21):5204. https://doi.org/10.3390/molecules25215204
Chicago/Turabian StyleSadutto, Daniele, and Yolanda Picó. 2020. "Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction" Molecules 25, no. 21: 5204. https://doi.org/10.3390/molecules25215204
APA StyleSadutto, D., & Picó, Y. (2020). Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules, 25(21), 5204. https://doi.org/10.3390/molecules25215204