Minerals in Pregnancy and Their Impact on Child Growth and Development
Abstract
:1. Introduction
2. Micronutrients
2.1. General Characteristics
2.1.1. Iodine
2.1.2. Selenium
2.1.3. Iron
2.1.4. Zinc
2.1.5. Calcium
2.1.6. Magnesium
2.2. The Influence of Minerals on Pregnancy and Fetal Development
2.2.1. Iodine
2.2.2. Selenium
2.2.3. Iron
2.2.4. Zinc
2.2.5. Calcium
2.2.6. Magnesium
2.3. The Influence of Minerals on Child Growth and Development
2.3.1. Iodine
2.3.2. Selenium
2.3.3. Iron
2.3.4. Zinc
2.3.5. Calcium
2.3.6. Magnesium
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and micronutrient intake during pregnancy: An overview of recent evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowensohn, R.I.; Stadler, D.D.; Naze, C. Current concepts of maternal nutrition. Obstet. Gynecol. Surv. 2016, 71, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dafra, M.G.; Lapolla, A. Nutrition Management of Gestacional Diabetes Mellitus. In Gestacional Diabetes. A Decade after the HAPO Study; Lapolla, A., Metzger, B.E., Eds.; Karger Publishers: Basel, Switzerland, 2020; pp. 50–60. [Google Scholar]
- Blencowe, H.; Krasevec, J.; de Onis, M.; Black, R.E.; An, X.; Stevens, G.A.; Borghi, E.; Hayashi, C.; Estevez, D.; Cegolon, L. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: A systematic analysis. Lancet Glob. Health 2019, 7, e849–e860. [Google Scholar] [CrossRef] [Green Version]
- Gernand, A.D.; Schulze, K.J.; Stewart, C.P.; West, K.P., Jr.; Christian, P. Micronutrient deficiencies in pregnancy worldwide: Health effects and prevention. Nat. Rev. Endocrinol. 2016, 12, 274. [Google Scholar] [CrossRef] [Green Version]
- Bocca, B.; Ruggieri, F.; Pino, A.; Rovira, J.; Calamandrei, G.; Mirabella, F.; Martínez, M.Á.; Domingo, J.L.; Alimonti, A.; Schuhmacher, M. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part B: Predictors of exposure. Environ. Res. 2020, 182, 109108. [Google Scholar] [CrossRef]
- Al Wattar, B.H.; Mylrea-Lowndes, B.; Morgan, C.; Moore, A.P.; Thangaratinam, S. Use of dietary assessment tools in randomized trials evaluating diet-based interventions in pregnancy: A systematic review of literature. Curr. Opin. Obstet. Gynecol. 2016, 28, 455–463. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef]
- Keats, E.C.; Haider, B.A.; Tam, E.; Bhutta, Z.A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2017, 4, 129. [Google Scholar] [CrossRef]
- Save the Children. Nutrition in the First 1,000 Days: State of the World’s Mothers 2012; Johnson & Johnson: New Brunswick, NJ, USA; pp. 1–70.
- Godswill, A.G.; Somtochukwu, I.V.; Ikechukwu, A.O.; Kate, E.C. Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar]
- Zemrani, B.; Bines, J.E. Recent insights into trace element deficiencies: Causes, recognition and correction. Curr. Opin. Gastroenterol. 2020, 36, 110–117. [Google Scholar] [CrossRef]
- Beluska-Turkan, K.; Korczak, R.; Hartell, B.; Moskal, K.; Maukonen, J.; Alexander, D.E.; Salem, N.; Harkness, L.; Ayad, W.; Szaro, J.; et al. Nutritional Gaps and Supplementation in the First 1000 Days. Nutrients 2019, 11, 2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.L.; Bianco-Miotto, T.; Leemaqz, S.Y.; Grzeskowiak, L.E.; Dekker, G.A.; Roberts, C.T. Early pregnancy maternal trace mineral status and the association with adverse pregnancy outcome in a cohort of Australian women. J. Trace Elem. Med. Biol. 2018, 46, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Hartoft-Nielsen, M.-L.; Rasmussen, A.K.; Bock, T.; Feldt-Rasmussen, U.; Kaas, A.; Buschard, K. Iodine and tri-iodo-thyronine reduce the incidence of type 1 diabetes mellitus in the autoimmune prone BB rats. Autoimmunity 2009, 42, 131–138. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Human Vitamin and Mineral Requirements; Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand; Food and Nutrition Division, FAO: Rome, Italy, 2001; pp. 235–247. Available online: http://www.fao.org/3/a-y2809e.pdf (accessed on 29 March 2020).
- WHO. Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2004; Available online: https://apps.who.int/iris/bitstream/handle/10665/42716/9241546123.pdf?ua=1 (accessed on 19 March 2020).
- UNICEF. Iodine; United Nations Children’s Fund: New York, NY, USA, 2019; Available online: https://data.unicef.org/topic/nutrition/iodine/ (accessed on 10 March 2020).
- Zhou, S.J.; Condo, D.; Ryan, P.; Skeaff, S.A.; Howell, S.; Anderson, P.J.; McPhee, A.J.; Makrides, M. Association between maternal iodine intake in pregnancy and childhood neurodevelopment at age 18 months. Am. J. Epidemiol. 2019, 188, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Olivo-Vidal, Z.E.; Rodríguez, R.C.; Arroyo-Helguera, O. Iodine affects differentiation and migration process in trophoblastic cells. Biol. Trace Elem. Res. 2016, 169, 180–188. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Yao, P.; Yu, D.; Hao, L.; Sun, X. Effect of excessive iodine on immune function of lymphocytes and intervention with selenium. J. Huazhong Uiv. Sci.-Med. 2007, 27, 422–425. [Google Scholar] [CrossRef]
- Santos, L.R.; Neves, C.; Melo, M.; Soares, P. Selenium and selenoproteins in immune mediated thyroid disorders. Diagnostics 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: From pathophysiology to treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar] [CrossRef] [Green Version]
- Hofstee, P.; McKeating, D.R.; Bartho, L.A.; Anderson, S.T.; Perkins, A.V.; Cuffe, J.S. Maternal selenium deficiency in mice alters offspring glucose metabolism and thyroid status in a sexually dimorphic manner. Nutrients 2020, 12, 267. [Google Scholar] [CrossRef] [Green Version]
- Glinoer, D. The regulation of thyroid function during normal pregnancy: Importance of the iodine nutrition status. Best Pract. Res. Clin. Endocrinol. Metab. 2004, 18, 133–152. [Google Scholar] [CrossRef]
- Carlson, B.A.; Yoo, M.-H.; Shrimali, R.K.; Irons, R.; Gladyshev, V.N.; Hatfield, D.L.; Park, J.M. Role of selenium-containing proteins in T-cell and macrophage function. Proc. Nutr. Soc. 2010, 69, 300–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoffaneller, R.; Morse, N.L. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef] [PubMed]
- Broome, C.S.; McArdle, F.; Kyle, J.A.; Andrews, F.; Lowe, N.M.; Hart, C.A.; Arthur, J.R.; Jackson, M.J. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am. J. Clin. Nutr. 2004, 80, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Nogales, F.; Ojeda, M.L.; Del Valle, P.M.; Serrano, A.; Murillo, M.L.; Sánchez, O.C. Metabolic syndrome and selenium during gestation and lactation. Eur. J. Nutr. 2017, 56, 819–830. [Google Scholar] [CrossRef]
- Brock, J.H.; Mulero, V. Cellular and molecular aspects of iron and immune function. Proc. Nutr. Soc. 2000, 59, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Rees, W.D.; Hay, S.M.; Hayes, H.E.; Stevens, V.J.; Gambling, L.; McArdle, H.J. Iron deficiency during pregnancy and lactation modifies the fatty acid composition of the brain of neonatal rats. J. Dev. Origins Health Dis. 2019, 11, 264–272. [Google Scholar] [CrossRef]
- WHO. Nutritional Anaemias: Tools for Effective Prevention and Control; World Health Organization: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/bitstream/handle/10665/259425/9789241513067-eng.pdf (accessed on 29 March 2020).
- Georgieff, M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020, 223. [Google Scholar] [CrossRef]
- Harvey, L.; Boksa, P. Additive effects of maternal iron deficiency and prenatal immune activation on adult behaviors in rat offspring. Brain Behav. Immun. 2014, 40, 27–37. [Google Scholar] [CrossRef]
- Vucic, V.; Berti, C.; Vollhardt, C.; Fekete, K.; Cetin, I.; Koletzko, B.; Gurinovic, M.; van’t Veer, P. Effect of iron intervention on growth during gestation, infancy, childhood, and adolescence: A systematic review with meta-analysis. Nutr. Rev. 2013, 71, 386–401. [Google Scholar] [CrossRef]
- Saydam, B.K.; Genc, R.E.; Sarac, F.; Turfan, E.C. Prevalence of anemia and related factors among women in Turkey. Pak. J. Med. Sci. 2017, 33, 433. [Google Scholar]
- WHO. Weekly Iron and Folic Acid Supplementation as an Anaemia-Prevention Strategy in Women and Adolescent Girls: Lessons Learnt from Implementation of Programmes Among Non-Pregnant Women of Reproductive Age; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/bitstream/handle/10665/274581/WHO-NMH-NHD-18.8-eng.pdf (accessed on 29 March 2020).
- Ward, R.J.; Crichton, R.R.; Taylor, D.L.; Della Corte, L.; Srai, S.K.; Dexter, D.T. Iron and the immune system. J. Neural Transm. 2011, 118, 315–328. [Google Scholar] [CrossRef] [PubMed]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/bitstream/handle/10665/85839/WHO_NMH_NHD_MNM_11.1_eng.pdf (accessed on 29 March 2020).
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144. [Google Scholar]
- Galetti, V.; Mitchikpè, C.E.S.; Kujinga, P.; Tossou, F.; Hounhouigan, D.J.; Zimmermann, M.B.; Moretti, D. Rural Beninese children are at risk of zinc deficiency according to stunting prevalence and plasma zinc concentration but not dietary zinc intakes. J. Nutr. 2016, 146, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Mandal, K.; Lu, H. Zinc deficiency in children. IJSIT 2017, 6, 9–19. [Google Scholar]
- Lonnerdal, B.; Vargas-Fernández, E.; Whitacre, M. Selenium fortification of infant formulas: Does selenium form matter? Food Funct. 2017, 8, 3856–3868. [Google Scholar] [CrossRef] [PubMed]
- Fassier, P.; Egnell, M.; Pouchieu, C.; Vasson, M.P.; Cohen, P.; Galan, P.; Kesse-Guyot, E.; Latino-Martel, P.; Hercberg, S.; Deschasaux, M.; et al. Quantitative assessment of dietary supplement intake in 77,000 French adults: Impact on nutritional intake inadequacy and excessive intake. Eur. J. Nutr. 2019, 58, 2679–2692. [Google Scholar] [CrossRef]
- Bromage, S.; Ahmed, T.; Fawzi, W.W. Calcium Deficiency in Bangladesh: Burden and Proposed Solutions for the First 1000 Days. Food Nutr. Bull. 2016, 37, 475–493. [Google Scholar] [CrossRef] [PubMed]
- Khadilkar, A.; Khadilkar, V.; Chinnappa, J.; Rathi, N.; Khadgawat, R.; Balasubramanian, S.; Parekh, B.; Jog, P. Prevention and Treatment of Vitamin D and Calcium Deficiency in Children and Adolescents: Indian Academy of Pediatrics (IAP) Guidelines. Indian Pediatr. 2017, 54, 567–573. [Google Scholar] [CrossRef]
- Alonso, M.A.; Mantecón, L.; Santos, F. Vitamin D deficiency in children: A challenging diagnosis! Pediatr. Res. 2019, 85, 596–601. [Google Scholar] [CrossRef]
- Wongdee, K.; Rodrat, M.; Teerapornpuntakit, J.; Krishnamra, N.; Charoenphandhu, N. Factors inhibiting intestinal calcium absorption: Hormones and luminal factors that prevent excessive calcium uptake. J. Physiol. Sci. 2019, 69, 683–696. [Google Scholar] [CrossRef]
- Altura, B.M.; Li, W.; Zhang, A.; Zheng, T.; Shah, N.C.; Shah, G.J.; Altura, B.T. Sudden Cardiac Death in Infants, Children and Young Adults: Possible Roles of Dietary Magnesium Intake and Generation of PlateletActivating Factor in Coronary Arteries. J. Heart Health 2016, 2, 1–6. [Google Scholar]
- Conlon, M.A.; Bird, A.R. The impact of diet andlifestyle on gut microbiota and human health. Nutrients 2015, 7, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Adham, E.K.E.; Hassan, A.I.; El Aziz El-Mahdy, A.A. Nutiritional and Metabolic Disturbances in Attention Deficit Hyperactivity Disease. Res. J. Med. Med. Sci. 2011, 6, 10–16. [Google Scholar]
- Elbaz, F.; Zahra, S.; Hanafy, H. Magnesium, zinc and copper estimation in children with attention deficit hyperactivity disorder (ADHD). Egypt J. Med. Hum. Gen. 2017, 18, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Viktorinova, A.; Ursinyova, M.; Trebaticka, J.; Uhnakova, I.; Durackova, Z.; Masanova, V. Changed plasma levels of zinc and copper to zinc ratio and their possible associations with parent-and teacher-rated symptoms in children with attention-deficit hyperactivity disorder. Biol. Trace Elem. Res. 2016, 169, 1–7. [Google Scholar] [CrossRef]
- Konigs, A.; Kiliaan, A.J. Critical appraisal of omega-3 fatty acids in attention-deficit/hyperactivity disorder treatment. Neurops. Dis. Treat. 2016, 12, 1869. [Google Scholar]
- Zimmermann, M.B. The Importance of Adequate Iodine during Pregnancy and Infancy. World Rev. Nutr. Diet 2016, 115, 118–124. [Google Scholar] [PubMed]
- Chen, R.; Li, Q.; Cui, W.; Wang, X.; Gao, Q.; Zhong, C.; Sun, G.; Chen, X.; Xiong, G.; Yang, X. Maternal iodine insufficiency and excess are associated with adverse effects on fetal growth: A prospective cohort study in Wuhan, China. J. Nutr. 2018, 148, 1814–1820. [Google Scholar] [CrossRef] [Green Version]
- McKeating, D.R.; Fisher, J.J.; Perkins, A.V. Elemental metabolomics and pregnancy outcomes. Nutrients 2019, 11, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hynes, K.L.; Seal, J.A.; Otahal, P.; Oddy, W.H.; Burgess, J.R. Women remain at risk of iodine deficiency during pregnancy: The importance of iodine supplementation before conception and throughout gestation. Nutrients 2019, 11, 172. [Google Scholar] [CrossRef] [Green Version]
- Amorós, R.; Murcia, M.; Ballester, F.; Broberg, K.; Iñiguez, C.; Rebagliato, M.; Skröder, H.; González, L.; Lopez-Espinosa, M.-J.; Llop, S. Selenium status during pregnancy: Influential factors and effects on neuropsychological development among Spanish infants. Sci. Total Environ. 2018, 610, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W.; Ahmadi, K.R.; Rayman, M.P. Genetic polymorphisms that affect selenium status and response to selenium supplementation in United Kingdom pregnant women. Am. J. Clin. Nutr. 2016, 103, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Yang, B.; Xu, J.; Liu, Z.; Yan, C.; Zhang, J.; Li, S.; Shen, X. Associations of Internal-Migration Status with Maternal Exposure to Stress, Lead, and Selenium Deficiency Among Pregnant Women in Shanghai, China. Biol. Trace Elem. Res. 2019, 190, 309–317. [Google Scholar] [CrossRef]
- Bocca, B.; Ruggieri, F.; Pino, A.; Rovira, J.; Calamandrei, G.; Martínez, M.Á.; Domingo, J.L.; Alimonti, A.; Schuhmacher, M. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ. Res. 2019, 177, 108599. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Wang, C.; Wei, J.; Wang, D.; Jin, L.; Liu, J.; Wang, L.; Li, Z.; Ren, A.; Yin, C. Essential trace elements in placental tissue and risk for fetal neural tube defects. Environ. Int. 2020, 139, 105688. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; García-Fuentes, E.; Callejón-Leblic, B.; García-Barrera, T.; Gómez-Ariza, J.L.; Rayman, M.P.; Velasco, I. Selenium, selenoproteins and selenometabolites in mothers and babies at the time of birth. Br. J. Nutr. 2017, 117, 1304–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayman, M.P. Is Adequate Selenium Important for Healthy Human Pregnancy? In Selenium: Its Molecular Biology and Role in Human Health, 4th ed.; Hatfield, D.L., Schweizer, U., Tsuji, P.A., Gladyshev, V.N., Eds.; Springer International Publishing: Cham, Switzerland; New York, NY, USA, 2016; pp. 353–364. [Google Scholar]
- Polanska, K.; Krol, A.; Sobala, W.; Gromadzinska, J.; Brodzka, R.; Calamandrei, G.; Chiarotti, F.; Wasowicz, W.; Hanke, W. Selenium status during pregnancy and child psychomotor development—Polish Mother and Child Cohort study. Pediatr. Res. 2016, 79, 863–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholl, T.O. Maternal iron status: Relation to fetal growth, length of gestation, and iron endowment of the neonate. Nutr. Rev. 2011, 69, S23–S29. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, N.; Zhang, D.; Ren, Q.; Ganz, T.; Liu, S.; Nemeth, E. Iron homeostasis in pregnancy and spontaneous abortion. Am. J. Hematol. 2019, 94, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Viteri, F.E. Iron endowment at birth: Maternal iron status and other influences. Nutr. Rev. 2011, 69, S3–S16. [Google Scholar] [CrossRef]
- Chikakuda, A.T.; Shin, D.; Comstock, S.S.; Song, S.; Song, W.O. Compliance to prenatal iron and folic acid supplement use in relation to low birth weight in Lilongwe, Malawi. Nutrients 2018, 10, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusrawati, Y.; Defrin, D.; Karmia, H.R. Neonatal Growth, Neurotrophine, Zinc, and Ferritin Concentration in Normal and Iron Deficience Pregnancy: An Observational Analitic Study. OAMJMS 2019, 7, 1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, A.C.; Begum, S.; White, S.L.; Dalrymple, K.; Gill, C.; Alwan, N.A.; Kiely, M.; Latunde-Dada, G.; Bell, R.; Briley, A.L. Relationships between maternal obesity and maternal and neonatal iron status. Nutrients 2018, 10, 1000. [Google Scholar] [CrossRef] [Green Version]
- Vohr, B.R.; Davis, E.P.; Wanke, C.A.; Krebs, N.F. Neurodevelopment: The impact of nutrition and inflammation during preconception and pregnancy in low-resource settings. Pediatrics 2017, 139, S38–S49. [Google Scholar] [CrossRef] [Green Version]
- Cornock, R.; Gambling, L.; Langley-Evans, S.C.; McArdle, H.J.; McMullen, S. The effect of feeding a low iron diet prior to and during gestation on fetal and maternal iron homeostasis in two strains of rat. Reprod. Biol. Endocrinol. 2013, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Demuth, I.R.; Martin, A.; Weissenborn, A. Iron supplementation during pregnancy–a cross-sectional study undertaken in four German states. BMC Pregnancy Childbirth 2018, 18, 491. [Google Scholar] [CrossRef]
- Parisi, F.; di Bartolo, I.; Savasi, V.; Cetin, I. Micronutrient supplementation in pregnancy: Who, what and how much? Obstet. Med. 2019, 12, 5–13. [Google Scholar] [CrossRef]
- UNICEF; Bangladesh Gain. National Micronutrients Status Survey 2011–12; Institute of Public Health and Nutrition: Dhaka, Bangladesh, 2013; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.702.1742&rep=rep1&type=pdf (accessed on 7 June 2020).
- Stammers, A.L.; Lowe, N.M.; Medina, M.W.; Patel, S.; Dykes, F.; Pérez-Rodrigo, C.; Serra-Majam, L.; Nissensohn, M.; Moran, V.H. The relationship between zinc intake and growth in children aged 1–8 years: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2015, 69, 147–153. [Google Scholar] [CrossRef]
- Carausu, E.M.; Checherita, L.E.; Stamatin, O.; Albu, A. Study of serum and saliva biochemical levels for copper, zinc and cooper-zinc imbalance in patients with oral cancer and oral potentially malignant disorders and their prostetical and dsss (disfunctional syndrome of stomatognathic system) treatment. Rev. Chim. 2016, 67, 1832–1836. [Google Scholar]
- Escorcia, L.L.R.; Suarez-Villa, M.; Orostegui-Santander, M.A.; Lastre-Amell, G.; González, C.M.C. Zinc sérico en escolares. Rev. Cubana Ped. 2020, 92, 1–16. [Google Scholar]
- Villalpando, S.; Rivera, J.; de la Cruz, V.; García, A. Prevalence of zinc deficiency in mexican children and women of childbearing age. Ann. Nutr. Metab. 2013, 63 (Suppl. 1), 1–1960. Available online: https://static1.squarespace.com/static/56424f6ce4b0552eb7fdc4e8/t/574f349f62cd947700296898/1464808608320/Mexico_Abstract.pdf (accessed on 7 June 2020).
- Sweetman, D.U.; O’Donnell, S.M.; Lalor, A.; Grant, T.; Greaney, H. Zinc and vitamin A deficiency in a cohort of children with autism spectrum disorder. Child Care Health Dev. 2019, 45, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Vela, G.; Stark, P.; Socha, M.; Sauer, A.K.; Hagmeyer, S.; Grabrucker, A.M. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ornoy, A.; Weinstein-Fudim, L.; Ergaz, Z. Prenatal factors associated with autism spectrum disorder (ASD). Reprod. Toxicol. 2015, 56, 155–169. [Google Scholar] [CrossRef]
- Volpe, J.J. Iron and zinc: Nutrients with potential for neurorestoration in premature infants with cerebral white matter injury. J. Neonatal. Perinatal. Med. 2019, 12, 365–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, C.M.; Heaney, R.P. Calcium. In Modern Nutrition in Health Disease, 11th ed.; Ross, A.C., Caballero, B., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014; pp. 133–149. [Google Scholar]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Mosha, D.; Liu, E.; Hertzmark, E.; Chan, G.; Sudfeld, C.; Masanja, H.; Fawzi, W. Dietary iron and calcium intakes during pregnancy are associated with lower risk of prematurity, stillbirth and neonatal mortality among women in Tanzania. Public Health Nutr. 2017, 20, 678–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, F.R. Calcium and Phosphorus and the Preterm Infant. NeoReviews 2016, 17, e195–e202. [Google Scholar] [CrossRef]
- Zhukovskaya, E.; Karelin, A.; Rumyantsev, A. Neurocognitive Dysfunctions in Iron Deficiency Patients. In Iron Deficiency Anemia; Rodrigo, L., Ed.; IntechOpen: London, UK, 2019; pp. 83–113. [Google Scholar]
- Mihatsch, W.; Fewtrell, M.; Goulet, O.; Molgaard, C.; Picaud, J.C.; Senterre, T. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium. Clin. Nutr. 2018, 37, 2360–2365. [Google Scholar] [CrossRef] [Green Version]
- Ambadkar, A.; Prasad, M.; Chauhan, A.R. Neonatal Effects of Maternal Magnesium Sulphate in Late Preterm and Term Pregnancies. J. Obstet. Gyneaecol. India 2019, 69, 25–30. [Google Scholar] [CrossRef]
- de Araújo, C.A.L.; Ray, J.G.; Figueiroa, J.N.; Alves, J.G. BRAzil magnesium (BRAMAG) trial: A double-masked randomized clinical trial of oral magnesium supplementation in pregnancy. BMC Pregnancy Childbirth 2020, 20, 234. [Google Scholar] [CrossRef] [Green Version]
- Verkaik-Kloosterman, J.; Buurma-Rethans, E.J.M.; Dekkers, A.L.M.; van Rossum, C.T.M. Decreased, but still sufficient, iodine intake of children and adults in the Netherlands. Brit. J. Nutr. 2017, 117, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, P.; Dalili, H.; Mehrabi, Y.; Hedayati, M.; Mirmiran, P.; Azizi, F. Breast milk iodine concentration rather than maternal urinary iodine is a reliable indicator for monitoring iodine status of breastfed neonates. Biol. Trace Elem. Res. 2018, 185, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, D.; Wu, W.; Li, H.; Cao, L.; Xu, J.; Yu, X.; Bian, X.; Yan, C.; Wang, W. Relationship between iodine concentration in maternal colostrum and neurobehavioral development of infants in Shanghai, China. J. Child Neurol. 2016, 31, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Tam, E.; Keats, E.C.; Rind, F.; Das, J.K.; Bhutta, Z.A. Micronutrient Supplementation and Fortification Interventions on Health and Development Outcomes among Children Under-Five in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 289. [Google Scholar] [CrossRef] [Green Version]
- Harding, K.B.; Peña-Rosas, J.P.; Webster, A.C.; Yap, C.M.Y.; Payne, B.A.; Ota, E.; De-Regil, L.M. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst. Rev. 2017, 3, 1–138. [Google Scholar] [CrossRef] [PubMed]
- Hynes, K.L.; Otahal, P.; Burgess, J.R.; Oddy, W.H.; Hay, I. Reduced Educational Outcomes Persist into Adolescence Following Mild Iodine Deficiency in Utero, Despite Adequacy in Childhood: 15-Year Follow-Up of the Gestational Iodine Cohort Investigating Auditory Processing Speed and Working Memory. Nutrients 2017, 9, 1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehri, A. Trace elements in human nutrition (II)—An update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [PubMed]
- Jin, Y.; Coad, J.; Weber, J.L.; Thomson, J.S.; Brough, L. Selenium intake in iodine-deficient pregnant and breastfeeding women in New Zealand. Nutrients 2019, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, M.L.; Carreras, O.; Díaz-Castro, J.; Murillo, M.L.; Nogales, F. High-and low-selenium diets affect endocrine energy balance during early programming. Toxicol. Appl. Pharmacol. 2019, 382, 114744. [Google Scholar] [CrossRef] [PubMed]
- Stuss, M.; Michalska-Kasiczak, M.; Sewerynek, E. The role of selenium in thyroid gland pathophysiology. Endokrynol. Pol. 2017, 68, 440–465. [Google Scholar] [CrossRef]
- Pelkic, K.O.; Sobocan, M.; Takac, L. Low selenium levels in amniotic fluid correlate with small-for-gestacional age newborns. Nutrients 2020, 12, 3046. [Google Scholar] [CrossRef] [PubMed]
- Greminger, A.R.; Lee, D.L.; Shrager, P.; Mayer-Pröschel, M. Gestational iron deficiency differentially alters the structure and function of white and gray matter brain regions of developing rats. J. Nutr. 2014, 144, 1058–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, C.; Watson, C.; Crowley, E.; Gilroy, M.; Page, D.; Weber, K.; Messina, D.; Cormack, B. Vitamin and Mineral Supplementation Practices in Preterm Infants: A Survey of Australian and New Zealand Neonatal Intensive and Special Care Units. Nutrients 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonnerdal, B. Development of iron homeostasis in infants and young children. Am. J. Clin. Nutr. 2017, 106, 1575S–1580S. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Qian, S.Y.; Li, Z.; Zhang, Z.Z. Effect of zinc supplementation on infants with severe pneumonia. World J. Pediatrics 2016, 12, 166–169. [Google Scholar] [CrossRef]
- Pedraza, D.F.; Sales, M.C. Brazilian studies on zinc deficiency and supplementation: Emphasis on children. Rev. Bras. Saúde Matern. Infant. 2017, 17, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, P.; Apoorva, P.S.; Kathiravan, K.; Ramachandran, P. To study zinc deficiency as a risk factor for febrile convulsions. J. Evol. Med. Dent. Sci. 2019, 8, 1208–1212. [Google Scholar] [CrossRef]
- Rodríguez-Carmona, Y.; Denova-Gutiérrez, E.; Sánchez-Uribe, E.; Muñoz-Aguirre, P.; Flores, M.; Salmerón, J. Zinc Supplementation and Fortification in Mexican Children. Food Nutr. Bull. 2020, 41, 89–101. [Google Scholar] [CrossRef]
- Pedraza, D.F.; Rocha, A.C.; Sales, M.C. Micronutrient deficiencies and linear growth: A systematic review of observational studies. Cienc. Saude Coletiva 2013, 18, 3333–3347. [Google Scholar] [CrossRef] [Green Version]
- Mughal, M.Z.; Calder, A.; Blair, M.; Julies, P.; Pall, K.; Lynn, R.; McDonnell, C.; McDevitt, H.; Shaw, N.J. Dietary calcium deficiency contributes to the causation of nutritional rickets (NR) in the United Kingdom (UK): Data from the British Paediatric Surveillance Unit (BPSU) NR survey. In 8th International Conference on Children. BioScientifica 2017, 6, 1–10. [Google Scholar]
- Takahashi, K.; Tanaka, K.; Nakamura, Y.; Okubo, H.; Sasaki, S.; Arakawa, M.; Miyake, Y. Calcium intake during pregnancy is associated with decreased risk of emotional and hyperactivity problems in five-year-old Japanese children. Nutr. Neurosci. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hofmeyr, G.J.; Lawrie, T.A.; Atallah, A.N.; Duley, L.; Torloni, M.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst. Rev. 2014, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.D.; McFarlin, B.L.; Steffen, A.D.; Tussing-Humphreys, L.; Giurgescu, C.; Engeland, C.G.; Kominiarek, M.A.; Ciezczak-Karpiel, C.; O’Brien, W.D.; White-Traut, R. Decreased Nutrient Intake Is Associated With Premature Cervical Remodeling. J. Obstet. Gynecol. Neonatal. Nurs. 2017, 46, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’Amato, G. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front. Pediatr. 2019, 7, 143. [Google Scholar] [CrossRef]
- Alrakaf, H.S. Oral Histopathological Changes in Premature Infants. EC Dent. Sci. 2019, 18, 866–871. [Google Scholar]
- Nahar, Q.; Chouldhury, S.; Faruque, M.; Sultana, S.; Siddiquee, M. Desirable Dietary Pattern for Bangladesh; Final Research Results; Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders: Dhaka, Bangladesh, 2013; Volume 3, pp. 227–244. [Google Scholar]
- Bachnas, M.A.; Akbar, M.I.A.; Dachlan, E.G.; Dekker, G. The role of magnesium sulfate (MgSO4) in fetal neuroprotection. J. Matern. Fetal Neonatal. Med. 2019, 1–13. [Google Scholar] [CrossRef]
Mineral | General Characteristics | Influence of Minerals on Pregnancy and Fetal Development | Influence of Minerals on Child Growth and Development |
---|---|---|---|
Iodine | thyroid hormones [15,16] brain development [55] redox balance [20] relationship with selenium [21] | neuronal development of children [19] mental retardation [17,58] fetal hypothyroidism [17,19,20,21,56] | delay in development [97] association with autism [98] association with attention deficit [98] association with hyperactivity disorder [98] drop in IQ points [2,55] results of alphabetization [99] |
Selenium | antioxidant activity [21] action in the immune system [16,26] present in the thyroid gland [22] | intolerance to glucose [29,59,60,61] alterations in the lipidic profile [29,59,60,61] mental and psychomotor delay [29,59,60,61] oxidative stress in the mother and the fetus [61] premature birth, miscarriage [62] problems in the neural tube of the newborn [63] | oxidative stress in the premature [43] triggers cardiovascular problems [29] insulin resistance [29] neuronal disorders [22,23,76,103] secretion (increase) of insulin [104] |
Iron | oxygen transport [30,31,32] production of erythrocytes [30,31,32] transport of enzymes [30,31,32] maintenance of the immune system [30,31,32] synaptogenesis [33,71] synthesis of neurotransmitters [33,71] synthesis of neurotrophin [33,71] myelinization [33,71] | premature birth or low birth weight [32,34,69] miscarriages during the first trimester 68] reduction in fetal growth and weight [31,34] neuronal changes [34,35,72,73] association is negative in obese pregnant [72] oxidative stress, risk of pre-eclampsia [69] incidence of insulin resistance in pregnancy [57,76] diabetes mellitus type 2 in pregnancy [57,76] | delayed speech [90] delays in development [90] behavioral disorders [90] obese children, neurodegenerative diseases [90] |
Zinc | regulation of T-helper cytokines [82] participates in neurogenesis [83] cognitive development [83] maintains brain function [83] located in the bones and skeleton muscles [40] | premature birth [78] complications at childbirth [82] neurological deficits [85] | infections and nanism [78] functions in natural barriers in the skin and mucosas [108] morbimortality at birth [109] increased severity of infectious diseases [109] growth deficit [109] physiological alterations [109] |
Calcium | functions in bone tissue [45] signal transduction [86] muscular contraction [86] enzymatic regulation [86] blood coagulation [86] | premature birth [86] pre-eclampsia [86] restriction of intra-uterine growth [87] low weight at birth [87] | nutritional rickets [115] bone demineralization [116,117] dental enamel hypoplasia [118] emotional problems and hyperactivity [114] |
Magnesium | formation of Mg-ATP [51] protein synthesis [52] synthesis and degradation of DNA [52] anaerobic phosphorylation of glucose [52] mitochondrial oxidative metabolism [52] antioxidant effect [54] part of the parathyroid gland [13] bone remodeling [13] | severe pre-eclampsia [91] premature birth [93] apgar scores in the newborn [93] hypoxic-ischemic encephalopathy [93] | hypoparathyroidism [13] hypocalcemia [13] impaired bone growth [13] cognitive capacity and processing [52] lack of concentration [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farias, P.M.; Marcelino, G.; Santana, L.F.; de Almeida, E.B.; Guimarães, R.d.C.A.; Pott, A.; Hiane, P.A.; Freitas, K.d.C. Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules 2020, 25, 5630. https://doi.org/10.3390/molecules25235630
Farias PM, Marcelino G, Santana LF, de Almeida EB, Guimarães RdCA, Pott A, Hiane PA, Freitas KdC. Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules. 2020; 25(23):5630. https://doi.org/10.3390/molecules25235630
Chicago/Turabian StyleFarias, Patricia Miranda, Gabriela Marcelino, Lidiani Figueiredo Santana, Eliane Borges de Almeida, Rita de Cássia Avellaneda Guimarães, Arnildo Pott, Priscila Aiko Hiane, and Karine de Cássia Freitas. 2020. "Minerals in Pregnancy and Their Impact on Child Growth and Development" Molecules 25, no. 23: 5630. https://doi.org/10.3390/molecules25235630
APA StyleFarias, P. M., Marcelino, G., Santana, L. F., de Almeida, E. B., Guimarães, R. d. C. A., Pott, A., Hiane, P. A., & Freitas, K. d. C. (2020). Minerals in Pregnancy and Their Impact on Child Growth and Development. Molecules, 25(23), 5630. https://doi.org/10.3390/molecules25235630