Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors
Abstract
:1. Introduction
2. Aptamer Timeline
3. Aptamers Targeting Small Molecules
4. Importance of Aptamer in FET Biosensors
4.1. FET Biosensors: Working Principles and Limitations
4.2. Aptamers: Sensing Elements Overcoming Limitations of FET Biosensors
5. Predicting Future Prospects of Aptamers in FET Biosensors
5.1. Aptamers as Bio-Receptors in FET Biosensors for Small Molecule Detection
5.2. Aptamers as Bio-Amplifiers for FET Biosensors
Funding
Conflicts of Interest
References
- Dahm, R. Discovering DNA: Friedrich Miescher and the Early Years of Nucleic Acid Research. Hum. Genet. 2008, 122, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro Selection of RNA Molecules that Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, Solutions and Prospects. Acta Naturae 2013, 5, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Aptamer-Based Detection of Plasma Proteins by an Electrochemical Assay Coupled to Magnetic Beads. Anal. Chem. 2007, 79, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Tombelli, S.; Minunni, M.; Mascini, M. Aptamers-Based Assays for Diagnostics, Environmental and Food Analysis. Biomol. Eng. 2007, 24, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Khung, Y.L.; Narducci, D. Synergizing Nucleic Acid Aptamers with 1-dimensional Nanostructures as Label-free Field-effect Transistor Biosensors. Biosens. Bioelectron. 2013, 50, 278–293. [Google Scholar] [CrossRef]
- Ngundi, M.M.; Kulagina, N.V.; Anderson, G.P.; Taitt, C.R. Nonantibody-Based Recognition- Alternative Molecules for Detection of Pathogens. Expert Rev. Proteomics 2006, 3, 511–524. [Google Scholar] [CrossRef]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. FluMag-SELEX as an Advantageous Method for DNA Aptamer Selection. Anal. Bioanal. Chem. 2005, 383, 83–91. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Z.; Lu, Y. Functional Nucleic Acid Sensors. Chem. Rev. 2009, 109, 1948–1998. [Google Scholar] [CrossRef] [Green Version]
- Baird, G.S. Where Are All the Aptamers? Am. J. Clin. Pathol. 2010, 134, 529–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitsche, A.; Kurth, A.; Dunkhorst, A.; Panke, O.; Sielaff, H.; Junge, W.; Muth, D.; Scheller, F.; Stocklein, W.; Dahmen, C.; et al. One-Step Selection of Vaccinia Virus-Binding DNA Aptamers by MonoLEX. BMC Biotechnol. 2007, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wlotzka, B.; Leva, S.; Eschgfaller, B.; Burmeister, J.; Kleinjung, F.; Kaduk, C.; Muhn, P.; Hess-Stumpp, H.; Klussmann, S. In Vivo Properties of an Anti-GnRH Spiegelmer: An Example of an Oligonucleotide-Based Therapeutic Substance Class. Proc. Natl. Acad. Sci. USA 2002, 99, 8898–8902. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.; Qian, J.; Xiao, Y.; Viel, L.; Gerdon, A.E.; Lagally, E.T.; Atzberger, B.; Tarasow, T.M.; Heeger, A.J.; Soh, H.T. Micromagnetic Selection of Aptamers in Microfluidic Channels. Proc. Natl. Acad. Sci. USA 2009, 106, 2989–2994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowser, M.T. SELEX: Just Another Separation? Analyst 2005, 130, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Kluβmann, S.; Nolte, A.; Bald, R.; Erdmann, V.A.; Furste, J.P. Mirror-Image RNA That Binds D-Adenosine. Nat. Biotechnol. 1996, 14, 1112–1115. [Google Scholar] [CrossRef]
- Nolte, A.; Kluβmann, S.; Bald, R.; Erdmann, V.A.; Furste, J.P. Mirror-Design of L-Oligonucleotide Ligands Binding to L-Arginine. Nat. Biotechnol. 1996, 14, 1116–1119. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, W.; Jia, S.; Guan, Z.; Yang, C.J.; Zhu, Z. Microfluidic Approaches to Rapid and Efficient Aptamer Selection. Biomicrofluidic 2014, 8, 041501. [Google Scholar] [CrossRef]
- Ali, M.H.; Elsherbiny, M.E.; Emara, M. Updates on Aptamer Research. Int. J. Mol. Sci. 2019, 20, 2511. [Google Scholar] [CrossRef] [Green Version]
- Damase, T.R.; Miura, T.A.; Parent, C.E.; Allen, P.B. Application of the Open qPCR Instrument for the In Vitro Selection of DNA Aptamers Against Epidermal Growth Factor Receptor and Drosophila C Virus. ACS. Comb. Sci. 2018, 20, 45–54. [Google Scholar] [CrossRef]
- Hoon, S.; Zhou, B.; Janda, K.D.; Brenner, S.; Scolnick, J. Aptamer Selection by High-Throughput Sequencing and Informatic Analysis. Biotechniques 2011, 51, 413–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonsa, S.D.; Bowser, M.T. In Vitro Evolution of Functional DNA Using Capillary Electrophoresis. J. Am. Chem. Soc. 2004, 126, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Drabovich, A.; Berezovski, M.; Krylov, S.N. Selection of Smart Aptamers by Equilibrium Capillary Electrophoresis of Equilibrium Mixtures (ECEEM). J. Am. Chem. Soc. 2005, 127, 11224–11225. [Google Scholar] [CrossRef] [PubMed]
- Berezovski, M.V.; Musheev, M.U.; Drabovich, A.P.; Jitkova, J.V.; Krylov, S.N. Non-Selex: Selection of Aptamers Without Intermediate Amplification of Candidate Oligonucleotides. Nat. Protoc. 2006, 1, 1359–1369. [Google Scholar] [CrossRef]
- Peng, L.; Stephens, B.J.; Bonin, K.; Cubicciotti, R.; Guthold, M. Combined Atomic Force/Fluorescence Microscopy Technique to Select Aptamers in a Single Cycle from a Small Pool of Random Oligonucleotides. Microsc. Res. Tech. 2007, 70, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Szeto, K.; Latulippe, D.R.; Ozer, A.; Pagano, J.M.; White, B.S.; Shalloway, D.; Lis, J.T.; Craighead, H.G. RAPID-SELEX for RNA Aptamers. PLoS ONE 2013, 8, e82667. [Google Scholar] [CrossRef] [Green Version]
- Ouellet, E.; Foley, J.H.; Conway, E.M.; Haynes, C. Hi-Fi SELEX: A High-Fidelity Digital-PCR Based Therapeutic Aptamer Discovery Platform. Biotechnol. Bioeng. 2015, 112, 1506–1522. [Google Scholar] [CrossRef]
- Hamula, C.L.A.; Guthrie, J.W.; Zhang, H.; Li, X.-F.; Le, X.C. Selection and Analytical Applications of Aptamers. Trends Anal. Chem. 2006, 25, 681–691. [Google Scholar] [CrossRef]
- Hanif, A.; Farooq, R.; Rehman, M.U.; Khan, R.; Majid, S.; Ganaie, M.A. Aptamer Based Nanobiosensors: Promising Healthcare Devices. Saudi Pharm. J. 2019, 27, 312–319. [Google Scholar] [CrossRef]
- Oliphant, A.R.; Brandl, C.J.; Struhl, K. Defining the Sequence Specificity of DNA-Binding Proteins by Selecting Binding Sites from Random-Sequence Oligonucleotides: Analysis of Yeast GCN4 Protein. Mol. Cell. Biol. 1989, 9, 2944–2949. [Google Scholar] [CrossRef]
- Schneider, D.; Tuerk, C.; Gold, L. Selection of High Affinity RNA Ligands to The Bacteriophage R17 Coat Protein. J. Mol. Biol. 1992, 228, 862–869. [Google Scholar] [CrossRef]
- Peterson, E.T.; Blank, J.; Sprinzl, M.; Uhlenbeck, O.C. Selection for Active E. coli tRNAPhe Variants from a Randomized Library Using Two Proteins. EMBO J. 1993, 12, 2959–2967. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.T.; Pan, T.; Coleman, J.; Uhlenbeck, O.C. In Vitro Selection of Small RNAs that Bind to Escherichia coli Phenylalanyl-tRNA Synthetase. J. Mol. Biol. 1994, 242, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Ringquist, S.; Jones, T.; Snyder, E.E.; Gibson, T.; Boni, I.; Gold, L. High-Affinity RNA Ligands to Escherichia Coli Ribosomes and Ribosomal Protein S1: Comparison of Natural and Unnatural Binding Sites. Biochemistry 1995, 34, 3640–3648. [Google Scholar] [CrossRef]
- Tsai, D.E.; Harper, D.S.; Keene, J.D. U1-snRNP-A Protein Selects a Ten Nucleotide Consensus Sequence from a Degenerate RNA Pool Presented in Various Structural Contexts. Nucleic Acids Res. 1991, 19, 4931–4936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, T.D.; Gao, F.; King, P.H.; Andrews, L.G.; Keene, J.D. Hel-N1: An Autoimmune RNA-Binding Protein with Specificity for 3’ Uridylate-Rich Untranslated Regions of Growth Factor mRNAs. Mol. Cell. Biol. 1993, 13, 3494–3504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jellinek, D.; Lynott, C.K.; Rifkin, D.B.; Janjic, N. High-Affinity RNA Ligands to Basic Fibroblast Growth Factor Inhibit Receptor Binding. Proc. Natl. Acad. Sci. USA 1993, 90, 11227–11231. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Adya, N.; Wagner, S.; Giam, C.-Z.; Green, M.R.; Ellington, A.D. Dissecting Protein: Protein Interactions Between Transcription Factors with an RNA Aptamer. RNA 1995, 1, 317–326. [Google Scholar]
- Chen, H.; Gold, L. Selection of High-Affinity RNA Ligands to Reverse Transcriptase: Inhibition of cDNA Synthesis and RNase H Activity. Biochemistry 1994, 33, 8746–8756. [Google Scholar] [CrossRef]
- Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of Single-Stranded DNA Molecules that Bind and Inhibit Human Thrombin. Nature 1992, 355, 564–566. [Google Scholar] [CrossRef]
- Tasset, D.M.; Kubik, M.F.; Steiner, W. Oligonucleotide Inhibitors of Human Thrombin that Bind Distinct Epitopes. J. Mol. Biol. 1997, 272, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Kubik, M.F.; Stephens, A.W.; Schneider, D.; Marlar, R.A.; Tasset, D. High-Affinity RNA Ligands to Human α-Thrombin. Nucleic Acids Res. 1994, 22, 2619–2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuerk, C.; MacDougal-Waugh, S. In Vitro Evolution of Functional Nucleic Acids: High-Affinity RNA Ligands of HIV-1 Proteins. Gene 1993, 137, 33–39. [Google Scholar] [CrossRef]
- Bartel, D.P.; Zapp, M.L.; Green, M.R.; Szostak, J.W. HIV-1 Rev Regulation Involves Recognition of Non-Watson-Crick Base Pairs in Viral RNA. Cell 1991, 67, 529–536. [Google Scholar] [CrossRef]
- Tuerk, C.; MacDougal, S.; Gold, L. RNA Pseudoknots that Inhibit Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Proc. Natl. Acad. Sci. USA 1992, 89, 6988–6992. [Google Scholar] [CrossRef] [Green Version]
- Andreola, M.-L.; Pileur, F.; Calmels, C.; Ventura, M.; Tarrago-Litvak, L.; Toulme, J.-J.; Litvak, S. DNA Aptamers Selected Against the HIV-1 RNase H Display in Vitro Antiviral Activity. Biochemistry 2001, 40, 10087–10094. [Google Scholar] [CrossRef]
- De Soultrait, V.R.; Lozach, P.-Y.; Altmeyer, R.; Tarrago-Litvak, L.; Litvak, S.; Andreola, M.-L. DNA Aptamers Derived from HIV-1 RNase H Inhibitors Are Strong Anti-Integrase Agents. J. Mol. Biol. 2002, 324, 195–203. [Google Scholar] [CrossRef]
- Joshi, P.J.; North, T.W.; Prasad, V.R. Aptamers Directed to HIV-1 Reverse Transcriptase Display Greater Efficacy over Small Hairpin RNAs Targeted to Viral RNA in Blocking HIV-1 Replication. Mol. Ther. 2005, 11, 677–686. [Google Scholar] [CrossRef]
- Kissel, J.D.; Held, D.M.; Hardy, R.W.; Burke, D.H. Single-Stranded DNA Aptamer RT1t49 Inhibits RT Polymerase and RNase H Functions of HIV Type 1, HIV Type 2, and SIVCPZ RTs. AIDS Res. Hum. Retrovir. 2007, 23, 699–708. [Google Scholar] [CrossRef]
- Kissel, J.D.; Held, D.M.; Hardy, R.W.; Burke, D.H. Active Site Binding and Sequence Requirements for Inhibition of HIV-1 Reverse Transcriptase by the RT1 Family of Single-Stranded DNA Aptamers. Nucleic Acids Res. 2007, 35, 5039–5050. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Pothukuchy, A.; Syrett, A.; Husain, N.; Gopalakrisha, S.; Kosaraju, P.; Ellington, A.D. Aptamers that Recognize Drug-Resistant HIV-1 Reverse Transcriptase. Nucleic Acids Res. 2008, 36, 6739–6751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiang, Y.-C.; Ou, C.-M.; Chen, S.-J.; Ou, T.-Y.; Lin, H.-J.; Huang, C.-C.; Chang, H.-T. Highly Efficient Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase by Aptamers Functionalized Gold Nanoparticles. Nanoscale 2013, 5, 2756–2764. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, J.; Nilsen-Hamilton, M. Aptamers: Multifunctional Molecules for Biomedical Research. J. Mol. Med. 2013, 91, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Groff, K.; Brown, J.; Clippinger, A.J. Modern Affinity Reagents: Recombinant Antibodies and Aptamers. Biotechnol. Adv. 2015, 33, 1787–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.-P. Recent Advances in Aptamers Targeting Immune System. Inflammation 2017, 40, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Majerfeld, I.; Yarus, M. An RNA Pocket for an Aliphatic Hydrophobe. Nat. Struct. Mol. Biol. 1994, 1, 287–292. [Google Scholar] [CrossRef]
- Majerfeld, I.; Yarus, M. Isoleucine: RNA Sites with Associated Coding Sequences. RNA 1998, 4, 471–478. [Google Scholar]
- Famulok, M.; Szostak, J.W. Stereospecific Recognition of Tryptophan Agarose by In Vitro Selected RNA. J. Am. Chem. Soc. 1992, 114, 3990–3991. [Google Scholar] [CrossRef]
- Famulok, M. Molecular Recognition of Amino Acids by RNA-Aptamers: An L-Citrulline Binding RNA Motif and Its Evolution into an L-Arginine Binder. J. Am. Chem. Soc. 1994, 116, 1698–1706. [Google Scholar] [CrossRef]
- Wallis, M.G.; Ahsen, U.V.; Schroeder, R.; Famulok, M. A Novel RNA Motif for Neomycin Recognition. Chem. Biol. 1995, 2, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Rando, R.R. Specific Binding of Aminoglycoside Antibiotics to RNA. Chem. Biol. 1995, 2, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Wallace, S.T.; Schroeder, R. In Vitro Selection and Characterization of Streptomycin-Binding RNAs: Recognition Discrimination Between Antibiotics. RNA 1998, 4, 112–123. [Google Scholar] [PubMed]
- Wallis, M.G.; Streicher, B.; Wank, H.; Ahsen, U.V.; Clodi, E.; Wallace, S.T.; Famulok, M.; Schroeder, R. In Vitro Selection of a Viomycin-Binding RNA Pseudoknot. Chem. Biol. 1997, 4, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Lato, S.M.; Boles, A.R.; Ellington, A.D. In Vitro Selection of RNA Lectins: Using Combinatorial Chemistry to Interpret Ribozyme Evolution. Chem. Biol. 1995, 2, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Connell, G.J.; Yarus, M. RNAs with Dual Specificity and Dual RNAs with Similar Specificity. Science 1994, 264, 1137–1141. [Google Scholar] [CrossRef]
- Lorsch, J.R.; Szostak, J.W. In Vitro Selection of RNA Aptamers Specific for Cyanocobalamin. Biochemistry 1994, 33, 973–982. [Google Scholar] [CrossRef]
- Kiga, D.; Futamura, Y.; Sakamoto, K.; Yokoyama, S. An RNA Aptamer to the Xanthine/Guanine Base with a Distinctive Mode of Purine Recognition. Nucleic Acids Res. 1998, 26, 1755–1760. [Google Scholar] [CrossRef]
- Burgstaller, P.; Famulok, M. Isolation of RNA Aptamers for Biological Cofactors by In Vitro Selection. Angew. Chem. Int. Ed. Engl. 1994, 33, 1084–1087. [Google Scholar] [CrossRef]
- Mannironi, C.; Nardo, A.D.; Fruscoloni, P.; Tocchini-Valentini, G.P. In Vitro Selection of Dopamine RNA Ligands. Biochemistry 1997, 36, 9726–9734. [Google Scholar] [CrossRef]
- Holeman, L.A.; Robinson, S.L.; Szostak, J.W.; Wilson, C. Isolation and Characterization of Fluorophore-Binding RNA Aptamers. Fold. Des. 1998, 3, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Jenison, R.D.; Gill, S.C.; Pardi, A.; Polisky, B. High-Resolution Molecular Discrimination by RNA. Science 1994, 263, 1425–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Famulok, M. Oligonucleotide Aptamers that Recognize Small Molecules. Curr. Opin. Struct. Biol. 1999, 9, 324–329. [Google Scholar] [CrossRef]
- Batey, R.T.; Rambo, R.P.; Doudna, J.A. Tertiary Motifs in RNA Structure and Folding. Angew. Chem. Int. Ed. 1999, 38, 2326–2343. [Google Scholar] [CrossRef]
- Ruscito, A.; DeRosa, M.C. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications. Front. Chem. 2016, 4, 14. [Google Scholar] [CrossRef]
- McKeague, M.; DeRosa, M.C. Challenges and Opportunities for Small Molecule Aptamer Development. J. Nucleic Acids 2012, 2012, 748913. [Google Scholar] [CrossRef]
- Mascini, M.; Palchetti, I.; Tombelli, S. Nucleic Acid and Peptide Aptamers: Fundamentals and Bioanalytical Aspects. Angew. Chem. Int. Ed. 2012, 51, 1316–1332. [Google Scholar] [CrossRef]
- Alsager, O.A.; Kumar, S.; Willmott, G.R.; MacNatty, K.P.; Hodgkiss, J.M. Small Molecule Detection in Solution via the Size Contraction Response of Aptamer Functionalized Nanoparticles. Biosens. Bioelectron. 2014, 57, 262–268. [Google Scholar] [CrossRef]
- Elshafey, R.; Siaj, M.; Zourob, M. DNA Aptamers Selection and Characterization for Development of Label-Free Impedimetric Aptasensor for Neurotoxin Anatoxin-A. Biosens. Bioelectron. 2015, 68, 295–302. [Google Scholar] [CrossRef]
- Eissa, S.; Siaj, M.; Zourob, M. Aptamer-Based Competitive Electrochemical Biosensor for Brevetoxin-2. Biosens. Bioelectron. 2015, 69, 148–154. [Google Scholar] [CrossRef]
- Williams, R.M.; Kulick, A.R.; Yedlapalli, S.; Battistella, L.; Hajiran, C.J.; Sooter, L.J. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil. J. Nucleic Acids 2014, 2014, 102968. [Google Scholar] [CrossRef] [Green Version]
- Han, S.R.; Yu, J.; Lee, S.-W. In Vitro Selection of RNA Aptamers that Selectively Bind Danofloxacin. Biochem. Biophys. Res. Commun. 2014, 448, 397–402. [Google Scholar] [CrossRef]
- Kiani, Z.; Shafiei, M.; Rahimi-Moghaddam, P.; Karkhane, A.A.; Ebrahimi, S.A. In Vitro Selection and Characterization of Deoxyribonucleic Acid Aptamers for Digoxin. Anal. Chim. Acta 2012, 748, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-H.; Lee, L.-P.; Min, J.-R.; Lim, M.-W.; Jeong, S.-H. An Indirect Competitive Assay-Based Aptasensor for Detection of Oxytetracycline in Milk. Biosens. Bioelectron. 2014, 51, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Reinemann, C.; Fritsch, U.F.V.; Rudolph, F.; Strehlitz, B. Generation and Characterization of Quinolone-Specific DNA Aptamers Suitable for Water Monitoring. Biosens. Bioelectron. 2016, 77, 1039–1047. [Google Scholar] [CrossRef]
- Purschke, W.G.; Hoehlig, K.; Buchner, K.; Zboralski, D.; Schwoebel, F.; Vater, A.; Klussmann, S. Identification and Characterization of a Mirror-Image Oligonucleotide that Binds and Neutralizes Sphingosine 1-Phosphate, a Central Mediator of Angiogenesis. Biochem. J. 2014, 462, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Huang, Y.; Duan, N.; Wu, S.; Xia, Y.; Ma, X.; Zhu, C.; Jiang, Y.; Wang, Z. Screening and Identification of DNA Aptamers Against T-2 Toxin Assisted by Graphene Oxide. J. Agric. Food Chem. 2014, 62, 10368–10374. [Google Scholar] [CrossRef]
- Dolgosheina, E.V.; Jeng, S.C.Y.; Panchapakesan, S.S.S.; Cojocaru, R.; Chen, P.S.K.; Wilson, P.D.; Hawkins, N.; Wiggins, P.A.; Unrau, P.J. RNA Mango Aptamer-Fluorophore: A Bright, High-Affinity Complex for RNA Labeling and Tracking. ACS Chem. Biol. 2014, 9, 2412–2420. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Duan, N.; Wu, S.; Ma, X.; Xia, Y.; Zhu, C.; Jiang, Y.; Wang, Z. Selection and Identification of ssDNA Aptamers Recognizing Zearalenone. Anal. Bioanal. Chem. 2013, 405, 6573–6581. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-Y.; Lee, S.; Jo, M.; Kang, J.; Kim, E.; Jeong, O.C.; Laurell, T.; Kim, S. Sol–Gel Derived Nanoporous Compositions for Entrapping Small Molecules and Their Outlook Toward Aptamer Screening. Anal. Chem. 2012, 84, 2647–2653. [Google Scholar] [CrossRef] [PubMed]
- Kammer, M.N.; Olmsted, I.R.; Kussrow, A.K.; Morris, M.J.; Jackson, G.W.; Bornhop, D.J. Characterizing Aptamer Small Molecule Interactions with Backscattering Interferometry. Analyst 2014, 139, 5879–5884. [Google Scholar] [CrossRef] [PubMed]
- Entzian, C.; Schubert, T. Studying Small Molecule–Aptamer Interactions Using MicroScale Thermophoresis (MST). Methods 2016, 97, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Frost, N.R.; McKeague, M.; Falcioni, D.; DeRosa, M.C. An In Solution Assay for Interrogation of Affinity and Rational Minimer Design for Small Molecule-Binding Aptamers. Analyst 2015, 140, 6643–6651. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Luque, F.J.; Stich, M.; Manrubia, S.; Briones, C.; Berzal-Herranz, A. Efficient HIV-1 Inhibition by a 16 NT-Long RNA Aptamer Designed by Combining In Vitro Selection and In Silico Optimisation Strategies. Sci. Rep. 2014, 4, 6242. [Google Scholar] [CrossRef] [PubMed]
- McKeague, M.; Girolamo, A.D.; Valenzano, S.; Pascale, M.; Ruscito, A.; Velu, R.; Frost, N.A.; Hill, K.; Smith, M.; McConnell, E.M.; et al. Comprehensive Analytical Comparison of Strategies Used for Small Molecule Aptamer Evaluation. Anal. Chem. 2015, 87, 8608–8612. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.-A.; Pei, R.; Stojanovic, M.N. In Vitro Selection and Amplification Protocols for Isolation of Aptameric Sensors for Small Molecules. Methods 2016, 106, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.L.; McKeague, M.; Liang, J.C.; Smolke, C.D. Kinetic and Equilibrium Binding Characterization of Aptamers to Small Molecules Using a Label-Free, Sensitive, and Scalable Platform. Anal. Chem. 2014, 86, 3273–3278. [Google Scholar] [CrossRef]
- Perez-Gonzalez, C.; Lafontaine, D.A.; Penedo, J.C. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front. Chem. 2016, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-H.; Tsai, C.-W.; Wu, J.W.; Ruaan, R.-C.; Chen, W.-Y. Molecular Dynamics Simulation of the Induced-Fit Binding Process of DNA Aptamer and L-Argininamide. Biotechnol. J. 2012, 7, 1367–1375. [Google Scholar] [CrossRef]
- Hasegawa, H.; Savory, N.; Abe, K.; Ikebukuro, K. Methods for Improving Aptamer Binding Affinity. Molecules 2016, 21, 421. [Google Scholar] [CrossRef]
- Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int. J. Mol. Sci. 2017, 18, 2142. [Google Scholar] [CrossRef] [Green Version]
- Hassanzadeh, L.; Chen, S.; Veedu, R.N. Radiolabeling of Nucleic Acid Aptamers for Highly Sensitive Disease-Specific Molecular Imaging. Pharmaceuticals 2018, 11, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, W.; Abe, K.; Ikebukuro, K. Emerging Techniques Employed in Aptamer-Based Diagnostic Tests. Expert Rev. Mol. Diagn. 2014, 14, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Dai, S.; Wang, L. Optical Aptasensors for Quantitative Detection of Small Biomolecules: A Review. Biosens. Bioelectron. 2014, 59, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Bhardwaj, A. Biosensor Technology for Pesticides—A review. Appl. Biochem. Biotechnol. 2015, 175, 3093–3119. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Mayer, G. Selection and Biosensor Application of Aptamers for Small Molecules. Front. Chem. 2016, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.-T.; Kwon, Y.S.; Gu, M.B. Aptamer-Based Environmental Biosensors for Small Molecule Contaminants. Curr. Opin. Biotechnol. 2017, 45, 15–23. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.X.; Guo, Z.H.; Lin, J.S. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources. Molecules 2018, 23, 344. [Google Scholar] [CrossRef] [Green Version]
- Munzar, J.D.; Ng, A.; Juncker, D. Duplexed Aptamers: History, Design, Theory, and Application to Biosensing. Chem. Soc. Rev. 2019, 48, 1390–1419. [Google Scholar] [CrossRef]
- Wang, X.-H.; Wang, S. Sensors and Biosensors For the Determination of Small Molecule Biological Toxins. Sensors 2008, 8, 6045–6054. [Google Scholar] [CrossRef]
- Carolina, A.; Moraes, M.D.; Kubota, L.T. Recent Trends in Field-Effect Transistors-Based Immunosensors. Chemosensors 2016, 4, 20. [Google Scholar]
- Syu, Y.-C.; Hsu, W.-E.; Lin, C.-T. Review—Field-Effect Transistor Biosensing: Devices and Clinical Applications. ECS J. Solid State Sci. Technol. 2018, 7, Q3196–Q3207. [Google Scholar] [CrossRef]
- Sheu, J.-T.; Chen, C.C.; Chang, K.S.; Li, Y.-K. A Possibility of Detection of the Non-Charge based Analytes Using Ultra-Thin Body Field-Effect Transistors. Biosens. Bioelectron. 2008, 23, 1883–1886. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.S.; Chen, C.C.; Sheu, J.T.; Li, Y.-K. Detection of an Uncharged Steroid with a Silicon Nanowire Field-Effect Transistor. Sens. Actuators B Chem. 2009, 138, 148–153. [Google Scholar] [CrossRef]
- Park, M.; Cella, L.N.; Chen, W.; Myung, N.V.; Mulchandani, A. Carbon Nanotubes-Based Chemiresistive Immunosensor for Small Molecules: Detection of Nitroaromatic Explosives. Biosens. Bioelectron. 2010, 26, 1297–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cella, L.N.; Chen, W.; Myung, N.V.; Mulchandani, A. Single-Walled Carbon Nanotube-Based Chemiresistive Affinity Biosensors for Small Molecules: Ultrasensitive Glucose Detection. J. Am. Chem. Soc. 2010, 132, 5024–5026. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Hao, Y.; Adogla, E.A.; Yan, J.; Li, D.; Xu, K.; Wang, Q.; Hone, J.; Lin, Q. A Graphene-Based Affinity Nanosensor for Detection of Low-Charge and Low-Molecular-Weight Molecules. Nanoscale 2016, 8, 5815–5819. [Google Scholar] [CrossRef]
- Ah, C.S.; Park, C.W.; Yang, J.-H.; Lee, J.S.; Kim, W.-J.; Chung, K.H.; Choi, Y.H.; Baek, I.B.; Kim, J.; Sung, G.Y. Detection of Uncharged or Feebly Charged Small Molecules by Field-Effect Transistor Biosensors. Biosens. Bioelectron. 2012, 33, 233–240. [Google Scholar] [CrossRef]
- Himori, S.; Nishitani, S.; Sakata, T. Control of Potential Response to Small Biomolecules with Electrochemically Grafted Aryl-Based Monolayer in Field-Effect Transistor-Based Sensors. Langmuir 2019, 35, 3701–3709. [Google Scholar] [CrossRef]
- Hagen, J.A.; Kim, S.N.; Bayraktaroglu, B.; Kelley-Loughnane, N.; Naik, R.R.; Stone, M.O. DNA Aptamer Functionalized Zinc Oxide Field Effect Transistors for Liquid State Selective Sensing of Small Molecules. In Proceedings of the SPIE NanoScience + Engineering, Proceedings Volume 7759, Biosensing III. San Diego, CA, USA, 24 August 2010. [Google Scholar]
- Hagen, J.A.; Kim, S.N.; Kelley-Loughnane, N.; Naik, R.R.; Stone, M.O. Selective Vapor Phase Sensing of Small Molecules Using Biofunctionalized Field Effect Transistors. In Proceedings of the SPIE Defense, Security, and Sensing, Proceedings Volume 8018, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII. Orlando, FL, USA, 3 June 2011. [Google Scholar]
- Lee, J.; Jo, M.; Kim, T.H.; Ahn, J.-Y.; Lee, D.-K.; Kim, S.; Hong, S. Aptamer Sandwich-Based Carbon Nanotube Sensors for Single-Carbon-Atomic-Resolution Detection of Non-Polar Small Molecular Species. Lab Chip 2011, 11, 52–56. [Google Scholar] [CrossRef]
- Das, B.K.; Tlili, C.; Badhulika, S.; Cella, L.N.; Chen, W.; Mulchandani, A. Single-Walled Carbon Nanotubes Chemiresistor Aptasensors for Small Molecules: Picomolar Level Detection of Adenosine Triphosphate. Chem. Commun. 2011, 47, 3793–3795. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.Y.; Alsager, O.A.; Wood, C.S.; Hodgkiss, J.M.; Plank, N.O.V. Carbon Nanotube Field Effect Transistor Aptasensors for Estrogen Detection in Liquids. J. Vac. Sci. Technol. B 2015, 33, 06F904. [Google Scholar] [CrossRef]
- Mukherjee, S.; Meshik, X.; Choi, M.; Farid, S.; Datta, D.; Lan, Y.; Poduri, S.; Sarkar, K.; Baterdene, U.; Huang, C.-E.; et al. A Graphene and Aptamer Based Liquid Gated FET-Like Electrochemical Biosensor to Detect Adenosine Triphosphate. IEEE Trans. Nanobiosci. 2015, 14, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Lee, J.S.; Jun, J.; Shin, D.H.; Jang, J. Ultrasensitive Bisphenol A Field-Effect Transistor Sensor Using an Aptamer-Modified Multichannel Carbon Nanofiber Transducer. ACS Appl. Mater. Interfaces 2016, 8, 6602–6610. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, N.; Yang, K.-A.; Abendroth, J.M.; Cheung, K.M.; Xu, X.; Yang, H.; Zhao, C.; Zhu, B.; Rim, Y.S.; Yang, Y.; et al. Aptamer–Field-Effect Transistors Overcome Debye Length Limitations for Small-Molecule Sensing. Science 2018, 362, 319–324. [Google Scholar] [CrossRef]
- Nutiu, R.; Li, Y. Structure-Switching Signaling Aptamers: Transducing Molecular Recognition into Fluorescence Signaling. Chem. Eur. J. 2004, 10, 1868–1876. [Google Scholar] [CrossRef]
- Han, K.; Liang, Z.; Zhou, N. Design Strategies for Aptamer-Based Biosensors. Sensors 2010, 10, 4541–4557. [Google Scholar] [CrossRef] [Green Version]
- Vallee-Belisle, A.; Plaxco, K.W. Structure-Switching Biosensors: Inspired by Nature. Curr. Opin. Struct. Biol. 2010, 20, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Fang, Z.; Liu, J.; Zeng, L. A Simple and Rapid Biosensor for Ochratoxin A based On a Structure-Switching Signaling Aptamer. Food Control 2012, 25, 555–560. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Yang, G.; Chen, J.; Wang, S. A Signal-On Fluorescent Aptasensor Based on Tb3+ and Structure-Switching Aptamer for Label-Free Detection of Ochratoxin A in Wheat. Biosens. Bioelectron. 2013, 41, 704–709. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.; Wang, Z.; Newbigging, A.M.; Reid, M.S.; Li, X.-F.; Le, X.C. Aptamers Facilitating Amplified Detection of Biomolecules. Anal. Chem. 2015, 87, 274–282. [Google Scholar] [CrossRef]
- Rajan, N.K.; Routenberg, D.A.; Reed, M.A. Optimal Signal-To-Noise Ratio for Silicon Nanowire Biochemical Sensors. Appl. Phys. Lett. 2011, 98, 264107. [Google Scholar] [CrossRef] [Green Version]
- Heller, I.; Chatoor, S.; Mannik, J.; Zevengergen, M.A.G.; Oostinga, J.B.; Morpurgo, A.F.; Dekker, C.; Lemay, S.G. Charge Noise in Graphene Transistors. Nano Lett. 2010, 10, 1563–1567. [Google Scholar] [CrossRef] [PubMed]
- Deen, M.J.; Shinwari, M.W.; Ranuarez, J.C.; Landheer, D. Noise Considerations in Field-Effect Biosensors. J. Appl. Phys. 2006, 100, 074703. [Google Scholar] [CrossRef]
- Mannik, J.; Heller, I.; Janssens, A.M.; Lemay, S.G.; Dekker, C. Charge Noise in Liquid-Gated Single-Wall Carbon Nanotube Transistors. Nano Lett. 2008, 8, 685–688. [Google Scholar] [CrossRef]
- Rosenstein, J.; Sorgenfrei, S.; Shepard, K.L. Noise and bandwidth performance of single-molecule biosensors. In Proceedings of the 2011 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 19–21 September 2011. [Google Scholar]
- Sharf, T.; Kevek, J.W.; DeBorde, T.; Wardini, J.L.; Minot, E.D. Origins of Charge Noise in Carbon Nanotube Field-Effect Transistor Biosensors. Nano Lett. 2012, 12, 6380–6384. [Google Scholar] [CrossRef]
- Mattmann, M.; Helbling, T.; Durrer, L.; Roman, C.; Pohle, R.; Fleischer, M.; Hierold, C. Hysteresis Reduction and Measurement Range Enhancement of Carbon Nanotube Based NO2 Gas Sensors by Pulsed Gate Voltages. In Proceedings of the Eurosensors XXIII Conference, Lausanne, Switzerland, 6–9 September 2009; Curran: New York, NY, USA. [Google Scholar]
- Stern, E.; Wagner, R.; Sigworth, F.J.; Breaker, R.; Fahmy, T.M.; Reed, M.A. Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Lett. 2007, 7, 3405–3409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.-J.; Zhang, G.; Chua, J.H.; Chee, R.-E.; Wong, E.H.; Agarwal, A.; Buddharaju, K.D.; Singh, N.; Gao, Z.; Balasubramanian, N. DNA Sensing by Silicon Nanowire: Charge Layer Distance Dependence. Nano Lett. 2008, 8, 1066–1070. [Google Scholar] [CrossRef]
- De Vico, L.; Iversen, L.; Sorensen, M.H.; Brandbyge, M.; Nygard, J.; Martinez, K.L.; Jensen, J.H. Predicting and Rationalizing the Effect of Surface Charge Distribution and Orientation on Nano-wire Based FET Bio-sensors. Nanoscale 2011, 3, 2635–2640. [Google Scholar] [CrossRef]
- Vu, C.-A.; Hu, W.-P.; Yang, Y.-S.; Chan, H.W.-H.; Chen, W.-Y. Signal Enhancement of Silicon Nanowire Field-Effect Transistor Immunosensors by RNA Aptamer. ACS Omega 2019, 4, 14765–14771. [Google Scholar] [CrossRef] [Green Version]
- Gao, A.; Zou, N.; Dai, P.; Lu, N.; Li, T.; Wang, Y.; Zhao, J.; Mao, H. Signal-to-Noise Ratio Enhancement of Silicon Nanowires Biosensor with Rolling Circle Amplification. Nano Lett. 2013, 13, 4123–4130. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Hsu, W.-Y.; Yang, Y.-S.; Huang, J.-W.; Chung, Y.-L.; Chen, H. Immobilized Rolling Circle Amplification on Extended-Gate Field-Effect Transistors with Integrated Readout Circuits for Early Detection of Platelet-Derived Growth Factor. Anal. Bioanal. Chem. 2016, 408, 4785–4797. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Xia, H.; Zauberman, J.; Tomaiuolo, M.; Ping, J.; Zhang, Q.; Ducos, P.; Ye, H.; Wang, S.; Yang, X.; et al. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors. Nano Lett. 2018, 18, 3509–3515. [Google Scholar] [CrossRef] [PubMed]
- Hideshima, S.; Fujita, K.; Harada, Y.; Tsuna, M.; Seto, Y.; Sekiguchi, S.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Signal Amplification in Electrochemical Detection of Buckwheat Allergenic Protein Using Field Effect Transistor Biosensor by Introduction of Anionic Surfactant. Sens. Biosensing Res. 2016, 7, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Hideshima, S.; Saito, M.; Fujita, K.; Harada, Y.; Tsuna, M.; Sekiguchi, S.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Label-Free Detection of Allergens in Food via Surfactant-Induced Signal Amplification Using a Field Effect Transistor-Based Biosensor. Sens. Actuators B Chem. 2018, 254, 1011–1016. [Google Scholar] [CrossRef]
- Seo, H.B.; Gu, M.B. Aptamer-Based Sandwich-Type Biosensors. J. Biol. Eng. 2017, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Feng, F.; Zhao, L.; Wang, C.; Wang, H.; Tian, M.; Qin, J.; Duan, Y.; He, X. Aptamer/Thrombin/Aptamer-AuNPs Sandwich Enhanced Surface Plasmon Resonance Sensor for the Detection of Subnanomolar Thrombin. Biosens. Bioelectron. 2013, 47, 265–270. [Google Scholar] [CrossRef]
- Abbaspour, A.; Norouz-Sarvestani, F.; Noori, A.; Soltani, N. Aptamer-Conjugated AgNPs for Electrochemical Dual-Aptamer-Based Sandwich Detection of Staphylococcus Aureus. Biosens. Bioelectron. 2015, 68, 149–155. [Google Scholar] [CrossRef]
- Ikebukuro, K.; Kiyohara, C.; Sode, K. Electrochemical Detection of Protein Using a Double Aptamer Sandwich. Anal. Lett. 2004, 37, 2901–2909. [Google Scholar] [CrossRef]
- Duan, N.; Wu, S.; Dai, S.; Gu, H.; Hao, L.; Ye, H.; Wang, Z. Advances in Aptasensors for the Detection of Food Contaminants. Analyst 2016, 141, 3942–3961. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; Wang, L.; Zhan, X.; Zhou, P. A Mini-Review on Functional Nucleic Acids-Based Heavy Metal Ion Detection. Biosens. Bioelectron. 2016, 86, 353–368. [Google Scholar] [CrossRef]
- Saidur, M.R.; Aziz, A.R.A.; Basirun, W.J. Recent Advances in DNA-Based Electrochemical Biosensors for Heavy Metal Ion Detection: A Review. Biosens. Bioelectron. 2017, 90, 125–139. [Google Scholar] [CrossRef] [PubMed]
Field-Effect Transistors | Bio-Receptors | Target Molecules | Ref. |
---|---|---|---|
SWCNT | Riboflavin-binding Aptamer | Riboflavin | 119 |
ZnO | Riboflavin-binding Aptamer | Riboflavin | 119, 120 |
SWCNT | Anti-BPA Aptamer | BPA | 121 |
SWCNT | ssDNA anti-ATP Aptamer | ATP | 122 |
CNT Network Film | 35-mer E2 Aptamer | 17 β-estradiol (E2) | 123 |
Graphene | Aptamer | ATP | 124 |
Carboxyl-functionalized Multichannel Carbon Nanofibers | BPA-binding Aptamer | BPA | 125 |
Indium (III) Oxide | Dopamine Aptamer Serotonin Aptamer S1P Aptamer Glucose Aptamer | Dopamine Serotonin S1P Glucose | 126 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, C.-A.; Chen, W.-Y. Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules 2020, 25, 680. https://doi.org/10.3390/molecules25030680
Vu C-A, Chen W-Y. Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules. 2020; 25(3):680. https://doi.org/10.3390/molecules25030680
Chicago/Turabian StyleVu, Cao-An, and Wen-Yih Chen. 2020. "Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors" Molecules 25, no. 3: 680. https://doi.org/10.3390/molecules25030680
APA StyleVu, C. -A., & Chen, W. -Y. (2020). Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules, 25(3), 680. https://doi.org/10.3390/molecules25030680