Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review
Abstract
:1. Introduction
1.1. Green Analytical Chemistry
1.2. Overview of Sample Preparation Strategies and Their Impact on Analytical Methods Greenness
1.3. Solid-Phase Microextraction
1.3.1. Principles
1.3.2. Configurations
2. Introduction to the GAPI Method for Analytical Methods Greenness Evaluation
Description of Pictograms
3. SPME Methods Evaluation through GAPI Method
3.1. Interlaboratory Validation of a Thin-Film Microextraction Technique for Determination of Pesticides in Surface Water Samples
3.2. Fast and Robust Direct Immersion Solid-Phase Microextraction Coupled with Gas Chromatography–Time-Of-Flight Mass Spectrometry Method Employing a Matrix Compatible Fiber for Determination of Triazole Fungicides in Fruits
3.3. Comparison of Solid-Phase Microextraction to Solvent Extraction and QuEChERS for Quantitative Analysis of Veterinary Drug Residues in Chicken and Beef Matrices
3.4. Rapid and Concomitant Analysis of Pharmaceuticals in Treated Wastewater by Coated Blade Spray Mass Spectrometry
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998; p. 30. [Google Scholar]
- Constable, D.J.; Curzons, A.D.; Cunningham, V.L. Metrics to ‘green’ chemistry—Which are the best? Green Chem. 2002, 4, 521–527. [Google Scholar] [CrossRef]
- Gionfriddo, E. Green analytical solutions for sample preparation: Solid phase microextraction and related techniques. In Physical Sciences Reviews; Giamberini, M., Jastrząb, R., Liou, J.J., Luque, R., Nawab, Y., Saha, B., Tylkowski, B., Xu, C.-P., Cerruti, P., Ambrogi, V., et al., Eds.; De Gruyter: Berlin, Germany, 2020; pp. 1–15. ISBN 2365-659X. [Google Scholar]
- Van Aken, K.; Strekowski, L.; Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. 2006, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC—Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Keith, L.H.; Gron, L.U.; Young, J.L. Green analytical methodologies. Chem. Rev. 2007, 107, 2695–2708. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, E.; Cifuentes, A. Moving forward to greener extraction techniques. TrAC—Trends Anal. Chem. 2020, 122, 115698. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Cann, M.C.; Dickneider, T.A. Infusing the chemistry curriculm with green chemistry using real-world examples, web modules, and atom economy in organic chemistry courses. J. Chem. Educ. 2004, 81, 977–980. [Google Scholar] [CrossRef]
- Hjeresen, D.L.; Boese, J.M.; Schutt, D.L. Green Chemistry and Education. J. Chem. Educ. 2000, 77, 1543. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. Green Analytical Chemistry. TrAC Trends Anal. Chem. 2008, 27, 497–511. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; de la Guardia, M. Green extraction techniques in green analytical chemistry. TrAC Trends Anal. Chem. 2019, 116, 248–253. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G.A.; Alam, M.N.; Boyacl, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. [Google Scholar] [CrossRef] [PubMed]
- Silveira, G.D.O.; Pego, A.M.F.; Pereira, E.; Silva, J.; Yonamine, M. Green sample preparations for the bioanalysis of drugs of abuse in complex matrices. Bioanalysis 2019, 11, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Nalawade, S.P.; Picchioni, F.; Janssen, L.P.B.M. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Prog. Polym. Sci. 2006, 31, 19–43. [Google Scholar] [CrossRef] [Green Version]
- González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Evolution and applications of the QuEChERS method. TrAC Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- Bernardi, G.; Kemmerich, M.; Adaime, M.B.; Prestes, O.D.; Zanella, R. Miniaturized QuEChERS method for determination of 97 pesticide residues in wine by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Anal. Methods 2020, 12, 2682–2692. [Google Scholar] [CrossRef]
- Spietelun, A.; Kloskowski, A.; Chrzanowski, W.; Namieśnik, J. Understanding solid-phase microextraction: Key factors influencing the extraction process and trends in improving the technique. Chem. Rev. 2013, 113, 1667–1685. [Google Scholar] [CrossRef]
- Emmons, R.V.; Tajali, R.; Gionfriddo, E. Development, optimization and applications of thin film solid phase microextraction (TF-SPME) devices for thermal desorption: A comprehensive review. Separations 2019, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Olcer, Y.A.; Tascon, M.; Eroglu, A.E.; Boyaci, E. Thin film microextraction: Towards faster and more sensitive microextraction. TrAC Trends Anal. Chem. 2019, 113, 93–101. [Google Scholar] [CrossRef]
- Piri-Moghadam, H.; Alam, M.N.; Pawliszyn, J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal. Chim. Acta 2017, 984, 42–65. [Google Scholar] [CrossRef] [Green Version]
- Herrington, J.S.; German, A.G.; Myers, C.; Stidsen, G.; Bell, D.S. Hunting Molecules in Complex Matrices with SPME Arrows: A Review. Separations 2020, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Bojko, B.; Cudjoe, E.; Gomez-Rios, G.A.; Gorynski, K.; Jiang, R.; Reyes-Garces, N.; Risticevic, S.; Souza-Silva, E.A.; Togunde, O.; Vuckovic, D.; et al. SPME—Quo vadis? Anal. Chim. Acta 2012, 750, 132–151. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.; Jiang, R.; Pawliszyn, J. Thin-film microextraction offers another geometry for solid-phase microextraction. TrAC Trends Anal. Chem. 2012, 39, 245–253. [Google Scholar]
- Emmons, R.V.; Devasurendra, A.M.; Godage, N.H.; Gionfriddo, E. Exploring the Efficiency of Various Extraction Approaches for Determination of Crude (4-methylcyclohexyl)methanol (MCHM) Constituents in Environmental Samples Image. LC-GC N. Am. 2019, 37, 28. [Google Scholar]
- Emmons, R.V.; Liden, T.; Schug, K.A.; Gionfriddo, E. Optimization of Thin Film Solid Phase Microextraction and Data Deconvolution methods for accurate characterization of organic compounds in Produced Water. J. Sep. Sci. 2020, accepted. [Google Scholar] [CrossRef]
- Rodriguez-Lafuente, A.; Piri-Moghadam, H.; Lord, H.L.; Obal, T.; Pawliszyn, J. Inter-laboratory validation of automated SPME-GC/MS for determination of pesticides in surface and ground water samples: Sensitive and green alternative to liquid–liquid extraction. Water Qual. Res. J. Can. 2016, 51, 331–343. [Google Scholar] [CrossRef]
- Grandy, J.J.; Boyaci, E.; Pawliszyn, J. Development of a Carbon Mesh Supported Thin Film Microextraction Membrane As a Means to Lower the Detection Limits of Benchtop and Portable GC/MS Instrumentation. Anal. Chem. 2016, 88, 1760–1767. [Google Scholar] [CrossRef] [Green Version]
- Grandy, J.; Asl-Hariri, S.; Pawliszyn, J. Novel and emerging air-sampling devices. In Comprehensive Analytical Chemistry; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 209–235. [Google Scholar]
- Piri-Moghadam, H.; Gionfriddo, E.; Rodriguez-Lafuente, A.; Grandy, J.J.; Lord, H.L.; Obal, T.; Pawliszyn, J. Inter-laboratory validation of a thin film microextraction technique for determination of pesticides in surface water samples. Anal. Chim. Acta 2017, 964, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Souza-Silva, É.A.; Lopez-Avila, V.; Pawliszyn, J. Fast and robust direct immersion solid phase microextraction coupled with gas chromatography-time-of-flight mass spectrometry method employing a matrix compatible fiber for determination of triazole fungicides in fruits. J. Chromatogr. A 2013, 1313, 139–146. [Google Scholar] [CrossRef]
- Khaled, A.; Singh, V.; Pawliszyn, J. Comparison of Solid-Phase Microextraction to Solvent Extraction and QuEChERS for Quantitative Analysis of Veterinary Drug Residues in Chicken and Beef Matrices. J. Agric. Food Chem. 2019, 67, 12663–12669. [Google Scholar] [CrossRef] [PubMed]
- Poole, J.J.; Gómez-Ríos, G.A.; Boyaci, E.; Reyes-Garcés, N.; Pawliszyn, J. Rapid and Concomitant Analysis of Pharmaceuticals in Treated Wastewater by Coated Blade Spray Mass Spectrometry. Environ. Sci. Technol. 2017, 51, 12566–12572. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Lissemore, L.; Nguyen, B.; Kleywegt, S.; Yang, P.; Solomon, K. Determination of pharmaceuticals in environmental waters by liquid chromatography/electrospray ionization/tandem mass spectrometry. Anal. Bioanal. Chem. 2006, 384, 505–513. [Google Scholar] [CrossRef] [PubMed]
Principle | Green Chemistry [1] | Green Analytical Chemistry [5] |
---|---|---|
1 | Prevent waste production | Direct analysis should be used |
2 | Reactions are designed to be as efficient and atom economic as possible | Sample size and number should be minimized |
3 | Methods are modified to use fewer and less dangerous materials | When possible, analysis should take place in situ |
4 | Final products are as safe and sustainable as possible | Operations and analytical processes should be integrated to save resources |
5 | Methods are modified to use as few substances as possible, particularly solvents | When possible, analysis should be automated |
6 | Methods are energy efficient, conducted when possible at ambient temperature and pressure | Avoid derivatization |
7 | Materials should be sustainably or renewably sourced | Waste production should be minimized, proper waste management is essential |
8 | When possible, derivatization is avoided or decreased | When possible, the method should be optimized for use on multiple analytes to limit the amount of required testing |
9 | Selective catalytic reactions should be used in place of stoichiometric equivalents | Energy use should be minimal |
10 | Final products should be designed to degrade safely | Sustainable and renewable reagents are preferred |
11 | Waste production must be properly monitored | Safer reagents—less toxic, hazardous—are preferred |
12 | Procedures minimize danger and chemical accidents | Operator safety is paramount |
Organic Solvent Consumption | Energy Consumption | Time Consumption | Laboratory Waste | Reusability | Automation | |
---|---|---|---|---|---|---|
Soxhlet extraction | High | High | High | High | No | No |
Liquid–liquid | High | High | High | Medium | No | No |
Wet and dry ashing | High | High | High | Low | No | No |
Ultrasound-assisted extraction (UAE) | High | High | Low | Low | No | No |
Pressurized solvent extraction (PSE) | Low | High | Low | Low | No | Yes |
Microwave-assisted extraction (MAE) | None | High | Low | Low | No | Yes |
Supercritical fluid extraction (SFE) | None | High | Medium | Low | Yes | No |
QuEChERS | Medium | Low | Medium | High | No | Yes |
Miniaturized QuEChERS | Low | Low | Low | Medium | No | Yes |
Solid-phase extraction (SPE) | Medium | Low | Medium | High | Yes | Yes |
Solid-phase microextraction (SPME) | Low | Low | Medium | Low | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billiard, K.M.; Dershem, A.R.; Gionfriddo, E. Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review. Molecules 2020, 25, 5297. https://doi.org/10.3390/molecules25225297
Billiard KM, Dershem AR, Gionfriddo E. Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review. Molecules. 2020; 25(22):5297. https://doi.org/10.3390/molecules25225297
Chicago/Turabian StyleBilliard, Kayla M., Amanda R. Dershem, and Emanuela Gionfriddo. 2020. "Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review" Molecules 25, no. 22: 5297. https://doi.org/10.3390/molecules25225297
APA StyleBilliard, K. M., Dershem, A. R., & Gionfriddo, E. (2020). Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review. Molecules, 25(22), 5297. https://doi.org/10.3390/molecules25225297