Recent Advances in the Semisynthesis, Modifications and Biological Activities of Ocotillol-Type Triterpenoids
Abstract
:1. Introduction
2. Semisynthesis of Ocotillol-Type Compounds
3. Pharmacological Activities and Chemistry
3.1. Antibacterial Effects
3.2. Anti-Inflammatory Activities of Ocotillol-Type Derivatives
3.3. Anticancer Effects of Ocotillol-Type Derivatives
3.4. Reversal of Multidrug Resistance in Cancer by Ocotillol-Type Derivatives
3.5. Nervous System Effects of Ocotillol-Type Derivatives
3.6. Effects of Ocotillol-Type Derivatives on the Cardiovascular System
3.7. Other Pharmacological Activities of Ocotillol-Type Derivatives
4. Conclusions and Future Perspectives
- (1)
- Rational design of new ocotillol-type derivatives with increased water solubility, good ADME. For example, through polyethylene glycol modification or preparation techniques such as micronization, solid dispersion, self-microemulsion, inclusion techniques, etc., to improve water solubility. Formulation design of sustained- or controlled-release system should be used to maintain an effective blood concentration and decrease side effects.
- (2)
- Ocotillol, an active ingredient in ginseng, has already been proved to have multiple pharmacological activities; however, its precise molecular targets that responsible for the potent biological activity are currently not well understood. Therefore, it is important to further design and synthesize a new ocotillol-type probe to explore possible mechanisms and identify the molecular target.
- (3)
- Currently, there is still much chemical space to be explored. The main chemical modifications performed to date have focused on the hydroxyl groups on ring A, while the skeleton structures and ring C modifications have been limited.
- (4)
- As many of the current studies are limited to in vitro studies, whether ocotillol is effective in vivo must be validated in the future.
- (5)
- Combination drugs have various significant advantages, including production additive or synergistic effects, reducing side effects, treatment failure rates and slow down the development of drug resistance [103]. The development of ocotillol-based combination drugs would be a useful strategy. For example, the combination of ocotillol with other antibacterial drugs to reduce treatment failure rates.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.X.; Yang, M.H.; Zhang, M.; Jia, M. Rapid discrimination of commercial American ginseng and Asian ginseng according to diols composition using a colorimetric sensor array. Sens. Actuators B Chem. 2019, 294, 48–54. [Google Scholar] [CrossRef]
- Williamson, E.M.; Liu, X.; Izzo, A.A. Trends in use, pharmacology and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2019, 177, 1227–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, Y.; Yang, X.; Zhang, T.T.; Liu, Z.Y.; Zhang, X.C.; Lu, J.; Cheng, K.G.; Xu, J.Y.; Wang, H.B.; Lv, G.Y. Design, synthesis, nitric oxide release and antibacterial evaluation of novel nitrated ocotillol-type derivatives. Eur. J. Med. Chem. 2015, 101, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.W.; Wang, C.Z.; Yuan, C.S. Ginsenosides from american ginseng: Chemical and pharmacological diversity. Phytochemistry 2011, 72, 689–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Xu, Y.R.; Yang, J.J.; Wang, W.Z.; Zhang, J.Q.; Zhang, R.M.; Meng, Q.G. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J. Ginseng. Res. 2017, 41, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Fu, L.W.; Li, N.; Tang, W.X.; Li, M.J.; Hasegawa, T.; Ogura, H.; Kataoka, T.; Hirose, K.; Ando, M. The ursane-, oleanane-, dammarane-, lupene-, and taraxasterane-type triterpenes isolated from Nerium oleander and their biological activities. Phytomedicines 2006, 6, 83–107. [Google Scholar]
- Warnhoff, E.W.; Halls, C.M.M. Desert plant constituents: Li. ocotillol: An intermediate in the oxidation of hydroxy isoctenyl side chains. Can. J. Chem. 1965, 43, 3311–3321. [Google Scholar] [CrossRef]
- Tian, X. Studies on ocotillol-type ginsenoside and its related compounds. Ph.D. Thesis, Jilin University, Changchun, China, 2012. [Google Scholar]
- Tanaka, O.; Morita, T.; Kasai, R.; Kinouchi, J.; Sanada, S.; Ida, Y.; Shoji, J. Study on saponins of rhizomes of panax pseudo-ginseng subsp. himalaicus collected at tzatogang and Pari-la, Bhutan-Himalaya. Chem. Pharm. Bull. 1985, 33, 2323–2330. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.P.; Wang, F.; Li, P.Y.; Lu, D. A new ocotillol-type triterpenoid saponin from red American ginseng. Nat. Prod. Res. 2012, 26, 731–735. [Google Scholar] [CrossRef]
- Namba, T.; Matsushige, K.; Morita, T.; Tian, Z. Saponins of plants of Panax species collected in central nepal and their chemotaxonomical significance. I. Chem. Pharm. Bull. 1986, 34, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Lin, M.Y.; Zheng, Q.; Liu, H.Y.; Liu, H.Y.; Dong, G.; Liu, J.P.; Li, P.Y. A new epimer of ocotillol from stems and leaves of american ginseng. Nat. Prod. Res. 2014, 28, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Duc, N.M.; Nham, N.T.; Kasai, R.; Ito, A.; Osamu, T. Saponins from vietnamese ginseng, Panax vietnamensis Ha et Grushv. collected in central Vietnam. I. Chem. Pharm. Bull. 1993, 41, 2010–2014. [Google Scholar]
- Zou, K.; Zhu, S.; Tohda, C.; Komatsu, K. Dammarane-type triterpene saponins from Panax j aponicus. J. Nat. Prod. 2002, 65, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Tanaka, O.; Bulletin, P. Saponins from vietnamese ginseng, Panax vietnamensis HA et grushv. collected in central Vietnam. II. Chem. Pharm. Bull. 1994, 42, 115–122. [Google Scholar]
- Morita, T.; Kasai, R.; Tanaka, O.; Tian, Z.; Zhou, J.; Yang, T.R. Saponins of Zu-Tziseng, rhizomes of Panax japonicus C.A. MEYER var. major (BURK.) C.Y. Wu et K.M. FENG, collected in Yunnan, China. Chem. Pharm. Bull. 1982, 30, 4341–4345. [Google Scholar] [CrossRef]
- Schlag, E.M.; McIntosh, M.S. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 2006, 67, 1510–1529. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.Z.; He, T.C.; Yuan, C.S.; Du, W. Antioxidants potentiate American ginseng-induced killing of colorectal cancer cells. Cancer. Lett. 2010, 289, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Le, Q.U.; Lay, H.L.; Wu, M.C.; Nguyen, T.H.H.; Nguyen, D.L. Phytoconstituents and biological activities of Panax vietnamensis (Vietnamese Ginseng): A precious ginseng and call for further research-a systematic review. Nat. Prod. Commun. 2018, 13, 1801301–1934578. [Google Scholar] [CrossRef] [Green Version]
- Li, P.Y.; Liu, J.P. Pseudoginsenoside Pdq and Its Semi-Synthesis Process and Medicine Use. ZL200510016774.4, 14 December 2005. [Google Scholar]
- Yang, G.Q.; Li, Y.; Yang, Q.; Yue, X.; Jiang, Y.T. Simple and efficient synthesis of Pseudoginsenoside HQ. Chin. J. Org. Chem. 2017, 37, 1530–1536. [Google Scholar] [CrossRef]
- Meng, Q.G.; Bi, Y.; Wang, L.; Jiang, N.; Jiang, Y.T.; Zhang, J.F.; Yi, S.T.; Sun, H.J. Synthesis, structural determination of a new ocotillol derivative and its epimer. Lett. Org. Chem. 2011, 8, 682–685. [Google Scholar]
- Xu, Y.R.; Wang, W.Z.; Yang, J.; Li, X.; Meng, Q.G. Advances in the synthesis and biological activities of ocotillol-type saponins. Chin. J. Org. Chem. 2016, 36, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.J.; Xu, Y.R.; Wang, W.Z.; Yang, J.; Meng, Q.G. Synthesis and formation mechanism of ocotillol and its epimer. J. Yantai. Univ. 2016, 29, 181–186. [Google Scholar]
- Wang, W.Z.; Xu, Y.R.; Li, X.L.; Yang, J.; Meng, Q.G. Synthesis and formation of ocotillol and its empimer. J. China Pharm. Univ. 2016, 47, 282–287. [Google Scholar]
- Xu, Y.R.; Yang, J.J.; Liu, J.; Hou, G.G.; Meng, Q.G. Synthesis and crystal structures of C24-epimeric 20(R)-ocotillol-type saponins. Acta Crystallogr. Sect. C Struct. Chem. 2016, 72, 498–503. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.R.; An, X.S.; Hou, G.G.; Meng, Q.G. Synthesis and crystal structures of a 3-acetylated (20S,24S)-ocotillol-type saponin and its C-24 epimer. Acta Crystallogr. Sect. C Struct. Chem. 2017, 73, 464–469. [Google Scholar] [CrossRef]
- Meng, Q.G.; Tan, W.J.; Hou, G.G.; Zhang, X.Y.; Hu, X.Y.; Yang, F.; Bai, G.J.; Zhu, W.W.; Cai, Y.; Bi, Y. Synthesis and structural characterization of two epimers driven from 20(S)-protopanaxadiol. J. Mol. Struct. 2013, 1054–1055, 1–5. [Google Scholar] [CrossRef]
- Atopkina, L.N.; Novikov, V.L.; Denisenko, V.A.; Uvarova, N.I. Glycosylation of triterpenes of the dammarane series. III. Rregio- and stereoselective synthesis of 12-O-β-d-glucopyranosides of 20(S),24(R)-epoxydammarane-3-12β,25-triols under Helfer-ich’s conditions. Chem. Nat. Compd. 1985, 21, 674–675. [Google Scholar] [CrossRef]
- Atopkina, L.N.; Malinovskaya, G.V.; Elyakov, G.B.; Uvarova, N.I.; Woerdenbag, H.I.; Koulman, A.; Pras, N.; Potier, P. Cytotoxicity of natural ginseng glycosides and semisynthetic analogues. Planta Med. 1999, 65, 30–34. [Google Scholar] [CrossRef]
- Shen, R.Z.; Cao, X.; Laval, S.; Sun, J.S.; Yu, B. Synthesis of ocotillol-type ginsenosides. J. Org. Chem. 2016, 81, 10279–10294. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Nguyen, C.T. Pharmacological effects of ginseng on infectious diseases. Inflammopharmacology 2019, 27, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.W.; Ma, C.; Zhang, H.Y.; Bi, Y.; Chen, X.; Tian, H.; Xie, X.N.; Meng, Q.G.; Lewis, P.J.; Xu, J.Y. Synthesis and biological evaluation of novel ocotillol-type triterpenoid derivatives as antibacterial agents. Eur. J. Med. Chem. 2013, 68, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Ma, C.; Zhang, H.Y.; Zhou, Z.W.; Xu, J.Y. Novel 3-substituted ocotillol-type triterpenoid derivatives as antibacterial candidates. Chem. Biol. Drug. Des. 2014, 84, 489–496. [Google Scholar] [CrossRef]
- Bi, Y.; Ma, C.; Zhou, Z.W.; Zhang, T.T.; Zhang, H.Y.; Zhang, X.C.; Lu, J.; Meng, Q.G.; Lewis, P.J.; Xu, J.Y. Synthesis and antibacterial evaluation of novel hydrophilic ocotillol-type triterpenoid derivatives from 20(S)-protopanaxadio. Rec. Nat. Prod. 2015, 9, 356–368. [Google Scholar]
- Bi, Y.; Xu, J.Y.; Zhou, Z.W.; Zhang, H.Y.; Peter, J.L.; Ma, C.; Chen, X.; Yang, J.; Zhang, T.T. (20S, 24R)-Ocotillol type Ginsenoside Derivative Having Antibacterial Activity and Preparation Method and Application Thereof. ZL201210433920.3, 30 October 2012. [Google Scholar]
- Xu, J.Y.; Bi, Y.I.; Zhang, H.Y.; Zhou, Z.W.; Peter, J.L.; Ma, C.; Chen, X.; Zhang, D.; Tian, H.; Xie, X.N.; et al. (20S,24S)-Ocotillol Ginsenoside Derivatives with Antibacterial activity, and Preparation Method and Application Thereof. ZL201210422186.0, 30 October 2012. [Google Scholar]
- Bi, Y.; Liu, X.X.; Zhang, H.Y.; Yang, X.; Liu, Z.Y.; Lu, J.; Lewis, P.; Wang, C.Z.; Xu, J.Y.; Meng, Q.G.; et al. Synthesis and antibacterial evaluation of novel 3-substituted ocotillol-type derivatives as leads. Molecules 2017, 22, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.Y.; Zhou, Z.W.; Zhang, H.Y.; Cao, Y.C.; Xu, J.Y.; Ma, C.; Meng, Q.G.; Bi, Y. Design, synthesis and antibacterial evaluation of 3-substituted ocotillol-type derivatives. Molecules 2018, 23, 3320. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Yang, J.; Ma, C.; Liu, Z.Y.; Meng, Q.G. Design, synthesis and in vitro NO-releasing activities of ocotillol-type furoxans. Pharmazie 2015, 70, 213–218. [Google Scholar]
- Zhang, Z.Y.; Chen, Z.G.; Zhang, S.Y.; Shao, X.; Zhou, Z.W. Antibacterial activity of the structurally novel ocotillol-type lactone and its analogues. Fitoterapia 2020, 144, 104597. [Google Scholar] [CrossRef]
- Bi, Y.; Cao, Y.C.; Wang, K.Y.; Meng, Q.G. Synthesis and Application of Ocotillol-Type Ginsengenin with Dansylamide Group or Fluorenylmethoxycarbonyl Group. CN202010548873.1, 15 September 2020. [Google Scholar]
- Liu, Z.Y.; Zhang, H.Y.; Bi, Y.; Liu, X.X.; Lu, J.; Zhang, X.C.; Xu, J.Y.; Wang, C.Z.; Yuan, C.S. Design and synthesis of 28-hydroxy protopanaxadiol as a novel probe template. Nat. Prod. Res. 2017, 31, 1523–1528. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Zhang, Q.; Xu, Y.R.; Li, H.X.; Zhao, F.L.; Wang, C.M.; Liu, Z.; Liu, P.; Liu, Y.N.; Meng, Q.G.; et al. Synthesis and in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med. 2019, 85, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Meng, Q.G.; Yang, J.J.; Zhang, Q.; Li, H.X.; Liu, P.; Liu, Y.A.; Xu, Y.R.; Wang, W.Z.; Li, X.L.; et al. Dammarane-Type Ginsenoside/Ginsengenin and Anti-Inflammatory Application of Ocotillol-Type Derivative of Dammarane-Type Ginsenoside/Ginsengenin. CN201710708593.0, 19 December 2017. [Google Scholar]
- Jeong, J.J.; Van, T.H.L.; Lee, S.Y.; Eun, S.H.; Nguyen, M.D.; Park, J.H.; Kim, D.H. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. Int. Immunopharmacol. 2015, 28, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Jeong, J.J.; Le, T.H.; Eun, S.H.; Nguyen, M.D.; Park, J.H.; Kim, D.H. Ocotillol, a majonoside R2 metabolite, ameliorates 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice by restoring the balance of Th17/Treg cells. J. Agric. Food. Chem. 2015, 63, 7024–7031. [Google Scholar] [CrossRef]
- Wang, P.W.; Hou, Y.; Zhang, W.; Zhang, H.T.; Che, X.H.; Gao, Y.F.; Liu, G.G.; Liu, Y.L.; Yang, D.P.; Wang, J.M.; et al. Pseudoginsenoside-F11 attenuates lipopolysaccharide-induced acute lung injury by suppressing neutrophil infiltration and accelerating neutrophil clearance. Inflammation 2019, 42, 1857–1868. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, C.; Wang, J.; Zhao, S.; Zhang, K.; Wang, J.; Zhang, W.; Wu, C.; Yang, J. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways. Neuropharmacology 2014, 79, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Fang, X.J.; Gao, M.; Wang, C.H.; Gao, H.Y.; Bi, W.J.; Tang, H.H.; Cui, Y.T.; Zhang, L.M.; Fan, H.Y.; et al. Synthesis and structure-activity relationship of pyxinol derivatives as novel anti-Inflammatory agents. ACS Med. Chem. Lett. 2020, 11, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Q.; Gao, M.; Sun, Y.X.; Wang, C.H.; Fang, X.J.; Gao, H.Y.; Diao, W.S.; Yu, H. Design, synthesis and anti-inflammatory activity of 3-amino acid derivatives of ocotillol-type sapogenins. Eur. J. Med. Chem. 2020, 202, 112507. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Q.; Zhang, C.; Gao, M.; Gao, H.Y.; Zou, Z.J.; Yuan, Z. Ocotillol Type Derivative Having Anti-Inflammatory Activity and Preparation Method and Application Thereof. CN202010367674.0, 11 September 2020. [Google Scholar]
- Yang, G.Q.; Gao, M.; Wang, C.H.; Ren, R.Y.; Zou, Z.J.; Qiao, X. The Use of Des Martin’s Reagents in the Synthesis of Key Intermediates of Ocotillol-Type Derivatives. CN202010367823.3, 25 September 2020. [Google Scholar]
- Wang, F.; Zhang, J.; Liu, J.P.; Wang, C.Z.; Zheng, J.T.; Liu, J.L.; Zhang, J.R.; Wang, G.Q.; Guan, X.W.; Dong, B. (20S,24R)-Ocotillol Type Ginsenoside Glycine Derivatives and Preparation Method and Application Thereof. CN201911112761.5, 5 May 2020. [Google Scholar]
- Liu, J.L.; Liu, Y.H.; Wang, Z.Y.; Yang, N.; Si, Y.; Jiao, Y.F.; Zhang, Y.; Lin, H.Q.; Li, P.Y.; Liu, J.P. (20S,24R)-Ocotillol Type Ginsenoside Fatty Acid Derivatives and Preparation Method and Application Thereof. CN201911008914.1, 6 December 2019. [Google Scholar]
- Liu, J.L.; Zhang, Y.; Wang, Z.Y.; Liu, Y.H.; Jiao, Y.F.; Si, Y.; Zhou, B.S.; Zhang, J.; Li, P.Y.; Liu, J.P. (20S,24R)-Ocotillol Ginsenoside Amino-Acid Derivative, Preparation Method and Use. CN201911008913.7, 3 January 2020. [Google Scholar]
- Le, T.H.V.; Lee, S.Y.; Lee, G.J.; Nguyen, N.K.; Park, J.H.; Nguyen, M.D. Effects of steaming on saponin compositions and antiproliferative activity of Vietnamese ginseng. J. Ginseng. Res. 2015, 39, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Le, T.H.V.; Lee, S.Y.; Kim, T.R.; Kim, J.Y.; Kwon, S.W.; Nguyen, N.K.; Park, J.H.; Nguyen, M.D. Processed Vietnamese ginseng: Preliminary results in chemistry and biological activity. J. Ginseng. Res. 2014, 38, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Takao, K.; Midori, T.; Eiichiro, I.; Murakami, T.; Tokuda, H.; Nishino, H.; Duc, N.M.; Kasai, R.; Yamasaki, K. Cancer chemopreventive activity of majonoside-R2 from Vietnamese ginseng, Panax vietnamensis. Cancer Lett. 1999, 147, 11–16. [Google Scholar]
- Tran, Q.L. Triterpene saponins from Vietnamese ginseng (Panax vietnamensis) and their hepatocytoprotective activity. J. Nat. Prod. 2001, 64, 456–461. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.W.; Sun, T.; Gao, Y.; Chen, Y.X.; Jin, Y.R.; Li, Y. Semisynthesis and bioactive evaluation of oxidized products from 20(S)-ginsenoside Rg3, Rh2, protopanaxadiol (PPD) and their 20(R)-epimers as cytotoxic agents. Steroids 2016, 106, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yu, X.; Cai, X.; Chen, Y.X.; Zang, H.M.; Li, X.W.; Jin, Y.R. Semisynthesis and cytotoxicity evaluation of a series of ocotillol type saponins and aglycones from 20(S)-ginsenoside Rg2, Rh1, protopanaxatriol and their 20(R)-epimers. Chem. Res. Chin. Univ. 2016, 32, 35–40. [Google Scholar] [CrossRef]
- Wang, H.B.; Yu, P.F.; Bai, J.; Zhang, J.Q.; Kong, L.; Zhang, F.X.; Du, G.Y.; Pei, S.Q.; Zhang, L.X.; Jinag, Y.T.; et al. Ocotillol enhanced the antitumor activity of doxorubicin via p53-dependent apoptosis. Evid. Based Complement. Alternat. Med. 2013, 2013, 468537. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.Y.; Kong, L.; Tang, M.; Zhang, J.Q.; Zhou, X.Y.; Li, G.; Wang, H.B.; Fu, F.H. Protective effect of ocotillol against doxorubic-ininduced acute and chronic cardiac injury. Mol. Med. Rep. 2014, 9, 360–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.Y. Protective Effect of Ocotillol against Doxoeubicin-Induced Acute and Chronic Cardiac Injury. Master’s Thesis, Shandong University of Traditional Chinese Medicine, Jinan, China, 2014. [Google Scholar]
- Jin, X.; Shen, W.Z.; Jin, L.F.; Jia, J.Y. Protective effect of pseudo-ginsenoside GQ on doxorbicin-induced acute myocardial injury in rats. J. Jilin Univ. 2013, 39, 1164–1168. [Google Scholar]
- Ren, M.W. Study on the Influence of Doxorubicin Cytotoxicity by Pseudo-Ginsenoside GQ in MCF-7 Human Breast Cancer Cells. Master’s Thesis, Jilin University, Changchun, China, 2015. [Google Scholar]
- Wang, W.Y.; Wu, X.M.; Wang, L.; Meng, Q.G.; Liu, W.H. Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLoS ONE 2014, 9, e98887. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.K.; Zhang, H.Y.; Zhang, G.N.; Wamg, Y.J.; Chen, Z.S. Semi-synthetic ocotillol analogues as selective ABCB1-mediated drug resistance reversal agents. Oncotarget 2015, 6, 24277–24290. [Google Scholar] [CrossRef] [Green Version]
- Ren, Q.W.; Yang, G.Q.; Guo, M.Q.; Guo, J.W.; Li, Y.; Lu, J.; Yang, Q.; Tang, H.H.; Li, Y.; Fang, X.J.; et al. Design, synthesis, and discovery of ocotillol-type amide derivatives as orally available modulators of P-glycoprotein-mediated multidrug resistance. Eur. J. Med. Chem. 2019, 161, 118–130. [Google Scholar] [CrossRef]
- Yang, G.Q.; Wang, H.B.; Tian, J.W.; Ren, Q.W.; Fang, X.J.; Tang, H.H.; Guo, M.Q. Design and Synthesis of Ocotillol-Type Derivatives with Tumor Resistance Reversal Activity. CN201811065082.2, 18 December 2018. [Google Scholar]
- Wang, H.B.; Yang, G.Q.; Tian, J.W.; Ren, Q.W.; Sun, Y.X.; Yang, Q.; Bi, W.J.; Xia, K.; Ma, M.Y.; Wei, Y.J. A New Application of Ocotillol-Type Sapogenin Derivatives for Resistance Reversal in Cancer. CN201811065051.7, 14 December 2018. [Google Scholar]
- Bi, Y.; Wang, H.B.; Cao, Y.C.; Wang, K.Y.; Liu, S.Q.; Liu, X.C.; Meng, Q.G. Synthesis, Preparation Method and Tumor Resistance Reversal Activity of Ocotillol Ring-A Fused Aminothiazole Derivatives. CN202010456871.X, 31 July 2020. [Google Scholar]
- Ong, W.Y.; Farooqui, T.; Koh, H.L.; Farooqui, A.A.; Ling, E.A. Protective effects of ginseng on neurological disorders. Front. Aging Neurosci. 2015, 7, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Yang, J.Y.; Wang, F.; Fu, S.Y.; Hou, Y.; Jiang, B.; Ma, J.; Song, C.; Wu, C.F. Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid. Based Complement. Alternat. Med. 2013, 2013, 152798. [Google Scholar] [CrossRef]
- Gonzalez-Burgos, E.; Fernandez-Moriano, C.; Gomez-Serranillos, M.P. Potential neuroprotective activity of ginseng in parkinson’s disease: A review. J. Neuroimmune Pharmacol. 2015, 10, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.M.; Liu, M.Y.; Wang, F.; Wei, M.J.; Wang, S.; Wu, C.F.; Yang, J.Y. Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer’s disease. Pharmacol. Biochem. Behav. 2013, 106, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, H.; Yang, J.; Xie, J.; Xu, J.; Liu, C.; Wu, C. Pseudoginsenoside-F11 attenuates cognitive impairment by ameliorating oxidative stress and neuroinflammation in dgalactose-treated mice. Int. Immunopharmacol. 2019, 67, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, J.; Liu, C.; Xie, J.; Qiu, S.; Yang, X.; Wu, C. Pseudoginsenoside-F11 alleviates cognitive deficits and alzheimer’s disease-type pathologies in SAMP8 mice. Pharmacol. Res. 2019, 139, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, C.; Yang, X.; Liu, Y.; Yang, J. Pseudoginsenoside-F11 protects against transient cerebral ischemia injury in rats involving repressing calcium overload. Neuroscience 2019, 411, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Wu, C.F.; Hou, Z.G.; Fu, X.X.; Yuan, L.L.; Sun, S.B.; Zhang, H.T.; Yang, D.P.; Yao, X.C.; Yang, J.Y. Pseudoginsenoside-F11 accelerates microglial phagocytosis of myelin debris and attenuates cerebral ischemic injury through complement receptor 3. Neuroscience 2020, 426, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Yang, D.P.; Zhang, Q.Y.; Wang, X.S.; Wu, C.F. Pseudoginsenoside-F11 ameliorates ischemic neuron injury by regulating the polarization of neutrophils and macrophages in vitro. Int. Immunopharmacol. 2020, 85, 106564. [Google Scholar]
- Quyen, H.T.; Duong, P.T.V.N.; Huong, T.T.; Nguyen, D.M. Effects of ocotillol-type saponins majonoside-R1 and vina-ginsenoside-R2 on abrogating depression and neuronal oxidative stress in socially isolated depression mouse model. Int. J. Appl. Res. Nat Prod. 2016, 9, 86–104. [Google Scholar]
- Bi, Y.; Tian, J.W.; Wang, L.; Zhao, F.L.; Zhang, J.F.; Wang, N.; Sun, H.J.; Meng, Q.G. Synthesis, structural determination and protective effects on cultured anoxia/reoxygen injury myocardiocytes of ocotillol-type derivatives. J. Med. Plants Res. 2011, 5, 2424–2429. [Google Scholar]
- Chen, Y.; Fu, F.H.; Yu, X.; Zhu, M. Protective effect of ocotillol on acute myocardial injury induced by LAD in rat. J. Mol. Cell Cardiol. 2007, 42, S109–S218. [Google Scholar]
- Tian, J.W.; Jiang, W.L.; Ma, S.G.; Wang, C.Y.; Sun, F.; Zhang, T.P.; Fu, F.H.; Liu, K. Application of Ocotillol in the Preparing Process of Medicine for Treating or Preventing Cardiovascular and Cerebrovascular Disease. ZL200510052025.7, 1 March 2005. [Google Scholar]
- Bi, Y.; Wang, T.; Meng, Q.G.; Zhang, J.F.; Sun, H.J. Synthesis and myocardial ischemia protective effect of ocotillol-type derivatives. Rec. Nat. Prod. 2012, 6, 242–254. [Google Scholar]
- Yang, G.Q.; Yang, Y.T.; Yang, Q.; Li, Y.; Jiang, Y.T.; Fu, F.H.; Wang, H.B. Novel fluorescent Pyxinol-based probes: Design, synthesis and biological evaluation. Chin. J. Org Chem. 2017, 37, 2109–2114. [Google Scholar] [CrossRef]
- Jin, L.F.; Wang, C.Z.; Liu, J.P.; Li, Y.P.; Wang, Y. Pseudo-ginsengenin DQ ameliorated aconitine-induced arrhythmias by influencing Ca2+ and K+ currents in ventricular myocytes. RSC Adv. 2020, 10, 25999–26005. [Google Scholar] [CrossRef]
- Qi, Z.; Wang, Z.Z.; Zhou, B.S.; Fu, S.L.; Hong, T.; Li, P.Y.; Liu, J.P. A new ocotillol-type ginsenoside from stems and leaves of Panax quinquefolium L. and its anti-oxidative effect on hydrogen peroxide exposed A549 cells. Nat. Prod Res. 2019, 34, 2474–2481. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Nguyen, H.T.; Win, N.N.; Piow, W.C.; Morita, H. Antimelanogenic activity of ocotillol-type ginsenosides from Panax vietnamensis ginseng. Chem. Biodiversity. 2020, 17, 1–7. [Google Scholar]
- Wang, C.Z.; Yuan, Y.Z.; Pan, H.; Hsu, A.C.Y.; Chen, J.L.; Liu, J.P.; Li, P.Y.; Wang, F. Protective effect of ocotillol, the derivate of ocotillol-type saponins in panax genus, against acetic acid-induced gastric ulcer in rats based on untargeted metabolomics. Int. J. Mol. Sci. 2020, 21, 2577. [Google Scholar] [CrossRef] [Green Version]
- Akihisa, T.; Tokuda, H.; Ukiya, M.; Suzuki, T.; Enjo, F.; Koike, K.; Nikaido, T.; Nishino, H. 3-epicabra-leahydroxylactone and other triterpenoids from camellia oil and their inhibitory effects on Epstein-Barr virus activation. Chem. Pharm. Bull. 2004, 52, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.J.; Sun, L.; Peng, W.; Ma, S.; Zhu, C.; Fu, F.; Heinbockel, T. Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: A possible mechanism underlying increased spontaneous locomotor activity of mice. Neuroence 2011, 195, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hu, H.; Li, Z.; Li, R.; Xu, F.; Zhao, C.; An, Y.; Liu, Y.; Wang, Z.; Zhang, B.; et al. Pharmacokinetic characterizations of ginsenoside ocotillol, RT5 and F11, the promising agents for alzheimer’s disease from american ginseng, in rats and beagle dogs. Pharmacology 2019, 104, 7–20. [Google Scholar] [CrossRef]
- Joo, K.M.; Lee, J.H.; Jeon, H.Y.; Park, C.W.; Hong, D.K.; Jeong, H.J.; Lee, S.J.; Lee, S.Y.; Lim, K.M. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J. Pharm. Biomed. Anal. 2010, 51, 278–283. [Google Scholar] [CrossRef]
- Yang, X.J.; Wang, J.; Du, G.G.; Liu, Y.; Lin, Y.W.; Cong, G. Pharmacokinetic study of ocotillol in beagle dogs by HPLC-MS/MS. Trad. Chin. Drug Res. Clin. Pharm. 2019, 30, 71–76. [Google Scholar]
- Ni, Y.Y.; Yao, Z.M.; Wang, H.; Liu, W.R.; Zhuang, X.H.; Wang, W.Y.; Meng, Q.G. Excretion of 20(S)-protopanaxatriol and its ocotillol type epimers metabolites in rats. J. Int. Pharm. Res. 2016, 43, 947–951. [Google Scholar]
- Wang, W.Y.; Wang, L.; Wu, X.M.; Xu, L.X.; Meng, Q.G.; Liu, W.H. Stereoselective formation and metabolism of 20(S)-protopanaxadiol ocotillol type epimers in vivo and in vitro. Chirality 2015, 27, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Gan, H.Z.; Li, T.; Wang, J.; Geng, C. The metabolites and biotransformation pathways in vivo after oral administrations of ocotillol, RT5, and PF11. Biomed. Chromatogr. 2020, 34, e4856. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.N.; Li, Z.Y.; Yuan, M.; Geng, C.; Li, Q.; Xu, H.; Yang, X. Molecular insight into stereoselective ADME characteristics of C20-24 epimeric epoxides of protopanaxadiol by docking analysis. Biomolecules 2020, 10, 112. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Delost, M.D.; Qureshi, M.H.; Smith, D.T.; Njardarson, J.T. A Survey of the Structures of US FDA Approved Combination Drugs. J. Med. Chem. 2019, 62, 4265–4311. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, K.; Xu, S.; Kong, L.; Bi, Y.; Li, X. Recent Advances in the Semisynthesis, Modifications and Biological Activities of Ocotillol-Type Triterpenoids. Molecules 2020, 25, 5562. https://doi.org/10.3390/molecules25235562
Cao Y, Wang K, Xu S, Kong L, Bi Y, Li X. Recent Advances in the Semisynthesis, Modifications and Biological Activities of Ocotillol-Type Triterpenoids. Molecules. 2020; 25(23):5562. https://doi.org/10.3390/molecules25235562
Chicago/Turabian StyleCao, Yucheng, Kaiyi Wang, Si Xu, Lingtan Kong, Yi Bi, and Xiaopeng Li. 2020. "Recent Advances in the Semisynthesis, Modifications and Biological Activities of Ocotillol-Type Triterpenoids" Molecules 25, no. 23: 5562. https://doi.org/10.3390/molecules25235562