Larvicide Activity on Aedes aegypti of Essential Oil Nanoemulsion from the Protium heptaphyllum Resin
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Nanoemulsion Stability of Essential oil from P. heptaphyllum Resin
2.3. Larvicidal Activity of Nanoemulsions Prepared Using Essential Oil of P. heptaphyllum Resin
2.4. Residual Effect Results
3. Discussion
3.1. Chemical Composition and Yield of Essential Oil of P. heptaphyllum Resin
3.2. Stability of the Essential Oil Nanoemulsion of the P. heptaphyllum Resin
3.3. Larvicidal Evaluation of P. heptaphyllum Nanoemulsion in A. aegypti Larvae
3.4. Residual Larvicidal Effect of P. heptaphyllum Nanoemulsion
4. Materials and Methods
4.1. Resin Collection and Botanical Identification of P. heptaphyllum
4.2. Extraction of Essential Oil from P. heptaphyllum Resin
4.3. Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis
4.4. Preparation and Characterization of Nanoemulsion
4.5. Evaluation of the Larvicidal Activity of the Nanoemulsion
4.6. Evaluation of Residual Larvicidal Activity of the Nanoemulsion
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bandeira, P.N.; Machado, M.I.L.; Cavalcanti, F.S.; Lemos, T.L.G. Essential oil composition of leaves, fruits and resin of Protium heptaphyllum (Aubl.) March. J. Essent. Oil Res. 2001, 13, 33–34. [Google Scholar] [CrossRef]
- Albino, R.C.; Oliveira, P.C.; Prosdocimi, F.; da Silva, O.F.; Bizzo, H.R.; Gama, P.E.; Sakuragui, C.M.; Furtado, C.; de Oliveira, D.R. Oxidation of monoterpenes in Protium heptaphyllum oleoresins. Phytochemistry 2017, 136, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- Isman, M.B. Um renascimento para inseticidas botânicos? Pest Manag. Sci. 2015, 71, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.T.B.; Corrêa, A.G.; Vieira, P.C. Produtos naturais no controle de insetos. In Produtos Naturais No Controle de Insetos, 1st ed.; Edufscar: São Paulo, Brazil, 2001; p. 176. ISBN 9788585173517. [Google Scholar]
- Batista, R.W.C.; Carvalho, J.O.P. Efeito da exploração florestal nas populações de espécies arbóreas da família Burseraceae em uma floresta de terra firme, na região Paragominas, Belém, PA, Embrapá Amazônia. Orient. Comun. Técnico (INFOTECA-E) 2006, 4, 1517–2244. [Google Scholar]
- Vieira Júnior, G.M.; Carvalho, A.A.; Gonzaga, W.A.; Chaves, M.H. Cromatógrafo em coluna com resina de almécega: Um projeto para química orgânica experimental. Quim. Nova 2007, 30, 491–493. [Google Scholar] [CrossRef] [Green Version]
- Santiago, G.M.P.; Viana, F.A.; Pessoa, O.D.L.; Santos, R.P.; Pouliquen, Y.B.M.; Arriaga, A.M.C.; Braz-Filho, R. Avaliação da atividade larvicida de saponinas triterpênicas isoladas de Pentaclethra macroloba (Willd.) Kuntze (Fabaceae) e Cordia piauhiensis Fresen (Boraginaceae) sobre Aedes aegypti. Rev. Bras. Farmacogn. 2005, 15, 187–190. [Google Scholar] [CrossRef]
- Forgiarini, A.; Esquena, J.; Gonzalez, C.; Solans, C. Formation of nanoemulsions by low-energy emulsification methods at constant temperature. Langmuir 2001, 17, 2076–2083. [Google Scholar] [CrossRef]
- Fernandez, P.; André, V.; Rieger, J.; Kunle, A. Nano-emulsion formation by emulsion phase inversion. J. Colloids Surfaces 2004, 251, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solan, C. Formation and stability of nanoemulsions. J. Adv. Colloid Interface Sci. 2004, 303–318. [Google Scholar] [CrossRef]
- Capek, I. Degradation of kinetically-stable o/w emulsions. Rev. Adv. Colloid Interface Sci. 2004, 107, 125–155. [Google Scholar] [CrossRef]
- Oliveira, P.V.; Ferreira, J.C., Jr.; Moura, F.S.; Lima, G.S.; de Oliveira, F.M.; Oliveira, P.E.S.; Conserva, L.M.; Giulietti, A.M.; Lemos, R.P.L. Larvicidal activity of 94 extracts from ten plant species of northeastern of Brazil against Aedes aegypti L. (Diptera: Culicidae). Parasitol. Res. 2010, 107, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.É.A. Study of Essential Oils Extracted from Resins of the Species Protium spp. Master’s Thesis, Institute of Chemistry University of São Paulo (USP), São Carlos, Brazil, 2006; p. 159. [Google Scholar]
- Rüdiger, A.L. Phytochemical and Cytotoxic Study of Oleoresins from Burseraceae. Ph.D. Thesis, Federal University of Amazonas, Manaus, Brazil, 2012; p. 216. [Google Scholar]
- Siani, A.C.; Ramos, M.F.S.; Menezes-de-Lima, O., Jr.; Ribeiro, D.S.R.; Fernadez, F.E.; Soares, R.O.A.; Rosas, E.C.; Susunaga, G.S.; Guimaraes, A.C.; Zoghbi, M.G.B.; et al. Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. J. Ethnopharmacol. 1999, 66, 57–59. [Google Scholar] [CrossRef]
- Silva, J.R.A.; Zoghbi, M.G.B.; Pinto, A.C.; Godoy, R.L.O.; Amaral, A.C.F. Analysis of the Hexane Extracts: From Seven Oleoresins of Protium Species. J. Essent. Oil Res. 2009, 21, 305–308. [Google Scholar] [CrossRef]
- Marques, D.D.; Sartori, R.A.; Lemos, T.L.G.; Machado, L.L.; Souza, J.S.N.D.; Monte, F.J.Q. Chemical composition of the essential oils from two subspecies of Protium heptaphyllum. Acta Amazonica 2010, 40, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, D.S.; Pereira, T.A.; Maciel, N.R.; Bortoloto, J.; Viera, G.S.; Oliveira, G.C.; Rocha-Filho, P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments. J. Nanobiotechnol. 2011, 9, 44. [Google Scholar] [CrossRef]
- Forgiarini, A.; Esquena, J.; González, C.; Solans, C. Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. In Trends in Colloid and Interface Science, 14th ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 36–39. [Google Scholar] [CrossRef]
- Echeverría, J.; Albuquerque, R.D.D.G. Nanoemulsions of essencial oils: New tool for controlo f vector-Borne diseases and in vitro effects on some parasitic agentes. Medicines 2019, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, P.; Feng, J.; Esquena, J.; Tadros, T.F.; Dederen, J.C.; Garcia, M.J.; Solans, C. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. J. Colloid Interface Sci. 2005, 285, 388–394. [Google Scholar] [CrossRef]
- Bobadilla, M.; Zavala, F.; Sisniegas, M.; Zavaleta, G.; Mostacero, J.; Taramona, L. Evaluación larvicida de suspensiones acuosas de Annona muricata Linnaeus «guanábana» sobre Aedes aegypti Linnaeus (Diptera, Culicidae). Revista Peruana de Biología 2005, 12, 145–152. [Google Scholar] [CrossRef]
- Simas, N.K.; Lima, E.D.C.; Conceição, S.D.R.; Kuster, R.M.; Oliveira Filho, A.M.D.; Lage, C.L.S. Produtos naturais para o controle da transmissão da dengue: Atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quim. Nova 2004, 27, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated word Annual world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.I.; Park, C.; Ohh, M.H.; Cho, H.C.; Ahn, Y.J. Contact and fumigant activities of aromatic plant extracts and essential oils against Lasioderma serricorne (Coleoptera: Anobiidae). J. Stored Prod. Res. 2003, 39, 11–19. [Google Scholar] [CrossRef]
- Duarte, J.L.; Amado, J.R.R.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Ferreira, A.M.; Souto, R.N.P.; Falcão, D.Q.; Carvalho, J.C.T.; Fernandes, C.P. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev. Bras. Farmacogn. 2015, 25, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.E.M.F.M.; Bezerra, D.C.; Duarte, J.L.; Cruz, R.A.S.; Souto, R.N.P.; Ferreira, R.M.A.; Nogueira, J.; da Conceição, E.C.; Leitão, S.; Bizzo, H.R.; et al. Essential oil from Pterodon emarginatus as a promising natural raw material for larvicidal nanoemulsions against a tropical disease vector. Sustain. Chem. Pharm. 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Benelli, G.; Pavoni, L.; Zeni, V.; Ricciardi, R.; Cosci, F.; Cacopardo, G.; Gendusa, S.; Spinozzi, E.; Petrelli, R.; Cappellacci, L.; et al. Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana. Nanomaterials 2020, 10, 1867. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Kavallieratos, N.G.; Cappellacci, L.; Petrelli, R.; Maggi, F.; Benelli, G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest Sci. 2019, 92, 909–921. [Google Scholar] [CrossRef]
- Prophiro, J.S.; da Silva, M.A.N.; Kanis, L.A.; da Silva, B.M.; Duque-Luna, J.E.; da Silva, O.S. Evaluation of time toxicity, residual effect, and growth-inhibiting property of Carapa guianensis and Copaifera sp. in Aedes aegypti. Parasitol. Res. 2012, 110, 713–719. [Google Scholar] [CrossRef]
- Jesus, F.L.M.; de Almeida, B.F.; Duarte, J.L.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Souto, R.N.P.; Ferreira, R.M.A.; Kelmann, R.G.; Carvalho, J.C.T.; Guedes, A.C.L.; et al. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae) Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity. Evid. Based Complement. Altern. Med. 2017, 2017, 6756793. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R.; Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crops Prod. 2018, 113, 46–49. [Google Scholar] [CrossRef]
- Ostertag, F.; Weiss, J.; McClements, D.J. Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. J. Colloid Interface Sci. 2012, 388, 95–102. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Efficacy Testing of Mosquito Repellents for Human Skins; WHO: Geneva, Switzerland, 2009; pp. 4–18. [Google Scholar]
- Pontes, R.J.; Regazzi, A.C.; Lima, J.W.; Kerr-Pontes, L.R. Residual effect of ommercial applications of larvicides temefos and Bacillus thuringiensis israelensis on Aedes aegypti larvae in recipients with water renewal. Rev. Soc. Bras. Med. Trop. 2005, 38, 316–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peak | Compound | Retention Time | Percentage of Peak Area | Retention Index |
---|---|---|---|---|
1 | 2,4-Dimethylhept-1-ene | 4.498 | 0.77 | - |
2 | Bicyclo [3.1.0] hex-2-ene | 7.101 | 0.95 | 902 |
3 | α-Pinene | 7.382 | 22.31 | 948 |
4 | Camphene | 7.943 | 1.79 | 943 |
5 | Bicyclo [3.1.1] heptane | 9.025 | 4.43 | 943 |
6 | Cyclohexene | 9.233 | 1.03 | 959 |
7 | Bicyclo [4.1.0] heptane | 9.967 | 5.92 | 937 |
8 | Alpha Phellandrene | 10.243 | 6.76 | 969 |
9 | (+)-4-Carene | 10.695 | 2.67 | 919 |
10 | p-Cymene 3,7,7- | 11.106 | 27.70 | 1042 |
11 | Bicyclo Heptane | 11.225 | 8.27 | 937 |
12 | β-Phellandrene | 11.300 | 1.82 | 902 |
13 | Eucalyptol | 11.348 | 3.44 | 1059 |
14 | 2-Carene | 13.718 | 0.68 | 948 |
15 | (+)-2-Bornanone | 16.490 | 1.97 | 1121 |
16 | cis-Dihydro-α-terpineol | 16.734 | 3.93 | 1132 |
17 | Cyclosativene | 26.486 | 2.18 | 1125 |
18 | Caryophyllene | 28.602 | 0.62 | 1494 |
19 | Δ-cadinene | 32.116 | 1.28 | - |
20 | γ-Muurolene | 32.513 | 1.49 | 1435 |
100.01 |
Day | Particle Size (nm) | Polydispersity Index | Zeta Potential (mV) |
---|---|---|---|
0 | 109.7 ± 0.75 | 0.29 ± 0.007 | −21.7 ± 1.10 |
7 | 109.93 ± 0.97 | 0.28 ± 0.003 | −34.66 ± 3.15 |
14 | 115.56 ± 1.68 | 0.40 ± 0.005 | −29.63 ± 3.46 |
24 h | 48 h | p-Value | ||
---|---|---|---|---|
Nanoemulsion EO | LC50 (µg∙mL−1) | 2.91 (0.55–4.52) | 0.17 (−3.51–2.13) | <0.001 |
Nanoemulsion EO | LC90 (µg∙mL−1) | 12.44 (10.62–15.30) | 8.87 (7.23–11. 59) | <0.001 |
* Formulate Temephos | LC50 (µg∙mL−1) | 8.70 (7.00–10.20) |
Sample Availability: Samples of the compounds are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faustino, C.G.; de Medeiros, F.A.; Ribeiro Galardo, A.K.; Lobato Rodrigues, A.B.; Lopes Martins, R.; de Medeiros Souza Lima, Y.; Fechine Tavares, J.; Alves de Medeiros, M.A.; dos Santos Cruz, J.; Almeida, S.S.M.d.S.d. Larvicide Activity on Aedes aegypti of Essential Oil Nanoemulsion from the Protium heptaphyllum Resin. Molecules 2020, 25, 5333. https://doi.org/10.3390/molecules25225333
Faustino CG, de Medeiros FA, Ribeiro Galardo AK, Lobato Rodrigues AB, Lopes Martins R, de Medeiros Souza Lima Y, Fechine Tavares J, Alves de Medeiros MA, dos Santos Cruz J, Almeida SSMdSd. Larvicide Activity on Aedes aegypti of Essential Oil Nanoemulsion from the Protium heptaphyllum Resin. Molecules. 2020; 25(22):5333. https://doi.org/10.3390/molecules25225333
Chicago/Turabian StyleFaustino, Cleidjane Gomes, Fernando Antônio de Medeiros, Allan Kardec Ribeiro Galardo, Alex Bruno Lobato Rodrigues, Rosany Lopes Martins, Yuri de Medeiros Souza Lima, Josean Fechine Tavares, Marcos Antônio Alves de Medeiros, Jader dos Santos Cruz, and Sheylla Susan Moreira da Silva de Almeida. 2020. "Larvicide Activity on Aedes aegypti of Essential Oil Nanoemulsion from the Protium heptaphyllum Resin" Molecules 25, no. 22: 5333. https://doi.org/10.3390/molecules25225333
APA StyleFaustino, C. G., de Medeiros, F. A., Ribeiro Galardo, A. K., Lobato Rodrigues, A. B., Lopes Martins, R., de Medeiros Souza Lima, Y., Fechine Tavares, J., Alves de Medeiros, M. A., dos Santos Cruz, J., & Almeida, S. S. M. d. S. d. (2020). Larvicide Activity on Aedes aegypti of Essential Oil Nanoemulsion from the Protium heptaphyllum Resin. Molecules, 25(22), 5333. https://doi.org/10.3390/molecules25225333