Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties
2.2. Nutrient Composition
2.3. Color Measurements
2.4. Antioxidant Properties
2.5. Rapidly and Slowly Digested Starch Contents and In Vitro Glycemic Index (GI) Values
3. Materials and Methods
3.1. Chemicals, Reagents, and Biscuit Ingredients
3.2. Shortcake Biscuit Preparation
3.3. Physical Properties
3.4. Nutrient Composition
3.5. Color Measurements
3.6. Antioxidant Properties
3.6.1. Extraction of Bioactive Compounds
3.6.2. DPPH Radical Scavenging Activity
3.6.3. ABTS Radical Scavenging Activity
3.7. In Vitro Digestion of Biscuits
3.8. Rapidly and Slowly Digested Starch Contents
3.9. In Vitro Glycemic Index (GI)
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Argriculture Organization of the United Nations. Edible Insects. Future Prospects for Food and Feed Security; Food and Argriculture Organization of the United Nations Edible Insects: Rome, Italy, 2013; Volume 171, ISBN 9789251075951. [Google Scholar]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Looy, H.; Dunkel, F.V.; Wood, J.R. How then shall we eat? Insect-eating attitudes and sustainable foodways. Agric. Human Values 2014, 31, 131–141. [Google Scholar] [CrossRef]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory attributes of edible insects and insect-based foods – Future outlooks for enhancing consumer appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Becoming an insectivore: Results of an experiment. Food Qual. Prefer. 2016, 51, 118–122. [Google Scholar] [CrossRef]
- Tan, H.S.G.; van den Berg, E.; Stieger, M. The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food Qual. Prefer. 2016, 52, 222–231. [Google Scholar] [CrossRef]
- Haber, M.; Mishyna, M.; Martinez, J.J.I.; Benjamin, O. The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT 2019, 115, 108395. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT 2020, 118. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, T.K.; Choi, H.D.; Park, J.D.; Sung, J.M.; Jeon, K.H.; Paik, H.D.; Kim, Y.B. Optimization of replacing pork meat with yellow worm (Tenebrio molitor L.) for frankfurters. Korean J. Food Sci. Anim. Resour. 2017, 37, 617–625. [Google Scholar] [CrossRef] [Green Version]
- De Smet, J.; Lenaerts, S.; Borremans, A.; Scholliers, J.; Van Der Borght, M.; Van Campenhout, L. Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor). LWT 2019, 102, 113–121. [Google Scholar] [CrossRef]
- Smarzyński, K.; Sarbak, P.; Musiał, S.; Jezowski, P.; Piatek, M.; Kowalczewski, P.T. Nutritional analysis and evaluation of the consumer acceptance of pork pâté enriched with cricket powder-preliminary study. Open Agric. 2019, 4, 159–163. [Google Scholar] [CrossRef]
- Delicato, C.; Schouteten, J.J.; Dewettinck, K.; Gellynck, X.; Tzompa-Sosa, D.A. Consumers’ perception of bakery products with insect fat as partial butter replacement. Food Qual. Prefer. 2020, 79, 103755. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Adámek, M.; Adámková, A.; Mlček, J.; Borkovcová, M.; Bednářová, M. Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect. Potravin. Slovak J. Food Sci. 2018, 12, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Severini, C.; Azzollini, D.; Albenzio, M.; Derossi, A. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Res. Int. 2018, 106, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Duda, A.; Adamczak, J.; Chelminska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauter, P.; Różańska, M.; Wiza, P.; Dworczak, S.; Grobelna, N.; Sarbak, P.; Kowalczewski, P. Effects of the replacement of wheat flour with cricket powder on the characteristics of muffins. Acta Sci. Pol. Technol. Aliment. 2018, 17, 227–233. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Yi, L.; van Valenberg, H.J.F.; van Boekel, M.A.J.S.; Lakemond, C.M.M. Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Res. Int. 2014, 62, 1087–1094. [Google Scholar] [CrossRef]
- Aguilar-Miranda, E.D.; Lo´pez, M.G.; Lo´pez, L.; Escamilla-Santana, C.; Barba De, A.P.; Rosa, L.A. Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. J. Agric. Food Chem. 2002. [Google Scholar] [CrossRef]
- Min, K.-T.; Kang, M.-S.; Kim, M.-J.; Lee, S.-H.; Han, J.-S.; Kim, A.-J. Manufacture and Quality Evaluation of Cookies prepared with Mealworm (Tenebrio molitor) Powder. Korean J. Food Nutr. 2016, 29. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.-Y.; Choi, S.-K. Quality Characteristics of Muffins Containing Mealworm(Tenebrio molitor). Korean J. Culin. Res. 2015, 21, 104–115. [Google Scholar]
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, E.; Karaś, M.; Jakubczyk, A. Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int. J. Food Sci. Technol. 2017, 52, 306–312. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, E.; Baraniak, B.; Karaś, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 2018, 53, 2542–2551. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Cookie texture, spread ratio and sensory acceptability of cookies as a function of soluble dietary fiber, baking time and different water levels. LWT-Food Sci. Technol. 2017, 80, 537–542. [Google Scholar] [CrossRef]
- Chauhan, A.; Saxena, D.C.; Singh, S. Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT-Food Sci. Technol. 2015, 63, 939–945. [Google Scholar] [CrossRef]
- Baumgartner, B.; Özkaya, B.; Saka, I.; Özkaya, H. Functional and physical properties of cookies enriched with dephytinized oat bran. J. Cereal Sci. 2018, 80, 24–30. [Google Scholar] [CrossRef]
- Kolawole, F.L.; Akinwande, B.A.; Ade-Omowaye, B.I.O. Physicochemical properties of novel cookies produced from orange-fleshed sweet potato cookies enriched with sclerotium of edible mushroom (Pleurotus tuberregium). J. Saudi Soc. Agric. Sci. 2020, 19, 174–178. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, V.; Kaur, R. Effect of partial replacement of wheat flour with varying levels of flaxseed flour on physicochemical, antioxidant and sensory characteristics of cookies. Bioact. Carbohydr. Diet. Fibre 2017, 9, 14–20. [Google Scholar] [CrossRef]
- European Parliment REGULATION (EU) No 1169/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, 18–63.
- Sozer, N.; Cicerelli, L.; Heiniö, R.L.; Poutanen, K. Effect of wheat bran addition on invitro starch digestibility, physico-mechanical and sensory properties of biscuits. J. Cereal Sci. 2014, 60, 105–113. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Gutiérrez-Docio, A.; Otero, P.; Reglero, G.; Martin, D. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem. 2020, 309, 125742. [Google Scholar] [CrossRef] [PubMed]
- das Chagas, E.G.L.; Vanin, F.M.; dos Santos Garcia, V.A.; Yoshida, C.M.P.; de Carvalho, R.A. Enrichment of antioxidants compounds in cookies produced with camu-camu (Myrciaria dubia) coproducts powders. LWT 2020, 110472. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Nissen, L.; Samaei, S.P.; Babini, E.; Gianotti, A. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chem. 2020, 333, 127410. [Google Scholar] [CrossRef]
- Mlcek, J.; Borkovcova, M.; Bednarova, M. Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine—A review. J. Cent. Eur. Agric. 2014, 15, 225–237. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Jakubczyk, A.; Zieliński, D.; Baraniak, B. Edible Insects as Source of Proteins. In Bioactive Molecules in Food; Springer: Cham, Switzerland, 2019; pp. 389–441. ISBN 9783319545288. [Google Scholar]
- Vercruysse, L.; Smagghe, G.; Herregods, G.; Van Camp, J. ACE inhibitory activity in enzymatic hydrolysates of insect protein. J. Agric. Food Chem. 2005, 53, 5207–5211. [Google Scholar] [CrossRef]
- Cito, A.; Botta, M.; Francardi, V.; Dreassi, E. Insects as source of angiotensin converting enzyme inhibitory peptides. J. Insects as Food Feed 2017, 3, 231–240. [Google Scholar] [CrossRef]
- Tao, M.; Wang, C.; Liao, D.; Liu, H.; Zhao, Z.; Zhao, Z. Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochem. 2017, 54, 172–179. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Baraniak, B.; Jakubczyk, A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur. Food Res. Technol. 2020, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chatsuwan, N.; Nalinanon, S.; Puechkamut, Y.; Lamsal, B.P.; Pinsirodom, P. Characteristics, Functional Properties, and Antioxidant Activities of Water-Soluble Proteins Extracted from Grasshoppers, Patanga succincta and Chondracris roseapbrunner. J. Chem. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Monro, J.A.; Wallace, A.; Mishra, S.; Eady, S.; Willis, J.A.; Scott, R.S.; Hedderley, D. Relative glycaemic impact of customarily consumed portions of eighty-three foods measured by digesting in vitro and adjusting for food mass and apparent glucose disposal. Br. J. Nutr. 2010, 104, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Franceschi, S.; Hamidi, M.; Marchie, A.; Axelsen, M. Glycemic index: Overview of implications in health and disease. Am. J. Clin. Nutr. 2002, 76, 266S–273S. [Google Scholar] [CrossRef] [PubMed]
- López-Barón, N.; Gu, Y.; Vasanthan, T.; Hoover, R. Plant proteins mitigate in vitro wheat starch digestibility. Food Hydrocoll. 2017, 69, 19–27. [Google Scholar] [CrossRef]
- Kaźmierczak, M. Technologie Produkcji Cukierniczej. Wyroby Cukiernicze; WSiP: Warsaw, Poland, 2019; ISBN 9788302147197. [Google Scholar]
- Marzec, A.; Kowalska, H.; Gasowski, W. Właściwości mechaniczne ciastek biszkoptowych o zróżnicowanej porowatości. Acta Agrophys. 2010, 16, 359–368. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2010; pp. 2–4. [Google Scholar]
- Sarıçoban, C.; Yılmaz, M. Modelling the Effects of Processing Factors on the Changes in Colour Parameters of Cooked Meatballs Using Response Surface Methodology. World Appl. Sci. J. 2010, 9, 14–22. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Tan, S.P.; Leong, L.P.; Henry, J.K. Total antioxidant capacity and starch digestibility of muffins baked with rice, wheat, oat, corn and barley flour. Food Chem. 2014, 164, 462–469. [Google Scholar] [CrossRef]
- Reis, S.F.; Abu-Ghannam, N. Antioxidant capacity, arabinoxylans content and invitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT-Food Sci. Technol. 2014, 55, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
Samples | Weight (g) | Diameter (cm) | Thickness (mm) | Spread Ratio | Apparent Density (g/cm3) |
---|---|---|---|---|---|
C | 12.37 ± 0.92 b | 4.98 ± 0.06 a | 8.04 ± 0.5 a | 6.19 ± 0.3 b | 0.197 ± 0.01 b |
M1 | 10.88 ± 0.82 c | 4.94 ± 0.05 a | 6.89 ± 0.47 b | 7.18 ± 0.5 a | 0.204 ± 0.01 a |
M2 | 13.41 ± 0.94 a | 4.97 ± 0.07 a | 8.33 ± 0.32 a | 5.96 ± 0.2 b | 0.207 ± 0.01 a |
M3 | 12.39 ± 0.9 b | 4.96 ± 0.05 a | 8.11 ± 0.31 a | 6.12 ± 0.2 b | 0.196 ± 0.02 b |
Sample | Protein (% d.w.) | Fat (% d.w.) | Ash (% d.w.) | Carbohydrates (% d.w.) | Moisture (%) | Energy Value (kcal/100g d.w.) | Energy Value (kJ/100g d.w.) |
---|---|---|---|---|---|---|---|
C | 9.09 ± 0.46 c | 27.03 ± 1.48 a | 0.28 ± 0.04 b | 63.6 ± 1.63 a | 6.4 ± 0.23 a | 534 ± 4.3 a | 2236 ± 12.8 a |
M1 | 13.52 ± 0.6 a | 27.17 ± 0.39 a | 0.63 ± 0.06 a | 58.69 ± 1.85 b | 4.33 ± 0.09 c | 533 ± 4.5 a | 2233 ± 13.3 a |
M2 | 11.97 ± 0.5 b | 26.97 ± 1.69 a | 0.7 ± 0.1 a | 60.36 ± 1.49 ab | 5.3 ± 0.16 b | 532 ± 4.9 a | 2227 ± 12 a |
M3 | 10.82 ± 0.5 b | 28.47 ± 0.36 a | 0.44 ± 0.05 b | 60.27 ± 1.72 ab | 5.97 ± 0.2 a | 541 ± 3.9 a | 2262 ± 12.7 a |
Sample | L* | a* | b* | ∆E | BI |
---|---|---|---|---|---|
C | 34.44 ± 2.97 a | 5.77 ± 1.63 b | 8.61 ± 0.94 a | - | 11.80 |
M1 | 20.96 ± 0.96 d | 8.64 ± 1.31 a | 2.14 ± 0.64 c | 15.23 | 26.67 |
M2 | 26.45 ± 0.56 c | 6.57 ± 1.01 ab | 5.62 ± 0.81 b | 8.56 | 17.18 |
M3 | 29.46 ± 0.97 b | 7.12 ± 0.8 ab | 7.46 ± 0.3 ab | 5.28 | 16.75 |
Sample | RDS (mg Glucose/g Sample) | SDS (mg Glucose/g Sample) | In Vitro GI |
---|---|---|---|
C | 223.28 ± 9.85 a | 73.55 ± 2.69 b | 39.85 ± 0.12 a |
M1 | 181.66 ± 9.61 b | 102.95 ± 6.12 a | 39.83 ± 0.1 a |
M2 | 191.8 ± 5.58 b | 91.01 ± 6.75 a | 39.84 ± 0.08 a |
M3 | 218.52 ± 1.85 a | 72.10 ± 4.89 b | 39.85 ± 0.15 a |
Ingredients | C | M1 | M2 | M3 |
---|---|---|---|---|
Wheat flour (g) | 300 | 270 | 280 | 285 |
Butter (g) | 150 | 135 | 140 | 142.5 |
Sugar (g) | 70 | 70 | 70 | 70 |
Eggs (pcs) | 1 | 1 | 1 | 1 |
Mealworm flour (g) | - | 30 | 20 | 15 |
Sample Availability: Samples of the insects hydrolysates and extracts are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, E.; Pankiewicz, U. Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour. Molecules 2020, 25, 5629. https://doi.org/10.3390/molecules25235629
Zielińska E, Pankiewicz U. Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour. Molecules. 2020; 25(23):5629. https://doi.org/10.3390/molecules25235629
Chicago/Turabian StyleZielińska, Ewelina, and Urszula Pankiewicz. 2020. "Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour" Molecules 25, no. 23: 5629. https://doi.org/10.3390/molecules25235629
APA StyleZielińska, E., & Pankiewicz, U. (2020). Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio molitor Flour. Molecules, 25(23), 5629. https://doi.org/10.3390/molecules25235629