Antiproliferative Homoleptic and Heteroleptic Phosphino Silver(I) Complexes: Effect of Ligand Combination on Their Biological Mechanism of Action
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Mixed-Ligand Silver Complexes
2.2. Synthesis and Characterization of Homoleptic Phosphino Silver Complexes
2.3. Cytotoxicity against Cultured Human Cancer Cells
2.4. Mechanistic Studies
3. Materials and Methods
3.1. Synthesis of Heteroleptic Silver Complexes
3.2. Synthesis and Characterization of Homoleptic Phosphino Silver Complexes
3.3. Experiments with Cultured Human Cancer Cells
3.3.1. Cell Cultures
3.3.2. MTT Assay
3.4. In Vitro TrxR1 Inhibition
3.5. Reactive Oxygen Species (ROS) Production
3.6. Quantification of Thiols
3.7. Mitochondrial Membrane Potential (ΔΨ)
3.8. Caspase-3 and -9 Activation
3.9. Transmission Electron Microscopy (TEM) Analyses
3.10. Comet Assay
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014, 114, 815–862. [Google Scholar] [CrossRef] [PubMed]
- Ott, I. On the medicinal chemistry of gold complexes as anticancer drugs. Coord. Chem. Rev. 2009, 253, 1670–1681. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Nurchi, V.M.; Zoroddu, M.A. Medical Uses of Silver: History, Myths, and Scientific Evidence. J. Med. Chem. 2019, 62, 5923–5943. [Google Scholar] [CrossRef] [PubMed]
- Banti, C.N.; Hadjikakou, S.K. Anti-proliferative and anti-tumor activity of silver(I) compounds. Metallomics 2013, 5, 569–596. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016, 327, 349–359. [Google Scholar] [CrossRef]
- Liang, X.X.; Luan, S.X.; Yin, Z.Q.; He, M.; He, C.L.; Yin, L.Z.; Zou, Y.F.; Yuan, Z.X.; Li, L.X.; Song, X.; et al. Recent advances in the medical use of silver complex. Eur. J. Med. Chem. 2018, 157, 62–80. [Google Scholar] [CrossRef]
- Bernersprice, S.J.; Johnson, R.K.; Giovenella, A.J.; Faucette, L.F.; Mirabelli, C.K.; Sadler, P.J. Antimicrobial and Anticancer Activity of Tetrahedral, Chelated, Diphosphine Silver(I) Complexes—Comparison with Copper and Gold. J. Inorg. Biochem. 1988, 33, 285–295. [Google Scholar] [CrossRef]
- McKeage, M.J.; Papathanasiou, P.; Salem, G.; Sjaarda, A.; Swiegers, G.F..; Waring, P.; Wild, S.B. Antitumor activity of gold(i), silver(i) and copper(i) complexes containing chiral tertiary phosphines. Met. Drugs 1998, 5, 217–223. [Google Scholar] [CrossRef]
- Santini, C.; Pellei, M.; Papini, G.; Morresi, B.; Galassi, R.; Ricci, S.; Tisato, F.; Porchia, M.; Rigobello, M.P.; Gandin, V.; et al. Marzano, In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands. J. Inorg. Biochem. 2011, 105, 232–240. [Google Scholar] [CrossRef]
- Berners-Price, S.J.; Collier, D.C.; Mazid, M.A.; Sadler, P.J.; Sue, R.E.; Wilkie, D. [Ag(I)(Et(2)PCH(2)CH(2)PPh(2))(2)]NO(3): An Antimitochondrial Silver Complex. Met. Drugs 1995, 2, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, S.; Jin, X.; Tan, X.; Lou, J.; Zhang, X.; Zhao, Y. Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species-mediated mitochondrial pathway. Eur. J. Med. Chem. 2014, 86, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Eloy, L.; Jarrousse, A.-S.; Teyssot, M.-L.; Gautier, A.; Morel, L.; Jolivalt, C.; Cresteil, T.; Roland, S. Anticancer Activity of Silver-N-Heterocyclic Carbene Complexes: Caspase-Independent Induction of Apoptosis via Mitochondrial Apoptosis-Inducing Factor (AIF). ChemMedChem 2012, 7, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Antoine, M.; Marchand, P.; Le Baut, G.; Czech, M.; Baasner, S.; Gunther, E. Side chain modifications of (indol-3-yl)glyoxamides as antitumor agents. J. Enzym. Inhib. Med. Chem. 2008, 23, 686–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, Y.; Yu, S.; Zhao, G. Recent advances in the development of thioredoxin reductase inhibitors as anticancer agents. Curr. Drug Targets 2012, 13, 1432–1444. [Google Scholar] [CrossRef]
- Gandin, V.; Pellei, M.; Marinelli, M.; Marzano, C.; Dolmella, A.; Giorgetti, M.; Santini, C. Synthesis and in vitro antitumor activity of water soluble sulfonate- and ester-functionalized silver(I) N-heterocyclic carbene complexes. J. Inorg. Biochem. 2013, 129, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Pellei, M.; Gandin, V.; Marinelli, M.; Marzano, C.; Yousufuddin, M.; Dias, H.V.R.; Santini, C. Synthesis and Biological Activity of Ester- and Amide-Functionalized Imidazolium Salts and Related Water-Soluble Coinage Metal N-Heterocyclic Carbene Complexes. Inorg. Chem. 2012, 51, 9873–9882. [Google Scholar] [CrossRef] [PubMed]
- Citta, A.; Schuh, E.; Mohr, F.; Folda, A.; Massimino, M.L.; Bindoli, A.; Casini, A.; Rigobello, M.P. Fluorescent silver(I) and gold(I)-N-heterocyclic carbene complexes with cytotoxic properties: Mechanistic insights. Metallomics 2013, 5, 1006–1015. [Google Scholar] [CrossRef]
- Porchia, M.; Dolmella, A.; Gandin, V.; Marzano, C.; Pellei, M.; Peruzzo, V.; Refosco, F.; Santini, C.; Tisato, F. Neutral and charged phosphine/scorpionate copper(I) complexes: Effects of ligand assembly on their antiproliferative activity. Eur. J. Med. Chem. 2013, 59, 218–226. [Google Scholar] [CrossRef]
- Gandin, V.; Tisato, F.; Dolmella, A.; Pellei, M.; Santini, C.; Giorgetti, M.; Marzano, C.; Porchia, M. In Vitro and in Vivo Anticancer Activity of Copper(I) Complexes with Homoscorpionate Tridentate Tris(pyrazolyl)borate and Auxiliary Monodentate Phosphine Ligands. J. Med. Chem. 2014, 57, 4745–4760. [Google Scholar] [CrossRef]
- Pettinarib, R.; Marchettib, F.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Petrelli, D.; Vitali, L.A.; Da Silva, M.F.C.G.; Martins, L.M.D.R.S.; Smoleński, P.; et al. Synthesis, Antimicrobial and Antiproliferative Activity of Novel Silver(I) Tris(pyrazolyl)methanesulfonate and 1,3,5-Triaza-7-phosphadamantane Complexes. Inorg. Chem. 2011, 50, 11173–11183. [Google Scholar] [CrossRef]
- Santini, C.; Lobbia, G.G.; Pettinari, C.; Pellei, M.; Valle, G.; Calogero, S. Syntheses and Spectroscopic and Structural Characterization of Silver(I) Complexes Containing Tertiary Phosphines and Hydrotris(pyrazol-1-yl)-, Hydrotris(4-bromopyrazol-1-yl)-, Hydrotris(3,5-dimethypyrazol-1-yl)-, and Hydrotris(3-methyl-2-thioxo-1-imidazolyl)borates. Inorg. Chem. 1998, 37, 890–900. [Google Scholar]
- Liu, C.W.; Pan, H.J.; Fackler, J.P.; Wu, G.; Wasylishen, R.E.; Shang, M.Y. Studies of [Ag(Pph(3))(2)]No3, [Ag(P(Ch2ch2cn)(3))(2)]No3 and [Ag(P(C(6)H(4)Me-M)(3))(2)]No3 by X-Ray-Diffraction and Solid-State Nuclear-Magnetic-Resonance. J. Chem. Soc. Dalton Trans. 1995, 3691–3697. [Google Scholar] [CrossRef]
- Britvin, S.N.; Lotnyk, A. Water-Soluble Phosphine Capable of Dissolving Elemental Gold: The Missing Link between 1,3,5-Triaza-7-phosphaadamantane (PTA) and Verkade’s Ephemeral Ligand. J. Am. Chem. Soc. 2015, 137, 5526–5535. [Google Scholar] [CrossRef] [PubMed]
- Muetterties, E.L.; Alegranti, C.W. Solution structure and kinetic study of metal-phosphine and-phosphite complexes. I. Silver (I) system. J. Am. Chem. Soc. 1972, 94, 6386–6391. [Google Scholar] [CrossRef]
- Meijboom, R.; Bowen, R.J.; Berners-Price, S.J. Coordination complexes of silver(I) with tertiary phosphine and related ligands. Coord. Chem. Rev. 2009, 253, 325–342. [Google Scholar] [CrossRef]
- Tisato, F.; Crociani, L.; Porchia, M.; Di Bernardo, P.; Endrizzi, F.; Santini, C.; Seraglia, R. The relationship between electrospray ionization behavior and cytotoxic activity of [M I (P) 4 ] + -type complexes (M = Cu, Ag and Au; P = tertiary phosphine). Rapid Commun. Mass Spectrom. 2013, 27, 2019–2027. [Google Scholar] [CrossRef]
- Endrizzi, F.; Di Bernardo, P.; Zanonato, P.L.; Tisato, F.; Porchia, M.; Isse, A.A.; Melchior, A.; Tolazzi, M. Cu(i) and Ag(i) complex formation with the hydrophilic phosphine 1,3,5-triaza-7-phosphadamantane in different ionic media. How to estimate the effect of a complexing medium. Dalton Trans. 2017, 46, 1455–1466. [Google Scholar] [CrossRef]
- Quaretti, M.; Porchia, M.; Tisato, F.; Trapananti, A.; Aquilanti, G.; Damjanovic, M.; Marchiò, L.; Giorgetti, M.; Tegoni, M. Thermodynamic stability and structure in aqueous solution of the [Cu(PTA)4]+ complex (PTA = aminophosphine-1,3,5-triaza-7-phosphaadamantane). J. Inorg. Biochem. 2018, 188, 50–61. [Google Scholar] [CrossRef]
- Tisato, F.; Marzano, C.; Peruzzo, V.; Tegoni, M.; Giorgetti, M.; Damjanovic, M.; Trapananti, A.; Bagno, A.; Santini, C.; Pellei, M.; et al. Insights into the cytotoxic activity of the phosphane copper(I) complex [Cu(thp)4][PF6]. J. Inorg. Biochem. 2016, 165, 80–91. [Google Scholar] [CrossRef]
- Carlotto, S.; Bonna, A.M.; Bossak-Ahmad, K.; Bal, W.; Porchia, M.; Casarin, M.; Tisato, F. Coordinative unsaturated CuI entities are crucial intermediates governing cell internalization of copper. A combined experimental ESI-MS and DFT study. Metallomics 2019, 11, 1800–1804. [Google Scholar] [CrossRef]
- Andrews, P.; Murphy, M.P.; Howell, S.B. Differential potentiation of alkylating and platinating agent cytotoxicity in human ovarian carcinoma cells by glutathione depletion. Cancer Res. 1985, 45, 6250–6253. [Google Scholar] [PubMed]
- Gandin, V.; Fernandes, A.P. Metal- and Semimetal-Containing Inhibitors of Thioredoxin Reductase as Anticancer Agents. Molecules 2015, 20, 12732–12756. [Google Scholar] [CrossRef] [PubMed]
- Scalcon, V.; Bindoli, A.; Rigobello, M.P. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free. Radic. Biol. Med. 2018, 127, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Gandin, V.; Fernandes, A.P.; Rigobello, M.P.; Dani, B.; Sorrentino, F.; Tisato, F.; Björnstedt, M.; Bindoli, A.; Sturaro, A.; Rella, R.; et al. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem. Pharmacol. 2010, 79, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.; Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998, 17, 2596–2606. [Google Scholar] [CrossRef] [Green Version]
- Hatai, T.; Matsuzawa, A.; Inoshita, S.; Mochida, Y.; Kuroda, T.; Sakamaki, K.; Kuida, K.; Yonehara, S.; Ichijo, H.; Takeda, K. Execution of Apoptosis Signal-regulating Kinase 1 (ASK1)-induced Apoptosis by the Mitochondria-dependent Caspase Activation. J. Biol. Chem. 2000, 275, 26576–26581. [Google Scholar] [CrossRef] [Green Version]
- Daigle, D.J.; Decuir, T.J.; Robertson, J.B.; Darensbourg, D.J. 1,3,5-Triaza-7-Phosphatricyclo[3.3.1.1(3,7)]Decane and Derivatives. Inorg. Synth. 1998, 32, 40–45. [Google Scholar]
- Darensbourg, D.J.; Ortiz, C.G.; Kamplain, J.W. A New Water-Soluble Phosphine Derived from 1,3,5-Triaza-7-phosphaadamantane (PTA), 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane. Structural, Bonding, and Solubility Properties. Organometallics 2004, 23, 1747–1754. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Yarbrough, J.C.; Lewis, S.J. 2-Thia-1,3,5-triaza-7-phosphaadamantane 2,2-Dioxide (PASO2). Comparative Structural and Reactivity Investigation with the Water-Soluble Phosphine Ligand 1,3,5-triaza-7-phosphaadamantane (PTA). Organometallics 2003, 22, 2050–2056. [Google Scholar] [CrossRef]
- Bowmaker, G.A.; Kildea, J.D.; Skelton, B.W.; White, A.H. Mixed-Halide Iodoargentate Anions—The Structural Characterization of (Ag3i3cl)-, (Ag3i3br)-, (Ag3i3i). Aust. J. Chim. 1990, 43, 2113–2117. [Google Scholar] [CrossRef]
- Engelhardt, L.M.; Pakawatchai, C.; White, A.H.; Healy, P.C. Lewis-Base Adducts of Group-1b Metal(I) Compounds.13. Crystal-Structure Determinations of Tetrakis(Triphenylphosphine)-Copper(I) and Tetrakis(Triphenylphosphine)-Silver(I) Perchlorates, Bis(Pyridine)Bis(Triphenyl-Phosphine)Copper(I) Perchlorate, (2,2′-Bipyridyl)Bis(Triphenyl-Phosphine)Copper(I) Perchlorate, and Tetrahydroboratobis-(Triphenylphosphine)Copper(I) Pyridine (1/0.5)E. J. Chem. Soc. Dalton Trans. 1985, 125–133. [Google Scholar]
- Alley, M.C.; A Scudiero, D.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988, 48, 589–601. [Google Scholar] [PubMed]
- Rigobello, M.P.; Gandin, V.; Folda, A.; Rundlöf, A.-K.; Fernandes, A.P.; Bindoli, A.; Marzano, C.; Björnstedt, M. Treatment of human cancer cells with selenite or tellurite in combination with auranofin enhances cell death due to redox shift. Free Radic. Biol. Med. 2009, 47, 710–721. [Google Scholar] [CrossRef] [PubMed]
Δδ(31P ) ppm (CDCl3) | Δδ(31P ) ppm (DMSO) | |
---|---|---|
[HB(pz)3]Ag(PTA) (1) | 20.5 * (605) | 23.8 |
[HB(pz)3]Ag(DAPTA) (2) | 23.1 | 24.7 * (605) |
[HB(pz)3]Ag(PTA-SO2)(3) | 24.4 | 26.6 |
[HB(pz)3]Ag(PCN) (4) | 35.0 *(635) | 31.9 * (664) |
[HB(pz)3]Ag(PPh3) (5) | 22.8 ** (1J(P, 107Ag) = 613 Hz, 1J(P, 109Ag) = 692 Hz) | 20.8 * (ca 680) |
Compound | IC50 (µM) ± S.D. | |||||
---|---|---|---|---|---|---|
BxPC3 | HCT-15 | MCF-7 | A431 | A375 | A549 | |
[HB(pz)3]Ag(PTA) (1) | 6.6 ± 2.8 | 8.5 ± 1.8 | 6.5 ± 3.1 | 10.3 ± 1.0 | 8.1 ± 1.0 | 5.1 ± 1.2 |
[HB(pz)3]Ag(DAPTA) (2) | 7.6 ± 2.3 | 7.6 ± 2.0 | 7.4 ± 4.1 | 6.7 ± 1.3 | 9.2 ± 0.1 | 7.5 ± 0.1 |
[HB(pz)3]Ag(PTA-SO2) (3) | 5.1 ± 1.4 | 7.4 ± 2.2 | 5.1 ± 1.7 | 4.5 ± 1.2 | 5.2 ± 2.1 | 8.3 ± 2.0 |
[HB(pz)3]Ag(PCN) (4) | 5.6 ± 1.9 | 3.3 ± 1.2 | 5.1 ± 1.4 | 2.9 ± 1.0 | 8.9 ± 2.5 | 4.1 ± 1.0 |
[HB(pz)3]Ag(PPh3) (5) | 4.4 ± 1.6 | 2.1 ± 0.6 | 2.9 ± 1.0 | 1.5 ± 0.5 | 2.2 ± 0.7 | 2.1 ± 0.6 |
[Ag(PTA)4]BF4 (6) | 13.2 ± 2.2 | 10.2 ± 3.1 | 11.5 ± 1.8 | 9.3 ± 2.2 | 8.2 ± 4.1 | 10.2 ± 2.5 |
[Ag(DAPTA)4]BF4 (7) | 7.5 ± 3.2 | 16.2 ± 7.2 | 11.3 ± 2.2 | 11.2 ± 2.1 | 9.1 ± 2.2 | 8.5 ± 3.3 |
[Ag(PTA-SO2)4]BF4 (8) | 5.3 ± 5.5 | 17.7 ± 4.6 | 12.2 ± 1.6 | 4.1 ± 1.2 | 6.3 ± 3.3 | 13.2 ± 2.5 |
[Ag(PCN)2]BF4 (9) | 3.1 ± 1.6 | 3.6 ± 1.1 | 4.0 ± 1.0 | 2.9 ± 0.5 | 5.3 ± 1.1 | 5.5 ± 1.6 |
[Ag(PPh3)4]BF4 (10) | 3.1 ± 0.8 | 3.4 ± 1.0 | 5.1 ± 1.2 | 2.0 ± 0.5 | 3.2 ± 1.1 | 3.0 ± 1.0 |
PTA | >100 | >100 | >100 | >100 | >100 | >100 |
DAPTA | 89.5 ± 4.1 | 67.1 ± 3.1 | 85.3 ± 4.0 | >100 | >100 | >100 |
PCN | >100 | >100 | >100 | >100 | >100 | >100 |
PPh3 | 62.2 ± 2.2 | 54.1 ± 4.2 | 34.2 ± 3.4 | 47.5 ± 1.1 | 52.3 ± 2.5 | 30.1 ± 2.1 |
PTA-SO2 | >100 | >100 | 69.5 ± 3.4 | 56.0 ± 3.5 | >100 | >100 |
Na(HBpz3) | 97.4 ± 2.2 | 77.6 ± 2.0 | >100 | 40.4 ± 1.4 | 66.9 ± 2.3 | >100 |
Cisplatin | 10.2 ± 1.7 | 15.5 ± 2.5 | 7.6 ± 3.0 | 2.1 ± 0.4 | 4.0 ± 1.0 | 8.4 ± 0.9 |
Compound | IC50 (µM) ± D.S. | ||
---|---|---|---|
2008 | C13* | RF | |
[HB(pz)3]Ag(PTA) (1) | 6.7 ± 3.2 | 7.4 ± 1.5 | 1.1 |
[HB(pz)3]Ag(DAPTA) (2) | 8.9 ± 4.2 | 8.4 ± 1.3 | 0.9 |
[HB(pz)3]Ag(PTA-SO2) (3) | 6.3 ± 1.1 | 5.6 ± 1.4 | 0.9 |
[HB(pz)3]Ag(PCN) (4) | 7.8 ± 2.4 | 6.5 ± 1.8 | 0.9 |
[HB(pz)3]Ag(PPh3) (5) | 2.02 ± 1.2 | 2.1 ± 1.5 | 1.0 |
[Ag(PTA)4]BF4 (6) | 9.23 ± 2.0 | 10.9 ± 3.5 | 1.2 |
[Ag(DAPTA)4]BF4 (7) | 10.3 ± 3.1 | 13.4 ± 2.4 | 1.3 |
[Ag(PTA-SO2)4]BF4 (8) | 13.2 ± 2.5 | 16.3 ± 3.3 | 1.2 |
[Ag(PCN)2]BF4 (9) | 3.1 ± 0.6 | 4.1 ± 1.1 | 1.3 |
[Ag(PPh3)4]BF4 (10) | 4.2 ± 0.8 | 6.1 ± 1.3 | 1.4 |
Cisplatin | 2.3 ± 1.1 | 21.5 ± 3.0 | 9.5 |
Compound | IC50 (nM) |
---|---|
[HB(pz)3]Ag(PTA) (1) | 2.8 |
[HB(pz)3]Ag(DAPTA) (2) | 3.5 |
[HB(pz)3]Ag (PTA-SO2) (3) | 2.6 |
[HB(pz)3]Ag(PCN) (4) | 2.7 |
[HB(pz)3]Ag(PPh3) (5) | 3.3 |
[Ag(PTA)4]BF4 (6) | 9.3 |
[Ag(DAPTA)4]BF4 (7) | 7.2 |
[Ag(PTA-SO2)4]BF4 (8) | 16.8 |
[Ag(PCN)2]BF4 (9) | 2.4 |
[Ag(PPh3)4]BF4 (10) | 3.2 |
AgNO3 | 2.4 |
Auranofin | 0.8 |
Sample Availability: Samples of the compounds are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dammak, K.; Porchia, M.; De Franco, M.; Zancato, M.; Naïli, H.; Gandin, V.; Marzano, C. Antiproliferative Homoleptic and Heteroleptic Phosphino Silver(I) Complexes: Effect of Ligand Combination on Their Biological Mechanism of Action. Molecules 2020, 25, 5484. https://doi.org/10.3390/molecules25225484
Dammak K, Porchia M, De Franco M, Zancato M, Naïli H, Gandin V, Marzano C. Antiproliferative Homoleptic and Heteroleptic Phosphino Silver(I) Complexes: Effect of Ligand Combination on Their Biological Mechanism of Action. Molecules. 2020; 25(22):5484. https://doi.org/10.3390/molecules25225484
Chicago/Turabian StyleDammak, Khouloud, Marina Porchia, Michele De Franco, Mirella Zancato, Houcine Naïli, Valentina Gandin, and Cristina Marzano. 2020. "Antiproliferative Homoleptic and Heteroleptic Phosphino Silver(I) Complexes: Effect of Ligand Combination on Their Biological Mechanism of Action" Molecules 25, no. 22: 5484. https://doi.org/10.3390/molecules25225484
APA StyleDammak, K., Porchia, M., De Franco, M., Zancato, M., Naïli, H., Gandin, V., & Marzano, C. (2020). Antiproliferative Homoleptic and Heteroleptic Phosphino Silver(I) Complexes: Effect of Ligand Combination on Their Biological Mechanism of Action. Molecules, 25(22), 5484. https://doi.org/10.3390/molecules25225484