Skip to Content
You are currently on the new version of our website. Access the old version .
MoleculesMolecules
  • Review
  • Open Access

14 November 2020

Health Effects of Grape Seed and Skin Extracts and Their Influence on Biochemical Markers

,
,
,
,
,
,
,
and
1
Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691-44 Lednice, Czech Republic
2
Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, 841-04 Bratislava, Slovakia
3
Faculty of Central European Studies, Institute for Teacher Training, Constantine the Philosopher University in Nitra, Drazovska 4, SK-949-74 Nitra, Slovakia
4
Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760-01 Zlin, Czech Republic
This article belongs to the Special Issue Bioproducts for Health

Abstract

This review is focused on the study of the effects of grape seed and skin extract (GSSE) on human health. GSSE contains high concentrations of important polyphenolic substances with high biological activity. This review is a summary of studies that investigate the effects of GSSE on diabetes mellitus, cardiovascular disease and cancer, its neuroprotective effect, and its effects on the gastrointestinal tract and other health complications related to these diseases. The results of the studies confirm that the anti-inflammatory, antiapoptotic, and pro-proliferative effects of “Vitis vinifera L.” seed extract reduce the level of oxidative stress and improve the overall lipid metabolism.

1. Introduction

The grapevine (Vitis vinifera L.) is an important cultivated plant that has long been studied due to its positive effects on consumer health. The seeds of this plant contain a wide range of biologically active components [1] that help to neutralize the adverse effects of free radicals. The high content of condensed flavan-3-ol or procyanidins, which are being investigated as one of the alternatives in the treatment of serious diseases, is particularly significant.
At the beginning of the 21st century, the health problems of developed countries rose to unbearable levels. The main causes of civilizational diseases include a lack of physical activity and poor lifestyle. With the growing awareness of diseases and the risks associated with them, more efforts are being made to prevent them. People are starting to take an interest in a healthy diet, and efforts toward maintaining mental and physical condition are improving [2]. New findings have highlighted insufficient intakes of substances that are contained mainly in plant components of food, which protect against the development of diseases other than cardiovascular disease and cancer [3]. These diseases are sometimes called “fruit and vegetable deficiency diseases.” [4]. According to the World Health Organization, these diseases are a major international problem and an important cause of cardiovascular disease and others. In recent years, there has been a growing interest in the study of biologically active components in fruits, vegetables, and other plant matrices.
Recently, the pharmaceutical and economic trends have focused on the search for new drugs in the field of secondary plant metabolites as substances for eliminating civilizational diseases. Thanks to the important biologically active components that the seeds of the grapevine (Vitis Vinifera L.) contain in their matrix, they can be used for medical purposes.
Grape seeds and skin are a significant source of polyphenolic substances (20–55%) [5]. Phenolic compounds contain a hydroxyl functional group (–OH) attached directly to a benzene ring (aromatic nucleus). Grape polyphenolics vary in chemical structure and activity and may be fundamentally categorized into two major classes: flavonoids and nonflavonoids. Flavonoids including anthocyanins, proanthocyanidins (procyanidins and prodelphinidins), and flavan-3-ols are distributed throughout the peel and seed [6]. In contrast, hydroxycinnamic acids, the most abundant non-flavonoids in wine, include caftaric acid and coutaric acid. The contents of individual polyphenolic substances depend on the grape variety [7].
A high content of proanthocyanidins in the seeds is rather important due to their positive effect on civilizational diseases [8,9,10,11]. Flavonoids contained in grapevine seeds show antibacterial and anxiolytic properties [12]. Nechita et al. [13] in their study on extracts originating from grapevine skins, seeds, grape pomace, and sediments mentioned their numerous pharmacological effects.
Grapevine seeds have high antioxidant potential; their beneficial effects include modulation of antioxidant enzyme expression, protection against oxidative damage in cells, anti-atherosclerotic and anti-inflammatory effects, and protection against certain types of cancer in both humans and animals. [14]
Almost 71.5% of the grapevine seed is dry matter. Water constitutes 28–44% of the total seed weight. However, grapevine seeds also contain a number of biologically active substances that, even in low concentrations, affect life processes, not only positively, but also negatively. These substances are isolated from natural sources, and they can differ significantly from each other in their structure. [15]
Numerous experiments have shown significant links between antioxidants, such as vitamins A and E and carotenoids (alpha-carotene, beta-carotene, xanthine, beta-cryptoxanthin, lycopene), and many acute diseases [16,17]. Grape seeds are a waste product in the wine sector, and the proper use of this waste product could lead to a new source of nutraceuticals. Vine seed oils are important common components of food, and growing evidence suggests that individual fatty acids from seeds may play different roles in human health, especially in the management of acute and chronic diseases [18,19]. Diets rich in specific fatty acids can potentially prevent many health problems or diseases. For example, omega-3 (n-3) unsaturated fatty acids help to prevent cancer, heart disease, hypertension, and autoimmune disorders. At present, consumers’ interest in improving their diet is increasing. These factors and others led to the development of the use of vegetable oils that have unique profiles of fatty acids and other useful ingredients, including phytosterols and natural antioxidants [20].
The novelty of this review is a comprehensive overview of the health effects of grape seed and skin extracts. Most civilizational diseases are caused by oxidative stress and inflammation, so the most important biomarkers, such as antioxidant activity, lipid peroxidation biomarkers, and anti-inflammatory biomarkers, have been studied.
The present study was based on a literature search in the databases Web of Science, PubMed, MEDLINE, Scopus, and Google Scholar. The findings of research studies chosen from more than 1000 viewed scientific publications were included/compared (about 85% of the articles were removed due to inconsistency regarding grape seed and skin extract (GSSE)). The search was based on keywords and phrases containing combinations of words such a biomarkers, bioactive compounds, phenolic composition of grapes, grape seeds, grape skin, and health effect. The present study primarily includes research findings from the years 2002–2020.

7. Obesity-Related Studies

Obesity, a disease called the 3rd millennium epidemic, is a global problem contributing to morbidity and mortality. The prevalence of adult obesity is 10–25% in most Western European countries and 20–25% in some countries in the Americas. Obesity is a condition in which the natural energy reserve, which is stored in adipose tissue, has risen above normal levels and is harmful to health. This can lead to oxidative stress and chronic inflammation. The affected organs are mainly the heart and liver; however, the brain can also be affected. The effect of a high-fat diet on the values of the biomarkers is shown in Figure 5. GSSE intake helps to decrease free fatty acids and triglycerides in blood and white adipose tissue, and thus reduce the harmful effects of a high-fat diet.
Figure 5. Increased ROS production in accumulated fat contributes to metabolic syndrome.
In a study carried out by researchers from the University of Tunisia, attention was focused on the protective effects of grape seed and husk extract on induced oxidative stress in the hearts and livers of Wistar rats. High doses of fat were used to induce obesity in rats. Subsequently, individual parameters were monitored in both sexes of rats, namely, increased body weight, increased relative liver weight, and increased relative heart weight. Fat doses caused the accumulation of triglycerides and total cholesterol, especially in the hearts of males and in the livers of both sexes. The conclusion of the study was that treatment with GSE effectively protects the monitored organs disturbed by doses of fat, regardless of gender [67].
Another study [68] analyzed the relationship between oxidative stress and cardiac dysfunction using an experimental model of HFD. The cardioprotective effect of grape seed and husk extract was studied in a rat model. The extract reduced all the harmful effects of HFD. Therefore, it can be stated that GSE has cardioprotective effects and appears to be a safe, natural remedy for obesity [68].
Charradi et al. [69] studied the protective effect of GSSE against oxidative brain damage in obese individuals. They investigated whether sex has an effect on brain damage in obesity, and if so, whether GSSE could have a protective effect. The conclusion of the experiment was that GSSE had the potential to alleviate the detrimental lipotoxic effect of HFD that occurred in the male brain and in the postmenopausal female brain.
In a study carried out by Caimari et al. [70] the beneficial effects of GSE, which was administered in low doses but contained a high proportion of procyanidins, were evaluated. The extract was studied in relation to body weight and fat storage in hamsters. The results showed a significant reduction in body weight gain in hamsters with the addition of GSE to the diet. Reduced weight of all white adipose tissue was noted, and a reduced obesity index was observed. Intake of procyanidin extract reversed the increase in plasma phospholipids induced by a higher-fat diet. Changes have been observed in lipid metabolic pathways. Administration of GSE resulted in lower levels of free fatty acids in plasma and further reduced lipids and accumulation of triglycerides in white adipose tissue. The conclusion of the experiment was that the use of the extract, even at low doses, protects against fat accumulation. Administration of the extract also improved the plasma lipid profile of the experimental animals [70].
Intake of GSSE resulted in the reduction of all the harmful effects caused by the administration of fats. The results indicate the great potential of this extract when used as a safe preparation against lipotoxic agents and as a prevention against fat-induced brain damage [11].
A study conducted by El Ayed [71] investigated the protective effect of GSSE against high fat-induced dishomeostasis in rat lungs. The study investigated the effects of HFD on changes in pulmonary oxidative stress and energy metabolism, and on the presumed protection provided by GSSE. It was characterized by GSSE composition determined by gas chromatography–mass spectrometry. The effect of HFD on the pulmonary oxidation state was also analyzed by assessing the levels of oxidation of lipids, non-protein thiols (NPSH), and superoxide anion. Furthermore, the effects of HFD on creatine kinase (CK), malate dehydrogenase (MDH), and mitochondrial complex IV were evaluated. The results showed that HFD induced pulmonary oxidative stress characterized by increased carbonylation, decreased NPSH, and inhibition of antioxidant activities of enzymes such as glutathione peroxidase. HFD also altered intracellular mediators of the lung, such as superoxide anion, and increased pulmonary xanthine oxidase activity. Furthermore, HFD caused copper and lead depletion from the lungs. HFD also reduced enzyme tyrosinase and reduced glutamine synthetase activity. Moreover, HFD altered pulmonary energy metabolism by increasing CK activity and reducing MDH and mitochondrial complex IV activity. Importantly, all these changes were effectively corrected with GSSE treatment. In conclusion, it can be stated that GSSE has the potential to alleviate the harmful lipotoxic effect of HFD on the lungs.
The aim of the research carried out by Ohiama et al. [72] was to determine whether GSE could protect male Rattus norvegicus against obesity caused by high doses of fats. Catechin and epicatechin were analyzed as the main components of the extract. GSE was able to suppress weight gain and adipose tissue weight in a Rattus norvegicus model with induced obesity. GSE further improved metabolic abnormalities and affected fatty acid oxidation in the liver. The study concluded that GSE, containing high concentrations of catechin and epicatechin, can improve the health of Rattus norvegicus with induced obesity [72].
An interesting study carried out by Charradi et al. [67] showed the great potential of treatment with GSE. The extract effectively protected the monitored organs, which were disrupted by doses of fat regardless of gender. GSE therefore appears to be a cardioprotective and safe remedy for obesity.
The results of a study conducted by Arora et al. [73] showed the effect of GSE on obesity caused by high doses of dietary fat in experimental animals. The study found significant effects on weight loss and food intake in rats given GSE. The results showed that the weights of the liver and adipose tissue were significantly lower in these rats than in those the group of experimental animals that did not receive the extract. Some other parameters, such as total cholesterol, high-density-lipoprotein cholesterol level, and glucose level, were significantly reduced. A histological study found that the lipid contents of the heart and liver were significantly lower in rats fed HFD and GSE than in those fed HFD alone. In conclusion, GSE may be beneficial in suppressing induced obesity [73].
Bashir et al. [74] studied the effect of GSE in combination with cadmium on the fat profiles of experimental rats. The aim was to determine whether GSE can reduce the levels of markers associated with obesity. Table 6 shows the changes in plasma lipid levels in control and experimental animals.
Table 6. Effects of GSE on cadmium-induced changes in the plasma lipid profiles of control and experimental rats (Bashir et al. [74]).
Plasma VLDL is metabolized to cholesteryl ester-enriched intermediate low-density lipoprotein (IDL) and LDL particles via hydrolysis of triglycerides by lipoprotein lipase (LPL) and hepatic lipase (HL). In addition, cholesteryl ester transfer protein (CETP) transfers CE from HDL to VLDL in exchange for triglyceride (TG) to HDL. Therefore, static measurements of cholesterol in the LDL pool (LDL-C) represent the steady state of production of VLDL, its metabolism to LDL, and the receptor-mediated clearance of LDL by the LDL receptor (LDLR) [75].
In a study conducted by Quesada et al. [76] rats were given PACs, which normalized triglycerides and plasma LDL-cholesterol (both parameters increased significantly with HFD) and also led to a tendency to reduce hypercholesterolemia. Gene expression analysis revealed that PACs suppressed both the expression of key hepatic regulators of lipogenesis and the assembly of VLDL, such as SREBP1, MTP, and DGAT2, all of which were overexpressed by HFD. The results of this study are summarized in Table 7.
Table 7. Plasma lipid levels in rats fed a standard diet, a high-fat diet, and a high-fat diet supplemented with proanthocyanidin extract (Quesada et al. [76]).
In Bashir et al.’s [74] study, GSE administration reduced plasma TG levels by 40%, total cholesterol (TC) levels by 13%, and LDL-C levels by 40%. Therefore, GSE is also an effective agent for reducing TG and LDL-C in HFD-associated dyslipidemia.
The aim of the study conducted by Park et al. [77] was to assess the effects of GSE on obesity in C57BL/6J mice. The effects of GSE supplementation on the serum and liver lipid concentrations of this experiment are shown in Table 8. Serum TG was significantly lower in the HFD + GSE group than in the HFD group. Serum TC was significantly higher in the HFD group than in the other groups. The ratio of serum HDL-cholesterol to HDL-cholesterol/TC was significantly higher in the HFD + GSE group than in the other groups. Hepatic TG and TC in the HD + GSE group were significantly lower than in the HFD group.
Table 8. Serum and liver lipid concentrations (Park et al. [77]).
The conclusion of the study conducted by Park et al. [77] was that GSE has beneficial effects and prevents some of the negative effects of HFD. It has been shown that GSE supplementation reduced weight gain, feed intake, TG, and TC in the serum and liver. The effects of GSE on induced obesity in mice suggest that GSE has potential anti-obesity effects and may alleviate obesity-related symptoms, including hyperlipidemia, cardiovascular disease, and insulin resistance.
The aims of the study carried out by Moreno et al. [78] were to evaluate the effects of GSE on fat-metabolizing enzymes, namely, pancreatic lipase, lipoprotein lipase and hormone-sensitive lipase, and to evaluate its potential use for the treatment of obesity. GSE rich in bioactive phytochemicals showed inhibitory activity on fat-metabolizing enzymes (pancreatic lipase and lipoprotein lipase), suggesting that GSE could be useful as a possible treatment to reduce fat absorption and fat accumulation in adipose tissue.
Zucker rats (fa/fa) were used in a previously unpublished experiment (conducted by the authors of this manuscript). It is a model of spontaneous genetic obesity that exhibits hyperphagia, hypercholesterolemia, hyperinsulinemia, and hyperlipidemia. These animals were given GSE (2 g/day) every day for 6 weeks. Subsequently, the animals were euthanized and markers related to lipid metabolism (triacylglycerides (TGC), HDL, LDL, and total cholesterol (TCH)) were analyzed from the blood plasma, and the glucose content (GL) was determined (Figure 6).
Figure 6. Concentration values: (A) TGC, (B) HDL, (C) LDL, (D) TCH, and (E) GL. C—control group, GSE—variant with the addition of GSE. The values of biochemical markers are expressed in mmol/L. The results of lipid metabolism showed significant changes in the values of TGC, LDL (p < 0.05), and glucose (p > 0.05). From these results, it can be stated that the administered extract has a positive effect on these monitored parameters. A: TGC p < 0.05; B: HDL p > 0.10; C: LDL p < 0.05; D: TCH p > 0.10; E: GL p > 0.05
An overview of obesity related studies is shown in Table 9.
Table 9. Results of obesity related studies.

8. Other Studies

Li et al. [79] investigated the anti-inflammatory effect and the mechanism of action of PACs from grape seeds in mice with induced ear swelling and in mice with carrageenan-induced hind paw oedema. The results showed that 10–40 mg/kg of PACs inhibited carrageenan-induced paw oedema and ear swelling in mice in a dose-dependent manner. Specifically, 10 mg/kg PACs reduced MDA content in inflamed paws; inhibited N-acetyl-beta-D-glucosaminidase (beta-NAG) activity; and reduced nitric oxide content, and radioactive immunoassay contents of IL-1 beta, TNF-alpha, and PGE2 in mice with paw oedema. The inhibitory effect of PACs on all the above indices was more pronounced than the effect of 2 mg/kg dexamethasone. In conclusion, PACs have an anti-inflammatory effect in mice. The mechanisms of the anti-inflammatory effect are relevant for scavenging oxygen free radicals, lipid peroxidation, and inhibiting the production of inflammatory cytokines [79].
Ras et al. [3] studied the effect of GSE on blood pressure in untreated hypertensive patients. Dietary polyphenols, such as grape products, can have beneficial effects on the cardiovascular system, including antihypertensive effects. The study examined the effect of a specific GSE rich in low molecular weight polyphenol compounds on outpatient blood pressure in untreated individuals with pre-hypertension and stage I hypertension. In addition, potential mechanisms that could have an effect on blood pressure and platelet aggregation were investigated. The study was designed as a double-blind, placebo-controlled, randomized, parallel, interventional study involving 70 healthy subjects with systolic blood pressure between 120 and 159 mm Hg. This was followed by an 8-week intervention period, during which subjects consumed capsules containing either 300 mg/day GSE or a placebo (microcrystalline cellulose). Urine and blood samples were taken before and after the period of consummation of capsules, and outpatient blood pressure values were measured. The mean baseline systolic blood pressure was 135.8 (SE 1.3) mm Hg and the mean diastolic blood pressure was 81.5 (SE 0.9) mm Hg. Blood pressure values were slightly affected by GSE polyphenols compared placebo with an effect of −3.0 mm Hg for systolic blood pressure and −1.4 mm Hg for diastolic blood pressure. Vasoactive markers such as endothelin-1, NO metabolites, and asymmetric dimethylarginine; plasma renin activity; and platelet aggregation were not affected by GSE consumption. The results show that consumption of GSE rich in polyphenols does not significantly reduce outpatient blood pressure in untreated individuals with pre-hypertension and stage I hypertension.
Martinez et al. [80] investigated the effect of the addition of GSE on gastrointestinal cleavage in vitro and on the AOC of meat emulsions. GSE was added as an antioxidant to turkey and pork emulsions with mechanically separated meat. AOC and lipid oxidation were measured in controls and emulsions supplemented with 0.5% GSE before and after in vitro gastric digestion. The results showed that gastric digestion increased the AOC of meat 8−11 times. Based on the data obtained, the addition of GSE (0.5%) to meat emulsions is sufficient to prevent lipid oxidation and improve the AOC of the emulsions [80].
Cakir et al. [81] examined grape seeds and their ability to protect the cholestatic liver against ischemia/reperfusion injury. Eighteen Wistar rats were divided into three groups. In the control and study groups, cholestasis was ensured by bile duct ligation. Oral administration of 50 mg/kg/day GSE was started 15 days before bile duct ligation and continued until the second operation in the study group. Serum, plasma, and liver samples were taken. Laboratory analysis, tissue glutation, and histopathological examination were performed, and MDA levels and MPO activity were observed. The results showed a significant reduction in hepatic glutathione levels, and significant increases in MDA levels and MPO activity were observed after ischemia/reperfusion injury in cholestatic rats. Serum and plasma levels were also significantly higher in the cholestatic ischemia/reperfusion injury group. Hepatic necrosis and fibrosis were found during histopathological examination. Oral administration of GSE altered all these parameters and histopathological findings, with the exception of serum bilirubin levels. In conclusion, oral treatment with GSE can improve liver function and relieve inflammation and oxidative stress in cholestatic ischemia/reperfusion injury [81].
A study carried out by Enginara [82] investigated the effects of grape extract on lipid peroxidation, its antioxidant activity, and lymphocytes in the blood of rats exposed to X-rays. The study was designed to evaluate supplementary extracts of grapes and vitamin E and their effectiveness in lipid peroxidation. The researcher also evaluated the blood in rats exposed to X-rays. Rats were divided into three groups. The control group (CG) received intraperitoneal (i.p.) physiological serum 1 mL/day (n = 10), the second group received i.p. vitamin E (VG) 50 mg/kg/day (n = 10), and the third group received grape extracts 50 mg /kg/day (n = 10). Four weeks later, rats were dosed with 6 Gy of radiation. Blood samples were taken 24 h after irradiation, and lymphocyte concentrations, MDA, reduced GSH, nitrate, nitrite, reduced ascorbic acid, retinol, beta-carotene, and ceruloplasmin concentrations were analyzed. Concentrations of GSH (p < 0.05), retinol (p < 0.001), beta-carotene (p < 0.05), and ceruloplasmin (p < 0.001) were found to be higher in the GSE group than in the control group, while MDA (p < 0.001) and nitrite concentrations (p < 0.05) in GSE-supplemented rats were lower than in the control group. The results show that GSE was able to increase the antioxidant status and reduce free radical-induced lipid peroxidation in blood samples from rats exposed to X-rays. The antioxidant effect of GSE administered to animals was more greater than that of vitamin E administered before whole body irradiation in rats [82].
Bagchi et al. [83] studied free radicals and PAC extract from grape seeds to determine their importance for human health and disease prevention. Free radicals are involved in more than a hundred disease states in humans, including arthritis, hemorrhagic shock, atherosclerosis, ischemia, Alzheimer’s disease, Parkinson’s disease, gastrointestinal dysfunction, carcinomas, and AIDS. The ability to scavenge free radicals as a function of the concentration or dose of the new IH636 GSPE was assessed in in vitro and in vivo models, and the ability of GSPE to scavenge free radicals was compared with the abilities of with vitamins C and E, and beta-carotene. These experiments showed that GSPE is highly bioavailable and provides significantly greater protection against free radicals, lipid peroxidation, and free radical-induced DNA damage than vitamins C and E and beta-carotene. GSPE has also been shown to be cytotoxic to some human cells. The comparative protective effects of GSPE and vitamins C and E on tobacco-induced oxidative stress and apoptotic cell death in human oral keratinocytes have been investigated. Oxidative tissue damage was determined by lipid peroxidation and DNA fragmentation, while apoptotic cell death was determined by flow cytometry. It was found that GSPE provides significantly better protection than vitamins C and E, both individually and in combination. GSPE has also shown excellent protection against liver and kidney damage by regulating the bcl-X-L gene and possibly reducing oxidative stress. In addition, GSPE has shown excellent protection against ischemic reperfusion injury of the myocardium and myocardial infarction in rats. Furthermore, GSPE application increases the sun protection factor in volunteers. Moreover, GSPE supplementation improves chronic pancreatitis in humans. These results indicate that GSPE provides excellent protection against oxidative stress and free radical-mediated tissue damage [83].
In 2017, Bialek et al. [84] investigated the effects of grape seed and pomegranate oil on fatty acid profiles and cholesterol contents in chickens. The aim of the study was to determine whether supplementing the chicken’s diet with grape seed oil or pomegranate oil would affect the cholesterol content and fatty acid profile of the liver. Ross 308 chickens (n = 24) were fed a diet enriched with grape seed oil (group G) or pomegranate oil (group P). The diet of the control group (group C) was based on soybean oil. Modification of chicken nutrition with grape seed oil and pomegranate oil affected the fatty acid profile in the liver. The presence of punic acid (cis-9, trans-11, cis-13 C18: 3) was detected. Furthermore, a significant amount of folic acid (cis-9, trans-11 C18: 2), the main isomer of conjugated linoleic acids, was found. Its natural sources in the diet are ruminant meat and milk; however, the addition of pomegranate oil and grape oil to chicken feed caused a significant increase in the fatty acids in the liver. This proves that punic acid is efficiently converted to rhomic acid. Grape seeds and pomegranate seeds, therefore, seem to be interesting feed supplements.
A study conducted in 2018 [85] investigated the effects of supplementing the diet with grape seeds on performance, carcass traits, plasma biochemistry, antioxidant status, and ileal microflora in broilers. Experimental diets included a diet without additives (control group) and three types of diet with the addition of grape seeds (10, 20, and 40 g/kg diet). The experiment lasted for 42 days. The addition of 20 g/kg to the basal diet increased final body weight and weight gain, improved the feed conversion ratio, and did not affect the feed intake. The addition of 20 g of grape seeds significantly (p < 0.05) increased the percentage of carcass yield. However, the addition of 40 g significantly reduced the percentage of abdominal fat in broilers. The physical properties of the meat and the chemical composition were not significantly affected by the modifications. Plasma protein, albumin, globulin, AST, and ALT concentrations were not significant in the grape seed groups compared with the control group. Grape seed broilers had lower levels of glucose, total lipids, triglycerides, and cholesterol compared with control broilers (p < 0.05). The addition of 40 g significantly (p < 0.05) increased the activities of reduced GSH, catalase, superoxide dismutase, and glutathione peroxidase. The ileal pH was not significantly affected. Broilers fed a diet supplemented with grape seeds had lower amounts of ileal Streptococcus spp. and populations of Escherichia coli, but higher amounts of Lactobacillus spp. (p < 0.05). No adverse effects on the health of broilers due to the use of grape seeds were identified. Therefore, they could be recommended as an addition to the broiler diet to improve performance, reduce blood lipids, increase AOC, and reduce harmful bacteria in the ileum [85].

9. Conclusions

Results of studies on the effects of GSSE confirm that a high dose of GSSE is a safe and effective antioxidant that can be further tested in clinical experiments for long-term maintenance of renal function. In diabetes mellitus, serious secondary complications are nephropathy, neuropathy, and retinopathy. Results of the studies also showed that oral feeding of grape seeds significantly alleviated renal dysfunction and pathological changes in diabetic mice.
The effects of PACs on the development of diabetic nephropathy in E-deficient mice were studied, and it was shown that in a group of mice for which PACs were added to the diet, high blood cholesterol levels were significantly reduced. Furthermore, renal function was restored, and this led to a reduction in albuminuria compared with the untreated group.
The anti-inflammatory, antiapoptotic, and pro-proliferative effects of Vitis vinifera L. seed extract on the livers of rats with induced type 2 diabetes mellitus were also confirmed. It has been found that the consumption of grapevine seeds improves the overall condition of the liver in rats with this disease. Oxidative stress and associated hyperlipidemia and hyperglycemia play important roles in the development of diabetic nephropathy.
Among other things, extracts of plant origin (including GSE) have inhibitory effects on alpha-amylase and alpha-glucosidase activity. These are important enzymes for the digestion of starch in humans.
In rabbits with high cholesterol, the effect of PAC-rich GSE, which alleviates the development of aortic atherosclerosis, was investigated. There were reductions in LDL-cholesterol and malondialdehyde when rabbits were fed with PAC-rich extract.
Moreover, grape seed procyanidins protect endothelial cells from peroxynitrite damage and improve endothelial relaxation in the human artery, providing new evidence for cardioprotection.
Regarding the use of GSSP extracts for the treatment of cancer, cytotoxicity and apoptotic cell death induced by extracts from the skins and seeds of Vitis vinifera L. on A431 skin cancer cells were investigated. Phytochemicals from Vitis vinifera L. can selectively target cancer cells and serve as potential antitumor agents providing better efficacy in killing cancer cells.
Furthermore, the chemopreventive potential of blue grape marc powder against colorectal cancer in HT-29 cells was investigated. The study evaluated the antiproliferative and antigenotoxic effects of grape marc powder against cancer of the prostate, colon, liver, and tongue.
Most of the protective biological effects of resveratrol are associated with its antioxidant, anti-inflammatory, and antiapoptotic properties and other indirect pathways. The continuing public interest and the growing availability of resveratrol on the market require an overview of available in vitro and in vivo experiments. Although resveratrol has shown potential for the treatment of stroke in laboratory animals and in in vitro studies in human cells, there is still a need for research in preclinical conditions. This review summarizes the findings on the neuroprotective potential of resveratrol in stroke with a focus on in vitro and in vivo experimental models and some proposed mechanisms of action. Dementia is a risk factor for obesity since fat can adversely affect the brain. GSE and peel can provide protection against high lipid dietary steatosis and increased oxidative stress. GSSE could therefore be used as a safe preparation against lipotoxic agents and as a preventative against brain damage caused by higher doses of lipids.
The gastrointestinal tract plays a central role in the absorption, distribution, metabolism, and excretion of flavonoids, which ultimately defines the health effects of these bioactive substances. These aspects are modulated by the interaction of flavonoids with other components of the diet, environmental factors, and hosts and microorganisms of the gastrointestinal tract. Flavonoids can protect the intestinal epithelium against pharmacological and food toxins, modulate the activity of enzymes involved in the absorption of lipids and carbohydrates, maintain the integrity of the intestinal barrier, modulate intestinal hormone secretion, modulate the immune system of the gastrointestinal tract, and develop potential anticarcinogenic activity in the intestine. PACs with a degree of polymerization greater than three remain unabsorbed in the gastrointestinal tract and accumulate in the intestinal lumen. Accordingly, the gastrointestinal tract can be considered a key organ for health. Moreover, PACs have antimicrobial effects that disrupt cariogenic or ulcerogenic pathogens in the mouth and stomach. An overview of these studies is shown in Table 10.
Table 10. Results of other GSSE studies.

Author Contributions

Conceptualization, L.S., B.P., M.B. and J.S.; writing, M.C., T.J., J.M., A.A. and S.N. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by project IGA-ZF/2020-AP006 and by project CZ.02.1.01/0.0/0.0/16_017/0002334 Research Infrastructure for Young Scientists.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

ALTalanine aminotransferase-tissue damage biomarker
AOCantioxidant capacity
ASTAspartate aminotransferase-tissue damage biomarker
CATcatalase-biomarker for oxidative stress
CaCo2 cellscolon cancer cells
CRCcolorectal cancer cells
GPxglucose peroxidase
GSEgrape seed extract
GSH glutathioneredox biomarker
GSPEgrape seed proanthocyanidin extract
GSSEgrape seed and skin extract
GJEsgrape juice extracts
HFDhigh-fat diet
HDLhigh density lipoprotein
IC50inhibitory concentration
LDHlactate dehydrogenase-tissue damage biomarker
LDLlow density lipoprotein
LPleucoselect phytosome
MDA malondialdehydelipid peroxidation marker
MPOmyeloperoxidase-biomarker for cardiovascular disease risk
NO-cGMPnitric oxide-cyclic guanosine monophosphate
NPSHnon-protein sulfhydryl
PACproanthocyanidine
PCRpolymerase chain reaction
ROSreactive oxygen species
SODsuperoxide dismutase-biomarker for oxidative stress
TBARSthiobarbituric acid reactive substances-biomarker of oxidative stress
TSCCtissue cell carcinoma

References

  1. Sochorova, L.; Prusova, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The Study of Antioxidant Components in Grape Seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef]
  2. McCormack, V.A.; Boffetta, P. Today’s lifestyles, tomorrow’s cancers: Trends in lifestyle risk factors for cancer in low- and middle-income countries. Ann. Oncol. 2011, 22, 2349–2357. [Google Scholar] [CrossRef] [PubMed]
  3. Ras, R.T.; Zock, P.L.; Zebregs, Y.; Johnston, N.R.; Webb, D.J.; Draijer, R. Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. Br. J. Nutr. 2013, 110, 2234–2241. [Google Scholar] [CrossRef] [PubMed]
  4. Leenders, M.; Sluijs, I.; Ros, M.M.; Boshuizen, H.C.; Siersema, P.D.; Ferrari, P.; Weikert, C.; Tjønneland, A.; Olsen, A.; Boutron-Ruault, M.C.; et al. Fruit and vegetable consumption and mortality: European prospective investigation into cancer and nutrition. Am. J. Epidemiol. 2013, 178, 590–602. [Google Scholar] [CrossRef] [PubMed]
  5. Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
  6. Garrido-Bañuelos, G.; Buica, A.; Schückel, J.; Zietsman, A.J.J.; Willats, W.G.T.; Moore, J.P.; Du Toit, W.J. Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: Vintage and ripeness effects. Food Chem. 2019, 278, 36–46. [Google Scholar] [CrossRef]
  7. Lu, Y.; Foo, L. The polyphenol constituents of grape pomace. Food Chem. 1999, 65, 1–8. [Google Scholar] [CrossRef]
  8. Al-Malki, A.L.; Sayed, A.A.R.; El Rabey, H.A. Proanthocyanidin Attenuation of Oxidative Stress and NF-kappa B Protects Apolipoprotein E-Deficient Mice against Diabetic Nephropathy. Evid.-Based Complement Altern. Med. 2013. [Google Scholar] [CrossRef]
  9. Blanch, M.; Alvarez, I.; Sanchez-Ballesta, M.T.; Escribano, M.I.; Merodio, C. Increasing Catechin and Procyanindin Accumulation in High-CO2-Treated Fragaria vesca Strawberries. J. Agric. Food Chem. 2012, 60, 7489–7496. [Google Scholar] [CrossRef]
  10. Hassan, H.A.; Al-Rawi, M.M. Grape seeds proanthocyanidin extract as a hepatic-reno-protective agent against gibberellic acid induced oxidative stress and cellular alterations. Cytotechnology 2013, 65, 567–576. [Google Scholar] [CrossRef]
  11. Charradi, K.; Elkahoui, S.; Karkouch, I.; Limam, F.; Ben Hassine, F.; Aouani, E. Grape Seed and Skin Extract Prevents High-Fat Diet-Induced Brain Lipotoxicity in Rat. Neurochem. Res. 2012, 37, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
  12. Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
  13. Nechita, A.; Cotea, V.V.; Nechita, C.B.; Pincu, R.R.; Mihai, C.T.; Colibaba, C.L. Study of Cytostatic and Cytotoxic Activity of Several Polyphenolic Extracts Obtained from Vitis vinifera. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 216–221. [Google Scholar] [CrossRef]
  14. Melow, S. Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. Trends Plants Sci. 2002, 34, 1395–1400. [Google Scholar]
  15. Lachman, J.; Sulc, M.; Faitova, K.; Pivec, V. Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. Int. J. Wine Res. 2009, 1. [Google Scholar] [CrossRef]
  16. Graat, J.M.; Schouten, E.G.; Kok, F.J. Effect of daily vitamin e and multivitamin-mineral supplementation on acute respiratory tract infections in elderly persons: A randomized controlled tria. J. Am. Med Assoc. 1997, 288, 715–721. [Google Scholar] [CrossRef]
  17. Tavani, A.; Negri, E.; D’Avanzo, B.; La Vecchia, C. Beta-carotene intake and risk of nonfatal acute myocardial infarction in women. Eur. J. Epidemiol. 1997, 13, 631–637. [Google Scholar] [CrossRef]
  18. Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef]
  19. Alkhedaide, A.; Alshehri, Z.S.; Sabry, A.; Abdel-Ghaffar, T.; Soliman, M.M.; Attia, H. Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Mol. Med. Rep. 2016, 13, 3101–3109. [Google Scholar] [CrossRef]
  20. Roche, H.M. Unsaturated fatty acids. Proc. Nutr. Soc. 1999, 58, 397–401. [Google Scholar] [CrossRef]
  21. Mansouri, E.; Panahi, M.; Ghaffari, M.A.; Ghorbani, A. Grape seed proanthocyanidin extract ameliorates albuminuria and renal sclerosis in experimental diabetic nephropathy rats. Asian Biomed. 2012, 6, 195–202. [Google Scholar] [CrossRef]
  22. Pourghassem-Gargari, B.; Abedini, S.; Babaei, H.; Aliasgarzadeh, A.; Pourabdollahi, P. Effect of supplementation with grape seed (Vitis vinifera) extract on antioxidant status and lipid peroxidation in patient with type II diabetes. J. Med. Plants Res. 2011, 5, 2029–2034. [Google Scholar]
  23. Okudan, N.; Bariskaner, H.; Gokbel, H.; Sahin, A.S.; Belviranli, M.; Baysal, H. The Effect of Supplementation of Grape Seed Proanthocyanidin Extract on Vascular Dysfunction in Experimental Diabetes. J. Med. Food 2011, 14, 1298–1302. [Google Scholar] [CrossRef] [PubMed]
  24. Lai, X.H.; Kang, X.C.; Zeng, L.M.; Li, J.; Yang, Y.; Liu, D.B. The protective effects and genetic pathways of thorn grape seeds oil against high glucose-induced apoptosis in pancreatic beta-cells. BMC Complement. Altern. Med. 2014, 14, 10. [Google Scholar] [CrossRef]
  25. Rashid, M.; Verhoeven, A.J.M.; Mulder, M.T.; Timman, R.; van Beek-Nieuwland, Y.; Athumani, A.A.; Zandbergen, A.A.M.; van der Wiel, H.E.; Sijbrands, E.J.G.; Berk, K.A. Use of monomeric and oligomeric flavanols in the dietary management of patients with type 2 diabetes mellitus and microalbuminuria (FLAVA trial): Study protocol for a randomized controlled trial. Trials 2018, 19. [Google Scholar] [CrossRef]
  26. Jin, H.Y.; Cha, Y.S.; Baek, H.S.; Park, T.S. Neuroprotective effects of Vitis vinifera extract on prediabetic mice induced by a high-fat diet. Korean J. Intern. Med. 2013, 28, 579–586. [Google Scholar] [CrossRef]
  27. Toker, H.; Yuce, H.B.; Alpan, A.L.; Gevrek, F.; Elmastas, M. Morphometric and histopathological evaluation of the effect of grape seed proanthocyanidin on alveolar bone loss in experimental diabetes and periodontitis. J. Periodontal Res. 2018, 53, 478–486. [Google Scholar] [CrossRef]
  28. Oueslati, N.; Charradi, K.; Bedhiafi, T.; Limam, F.; Aouani, E. Protective effect of grape seed and skin extract against diabetes-induced oxidative stress and renal dysfunction in virgin and pregnant rat. Biomed. Pharmacother. 2016, 83, 584–592. [Google Scholar] [CrossRef]
  29. Zhang, Z.; Li, B.-Y.; Li, X.-L.; Cheng, M.; Yu, F.; Lu, W.-D.; Cai, Q.; Wang, J.-F.; Zhou, R.-H.; Gao, H.-Q.; et al. Proteomic analysis of kidney and protective effects of grape seed procyanidin B2 in db/db mice indicate MFG-E8 as a key molecule in the development of diabetic nephropathy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 805–816. [Google Scholar] [CrossRef]
  30. Giribabu, N.; Karim, K.; Kilari, E.K.; Kassim, N.M.; Salleh, N. Anti-Inflammatory, Antiapoptotic and Proproliferative Effects of Vitis vinifera Seed Ethanolic Extract in the Liver of Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Male Rats. Can. J. Diabetes 2018, 42, 138–149. [Google Scholar] [CrossRef]
  31. Al-Zahrani, Y.A.; Sattar, M.A.A.A.; Alharthi, S.E.; Alkreathy, H.M. Neuroprotective role of vitamin D3 against insulin resistance and diabetic induced memory dysfunction in rats. Int. J. Pharmacol. 2019, 15. [Google Scholar] [CrossRef]
  32. Landmesser, U.; Dikalov, S.; Price, S.R.; McCann, L.; Fukai, T.; Holland, S.M.; Mitch, W.E.; Harrison, D.G. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Investig. 2003, 111, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
  33. Panickar, K.S. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol. Nutr. Food Res. 2013, 57, 34–47. [Google Scholar] [CrossRef] [PubMed]
  34. Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape Seed and Tea Extracts and Catechin 3-Gallates Are Potent Inhibitors of alpha-Amylase and alpha-Glucosidase Activity. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef]
  35. Badescu, L.; Badulescu, O.; Badescu, M.; Ciocoiu, M. Natural polyphenols improve the dislipidemy and eye complications in the experimental diabetes mellitus. Rom. Biotechnol. Lett. 2012, 17, 7397–7407. [Google Scholar]
  36. Irak, K.; Yildirim, S.; Mert, H.; Mert, N. Grape seed extract effects on serum amylase levels and immunohistochemical alterations in Streptozotocin-induced diabetic rats. Cell. Mol. Biol. 2018, 64, 92–97. [Google Scholar] [CrossRef]
  37. Zhang, B.; Zhang, Z.C.; Ji, H.; Shi, H.; Chen, S.Z.; Yan, D.L.; Jiang, X.W.; Shi, B.K. Grape seed proanthocyanidin extract alleviates urethral dysfunction in diabetic rats through modulating the NO-cGMP pathway. Exp. Ther. Med. 2018, 15, 1053–1061. [Google Scholar] [CrossRef]
  38. Zhou, K.Q.; Hogan, S.; Canning, C.; Sun, S. Inhibition of Intestinal alpha-Glucosidases and Anti-Postprandial Hyperglycemic Effect of Grape Seed Extract. In Emerging Trends in Dietary Components for Preventing and Combating Disease; Patil, B.S., Jayaprakasha, G.K., Murthy, K.N.C., Seeram, N.P., Eds.; Amer Chemical Soc: Washington, DC, USA, 2012; Volume 1093, pp. 431–441. [Google Scholar]
  39. Badavi, M.; Abedi, H.A.; Dianat, M.; Sarkaki, A. Exercise Training and Grape Seed Extract Co-administration Improve Endothelial Dysfunction of Mesenteric Vascular Bed in STZ-induced Diabetic Rats. Int. J. Pharmacol. 2011, 7, 813–820. [Google Scholar] [CrossRef]
  40. Yamakoshi, J.; Kataoka, S.; Koga, T.; Ariga, T. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 1999, 142, 139–149. [Google Scholar] [CrossRef]
  41. Pinchuk, I.; Lichtenburg, D. The mechanism of action of antioxidants against lipoprotein peroxidation, evaluatin based on kindetic experiments. Artherosclerosis 2002, 41, 279–314. [Google Scholar]
  42. Kris-Etherton, P.M.; Lefevre, M.; Beecher, G.R.; Gross, M.D.; Keen, C.L.; Etherton, T.D. Bioactive compounds in nutrition and health-research methodologies for establishing biological function: The antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu. Rev. Nutr. 2004, 24, 511–538. [Google Scholar] [CrossRef]
  43. Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef]
  44. Aldini, G.; Carini, M.; Piccoli, A.; Rossoni, G.; Facino, R.M. Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endothelium-dependent relaxation in human artery: New evidences for cardio-protection. Life Sci. 2003, 73, 2883–2898. [Google Scholar] [CrossRef]
  45. Nirmala, J.G.; Celsia, S.E.; Swaminathan, A.; Narendhirakannan, R.T.; Chatterjee, S. Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells. Cytotechnology 2018, 70, 537–554. [Google Scholar] [CrossRef] [PubMed]
  46. Drisko, J.; Chapmana, J.; Hunter, V. The use of antioxidant therapies during chemotherapy. Gynecol. Oncol. 2001, 88, 435–439. [Google Scholar] [CrossRef]
  47. Adriana, M.; Suciu, S.; Clichici, S.; Daicoviciu, D.; Pop, N.; Potescu, I.D. Study on the effects of grape seed extract in ehrlich ascitic carcinoma. In Bulletin of the University of Agricultural Sciences and Veterinary Medicine, Vol 63, 2006: Veterinary Medicine; Sestras, R., Ed.; Academic Press: Cluj-Napoca, Romania, 2006; Volume 63, pp. 114–119. [Google Scholar]
  48. Del Pino-Garcia, R.; Rivero-Perez, M.D.; Gonzalez-SanJose, M.L.; Ortega-Heras, M.; Lomillo, J.G.; Muniz, P. Chemopreventive Potential of Powdered Red Wine Pomace Seasonings against Colorectal Cancer in HT-29 Cells. J. Agric. Food Chem. 2017, 65, 66–73. [Google Scholar] [CrossRef]
  49. El-Elimat, T.; Jarwan, B.A.; Zayed, A.; Alhusban, A.; Syouf, M. Biochemical evaluation of selected grape varieties (Vitis vinifera L.) grown in Jordan and in vitro evaluation of grape seed extract on human prostate cancer cells. Food Biosci. 2018, 24, 103–110. [Google Scholar] [CrossRef]
  50. Chatelain, K.; Phippen, S.; McCabe, J.; Teeters, C.A.; O’Malley, S.; Kingsley, K. Cranberry and Grape Seed Extracts Inhibit the Proliferative Phenotype of Oral Squamous Cell Carcinomas. Evid.-Based Complement. Altern. Med. 2011, 2011, 467691. [Google Scholar] [CrossRef]
  51. Kaur, M.; Mandair, R.; Agarwal, R.; Agarwal, C. Grape seed extract induces cell cycle arrest and apoptosis in human colon carcinoma cells. Nutr. Cancer 2008, 60, 2–11. [Google Scholar] [CrossRef]
  52. Xue, B.; Lu, Q.-Y.; Massie, L.; Qualls, C.; Mao, J.T. Grape seed procyanidin extract against lung cancer: The role of microrna-106b, bioavailability, and bioactivity. Oncotarget 2018, 9, 15579–15590. [Google Scholar] [CrossRef]
  53. Engelbrecht, A.M.; Mattheyse, M.; Ellis, B.; Loos, B.; Thomas, M.; Smith, R.; Peters, S.; Smith, C.; Myburgh, K. Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett. 2007, 258, 144–153. [Google Scholar] [CrossRef] [PubMed]
  54. Hamza, A.A.; Heeba, G.H.; Elwy, H.M.; Murali, C.; El-Awady, R.; Amin, A. Molecular characterization of the grape seeds extract’s effect against chemically induced liver cancer: In vivo and in vitro analyses. Sci. Rep. 2018, 8, 16. [Google Scholar] [CrossRef] [PubMed]
  55. Valenzuela, M.; Bastias, L.; Montenegro, I.; Werner, E.; Madrid, A.; Godoy, P.; Parraga, M.; Villena, J. Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells. Evid.-Based Complement. Altern. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
  56. Yang, N.G.; Gao, J.; Cheng, X.; Hou, C.L.; Yang, Y.Y.; Qiu, Y.X.; Xu, M.R.; Zhang, Y.; Huang, S.S. Grape seed proanthocyanidins inhibit the proliferation, migration and invasion of tongue squamous cell carcinoma cells through suppressing the protein kinase B/nuclear factor-kappa B signaling pathway. Int. J. Mol. Med. 2017, 40, 1881–1888. [Google Scholar] [CrossRef]
  57. Iannone, M.; Mare, R.; Paolino, D.; Gagliardi, A.; Froiio, F.; Cosco, D.; Fresta, M. Characterization and in vitro anticancer properties of chitosan-microencapsulated flavan-3-ols-rich grape seed extracts. Int. J. Biol. Macromol. 2017, 104, 1039–1045. [Google Scholar] [CrossRef]
  58. Singh, N.; Agrawal, M.; Dore, S. Neuroprotective Properties and Mechanisms of Resveratrol in in Vitro and in Vivo Experimental Cerebral Stroke Models. ACS Chem. Neurosci. 2013, 4, 1151–1162. [Google Scholar] [CrossRef]
  59. Kim, H.; Deshane, J.; Barnes, S.; Meleth, S. Proteomics analysis of the actions of grape seed extract in rat brain: Technological and biological implications for the study of the actions of psychoactive compounds. Life Sci. 2006, 78, 2060–2065. [Google Scholar] [CrossRef]
  60. Yousef, M.I.; Khalil, D.K.A.M.; Abdou, H.M. Neuro- and nephroprotective effect of grape seed proanthocyanidin extract against carboplatin and thalidomide through modulation of inflammation, tumor suppressor protein p53, neurotransmitters, oxidative stress and histology. Toxicol. Rep. 2018, 5, 568–578. [Google Scholar] [CrossRef]
  61. Oteiza, P.I.; Fraga, C.G.; Mills, D.A.; Taft, D.H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Asp. Med. 2018, 61, 41–49. [Google Scholar] [CrossRef]
  62. Pinent, M.; Castell-Auvi, A.; Genovese, M.I.; Serrano, J.; Casanova, A.; Blay, M.; Ardevola, A. Antioxidant effects of proanthocyanidin-rich natural extracts from grape seed and cupuassu on gastrointestinal mucosa. J. Sci. Food Agric. 2016, 96, 178–182. [Google Scholar] [CrossRef]
  63. Sanchez-Patan, F.; Barroso, E.; van de Wiele, T.; Jimenez-Giron, A.; Martin-Alvarez, P.J.; Moreno-Arribas, M.V.; Martinez-Cuesta, M.C.; Pelaez, C.; Requena, T.; Bartolome, B. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chem. 2015, 183, 273–282. [Google Scholar] [CrossRef] [PubMed]
  64. Dulundu, E.; Ozel, Y.; Topaloglu, U.; Toklu, H.; Ercan, F.; Gedik, N.; Sener, G. Grape seed extract reduces oxidative stress and fibrosis in experimental biliary obstruction. J. Gastroenterol. Hepatol. 2007, 22, 885–892. [Google Scholar] [CrossRef] [PubMed]
  65. Cires, M.J.; Wong, X.; Carrasco-Pozo, C.; Gotteland, M. The Gastrointestinal Tract as a Key Target Organ for the Health-Promoting Effects of Dietary Proanthocyanidins. Front. Nutr. 2017, 3, 27. [Google Scholar] [CrossRef] [PubMed]
  66. Chedea, V.S.; Palade, L.M.; Marin, D.E.; Pelmus, R.S.; Habeanu, M.; Rotar, M.C.; Gras, M.A.; Pistol, G.C.; Taranu, I. Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols. Nutrients 2018, 10, 588. [Google Scholar] [CrossRef]
  67. Charradi, K.; Mahmoudi, M.; Elkahoui, S.; Limam, F.; Aouani, E. Grape seed and skin extract mitigates heart and liver oxidative damage induced by a high-fat diet in the rat: Gender dependency. Can. J. Physiol. Pharmacol. 2013, 91, 1076–1085. [Google Scholar] [CrossRef]
  68. Charradi, K.; Sebai, H.; Elkahoui, S.; Ben Hassine, F.; Limam, F.; Aouani, E. Grape seed extract alleviates high-fat diet-induced obesity and heart dysfunction by preventing cardiac siderosis. Cardiovasc. Toxicol. 2011, 11, 28–37. [Google Scholar] [CrossRef]
  69. Charradi, K.; Mahmoudi, M.; Bedhiafi, T.; Kadri, S.; Elkahoui, S.; Limam, F.; Aouani, E. Dietary supplementation of grape seed and skin flour mitigates brain oxidative damage induced by a high-fat diet in rat: Gender dependency. Biomed. Pharmacother. 2017, 87, 519–526. [Google Scholar] [CrossRef]
  70. Caimari, A.; del Bas, J.M.; Crescenti, A.; Arola, L. Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. Int. J. Obes. 2013, 37, 576–583. [Google Scholar] [CrossRef]
  71. El Ayed, M.; Kadri, S.; Mabrouk, M.; Aouani, E.; Elkahoui, S. Protective effect of grape seed and skin extract against high-fat diet-induced dyshomeostasis of energetic metabolism in rat lung. Lipids Health Dis. 2018, 17. [Google Scholar] [CrossRef]
  72. Ohyama, K.; Furuta, C.; Nogusa, Y.; Nomura, K.; Miwa, T.; Suzuki, K. Catechin-Rich Grape Seed Extract Supplementation Attenuates Diet-Induced Obesity in C57BL/6J Mice. Ann. Nutr. Metab. 2011, 58, 250–258. [Google Scholar] [CrossRef]
  73. Arora, P.; Ansari, S.; Nazish, I. Study of antiobesity effects of ethanolic and water extracts of grapes seeds. J. Complement. Integr. Med. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
  74. Bashir, N.; Manoharan, V.; Prabu, S.M. Cadmium Induced Cardiac Oxidative Stress in Rats and Its Attenuation by GSP through the Activation of Nrf2 Signaling Pathway. Chem. Biol. Interact. 2015, 242. [Google Scholar] [CrossRef]
  75. Linton, M.R.F.; Yancey, P.G.; Davies, S.S. The Role of Lipids and Lipoproteins in Atherosclerosis. In Feingold KR; MDText. com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK343489/ (accessed on 14 November 2020).
  76. Quesada, H.; del Bas, J.M.; Pajuelo, D.; Díaz, S.; Fernandez-Larrea, J.; Pinent, M.; Arola, L.; Salvadó, M.J.; Bladé, C. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int. J. Obes. 2009, 33, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
  77. Park, S.-H.; Park, T.-S.; Cha, Y.-S. Grape seed extract (Vitis vinifera) partially reverses high fat diet-induced obesity in C57BL/6J mice. Nutr. Res. Pract. 2008, 2, 227–233. [Google Scholar] [CrossRef]
  78. Moreno, D.A.; Ilic, N.; Poulev, A.; Brasaemle, D.L.; Fried, S.K.; Raskin, I. Inhibitory effects of grape seed extract on lipases. Nutrition 2003, 19, 876–879. [Google Scholar] [CrossRef]
  79. Li, W.G.; Zhang, X.Y.; Wu, Y.J.; Tian, X. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol. Sin. 2001, 22, 1117–1120. [Google Scholar]
  80. Martinez, J.; Nieto, G.; Castillo, J.; Ros, G. Influence of in vitro gastrointestinal digestion and/or grape seed extract addition on antioxidant capacity of meat emulsions. LWT-Food Sci. Technol. 2014, 59, 834–840. [Google Scholar] [CrossRef]
  81. Cakir, T.; Aslaner, A.; Tekeli, S.O.; Gunes, K.; Kinaci, E.; Dogan, U.; Tekeli, F.; Akyuz, C.; Koc, S.; Yilmaz, N. Grape seed protects cholestatic rats liver from ischemia/reperfusion injury. Acta Cir. Bras. 2016, 31, 183–189. [Google Scholar] [CrossRef]
  82. Enginar, H.; Cemek, M.; Karaca, T.; Unak, P. Effect of grape seed extract on lipid peroxidation, antioxidant activity and peripheral blood lymphocytes in rats exposed to X-radiation. Phytother. Res. 2007, 21, 1029–1035. [Google Scholar] [CrossRef]
  83. Bagchi, D.; Bagchi, M.; Stohs, S.J.; Das, D.K.; Ray, S.D.; Kuszynski, C.A.; Joshi, S.S.; Pruess, H.G. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology 2000, 148, 187–197. [Google Scholar] [CrossRef]
  84. Bialek, A.; Czerwonka, M.; Balek, M.; Lepionka, T.; Kaszperuk, K.; Banaszkiewicz, T.; Tokarz, A. Influence of pomegranate seed oil and grape seed oil on cholesterol content and fatty acids profile in livers of chickens. Acta Pol. Pharm. 2017, 74, 624–632. [Google Scholar] [PubMed]
  85. Abu Hafsa, S.H.; Ibrahim, S.A. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. J. Anim. Physiol. Anim. Nutr. 2018, 102, 268–275. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.