Opuntia Fruits as Food Enriching Ingredient, the First Step towards New Functional Food Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pasta Preparation
2.3. Preparation of Extracts
2.4. LC-ESI-MS/MS Analysis of Phenolic Acids
2.5. Determination of the Total Content of Polyphenolic Compounds
2.6. Radical Scavenging Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Composition of Dried Opuntia Extracts
3.2. Results of Analysis of Extracts from Pasta Enriched with Different Percentages of Opuntia Fruits
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bayar, N.; Kriaa, M.; Kammoun, R. Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. Int. J. Biol. Macromol. 2016, 92, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Adli, B.; Boutekrabt, A.; Touati, M.; Bakria, T.; Touati, A.; Bezini, E. Phenotypic diversity of Opuntia ficus indica (L.) Mill. in the Algerian steppe. S. Afr. J. Bot. 2017, 109, 66–74. [Google Scholar] [CrossRef]
- Russel, C.E.; Felker, P. The prickley pear (Opuntia spp., Cactaceae): A source of human and animal food in semi-arid regions. Econ. Bot. 1987, 41, 433–445. [Google Scholar] [CrossRef]
- Farag, M.A.; Maamoun, A.A.; Ehrlich, A.; Fahmy, S.; Wesjohann, L.A. Assessment of sensory metabolites distribution in cactus Opuntia ficus-indica fruit cultivars using UV fingerprinting and GC/MS profiling techniques. LWT-Food Sci. Tech. 2017, 80, 145–154. [Google Scholar] [CrossRef]
- Cieślik, E.; Cieślik, I.; Bartyzel, K. Wartość odżywcza i właściwości prozdrowotne opuncji figowej (Opuntia ficus-indica Mill.). Postępy Fitoterapii 2016, 17, 213–217. [Google Scholar]
- Berrabah, H.; Taïbi, K.; Ait Abderrahim, L.; Boussaid, M. Phytochemical composition and antioxidant properties of prickly pear (Opuntia ficus-indica L.) flowers from the Algerian germplasm. Food Meas. 2019, 13, 1166–1174. [Google Scholar] [CrossRef]
- Yeddes, N.; Chérif, J.K.; Guyot, S.; Sotin, H.; Ayadi, M.T. Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of the peel and pulp of three tunisian Opuntia forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Khatabi, O.; Hanine, H.; Elothmani, D.; Hasib, A. Extraction and determination of polyphenols and betalain pigments in the Moroccan Prickly pear fruits (Opuntia ficus indica). Arab. J. Chem. 2016, 9, S278–S281. [Google Scholar] [CrossRef] [Green Version]
- Gouws, C.A.; Georgousopoulou, E.N.; Mellor, D.D.; McKune, A.; Naumovski, N. Effects of the consumption of prickly pear cacti (Opuntia spp.) and its products on blood glucose levels and insulin: A systematic review. Medicina (Lithuania) 2019, 55, 138. [Google Scholar] [CrossRef] [Green Version]
- Onakpoya, I.J.; O’Sullivan, J.; Heneghan, C.J. The effect of cactus pear (Opuntia ficus-indica) on body weight and cardiovascular risk factors: A systematic review and meta-analysis of randomized clinical trials. Nutrition 2015, 31, 640–646. [Google Scholar] [CrossRef]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC-DAD-ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Zenteno-Ramírez, G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Monreal-Montes, M.; Mérida García, J.; Pérez Serratosa, M.; Varo Santos, M.Á.; Ortiz Pérez, M.D.; Rendón-Huerta, J.A. Juices of prickly pear fruits (Opuntia spp.) as functional foods. Ital. J. Food Sci. 2018, 30, 614–627. [Google Scholar]
- Jiménez-Aguilar, D.M.; Escobedo-Avellaneda, Z.; Martín-Belloso, O.; Gutiérrez-Uribe, J.; Valdez-Fragoso, A.; García-García, R.; Torres, J.A.; Welti-Chanes, J. Effect of high hydrostatic pressure on the content of phytochemical compounds and antioxidant activity of prickly pears (Opuntia ficus-indica) beverages. Food Eng. Rev. 2015, 7, 198–208. [Google Scholar] [CrossRef]
- Salehi, E.; Emam-Djomeh, Z.; Askari, G.; Fathi, M. Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties. Carb. Polym. 2019, 206, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Bustos, E.O. Alcoholic beverage from Chilean Opuntia ficus indica. Am. J. Enol. Vitic. 1981, 32, 228–229. [Google Scholar]
- Guevara-Arauza, J.C.; Órnelas Paz, J.D.J.; Mendoza, S.R.; Guerra, R.E.S.; Paz Maldonado, L.M.T.; González, D.J.P. Biofunctional activity of tortillas and bars enhanced with nopal. Preliminary assessment of functional effect after intake on the oxidative status in healthy volunteers. Chem. Cent. J. 2011, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiello, A.; Di Bona, D.; Candore, G.; Carru, C.; Zinellu, A.; Di Miceli, G.; Nicosia, A.; Gambino, C.M.; Ruisi, P.; Caruso, C.; et al. Targeting aging with functional food: Pasta with opuntia single-arm pilot study. Rejuve. Res. 2018, 21, 249–256. [Google Scholar] [CrossRef]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N.; Olech, M.; Nowak, R.; Mitrus, M.; Oniszczuk, A. Gluten-free precooked rice-yellow pea pasta: Effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. J. Food Sci. 2016, 81, C1070–C1079. [Google Scholar] [CrossRef]
- Dib, A.; Kasprzak, K.; Wójtowicz, A.; Benatallah, L.; Waksmundzka-Hajnos, M.; Zidoune, M.N.; Oniszczuk, T.; Karakuła-Juchnowicz, H.; Oniszczuk, A. The effect of pomegranate seed powder addition on radical scavenging activity determined by TLC–DPPH test and selected properties of gluten-free pasta. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 364–372. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Waksmundzka-Hajnos, M.; Skalicka-Woźniak, K.; Głowniak, K. Comparison of matrix-solid phase dispersion and liquid-solid extraction connected with solid-phase extraction in the quantification of selected furanocoumarins from fruits of Heracleum leskovii by high performance liquid chromatography. Ind. Crops Prod. 2013, 50, 131–136. [Google Scholar] [CrossRef]
- Oniszczuk, T.; Widelska, G.; Oniszczuk, A.; Kasprzak, K.; Wójtowicz, A.; Olech, M.; Nowak, R.K.; Wojtunik-Kulesza, K.; Jóźwiak, G.; Waksmundzka-Hajnos, M. Influence of production parameters on the content of polyphenolic compounds in extruded porridge enriched with chokeberry fruit (Aronia melanocarpa (Michx.) Elliott). Open Chem. 2019, 17, 166–176. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Oniszczuk, T.; Wójtowicz, A.; Wojtunik, K.; Kwaśniewska, A.; Waksmundzka-Hajnos, M. Radical scavenging activity of extruded corn gruels with addition of linden inflorescence. Open Chem. 2015, 13, 1101–1107. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; El-Samahy, S.K.; Rohn, S.; Kroh, L.W. Flavonols, betacyanins content and antioxidant activity of Cactus Opuntia macrorhiza fruits. Food Res. Int. 2011, 44, 2169–2174. [Google Scholar] [CrossRef]
- Maatoui, B.S.; Hmyene, A.; Hilali, S. Activités anti-radiculaires d’extraits de jus de fruits du figuier de Barbarie (Opuntia ficus indica). Leban. Sci. J. 2006, 7, 3–8. [Google Scholar]
- Karamać, M.; Kosińska, A.; Pegg, R.B. Comparison of radical-scavenging activities for selected phenolic acids. Pol. J. Food Nutr. Sci. 2005, 55, 165–170. [Google Scholar]
- Kuti, J.O. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
- Gentile, C.; Tesoriere, L.; Allegra, M.; Livrea, M.A.; D’Alessio, P. Antioxidant betalains from cactus pear (Opuntia ficus indica) inhibit endothelial ICAM-1 expression. Ann. N. Y. Acad. Sci. 2004, 1028, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Bernardino-Nicanor, A.; Montañez-Soto, J.L.; de los Ángeles Vivar-Vera, M.; Juárez-Goiz, J.M.; Acosta-García, G.; González-Cruz, L. Effect of drying on the antioxidant capacity and concentration of phenolic compounds in different parts of the Erythrina americana tree. Bioresources 2016, 11, 9741–9755. [Google Scholar] [CrossRef] [Green Version]
- Patrón-Vázquez, J.; Baas-Dzul, L.; Medina-Torres, N.; Ayora-Talavera, T.; Sánchez-Contreras, Á.; García-Cruz, U.; Pacheco, N. The Effect of drying temperature on the phenolic content and functional behavior of flours obtained from lemon wastes. Agronomy 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Esparza-Martínez, F.J.; Miranda-López, R.; Guzman-Maldonado, S.H. Effect of air-drying temperature on extractable and non-extractable phenolics and antioxidant capacity of lime wastes. Ind. Crop. Prod. 2016, 84, 1–6. [Google Scholar] [CrossRef]
- Multari, S.; Marsol-Vall, A.; Keskitalo, M.; Yang, B.; Suomela, J.P. Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. J. Food Compos. Anal. 2018, 72, 75–82. [Google Scholar] [CrossRef]
- Madhujith, T.; Izydorczyk, M.; Shahidi, F. Antioxidant properties of pearled barley fractions. J. Agric. Food Chem. 2006, 54, 3283–3289. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the gluten-free pasta are available from the authors. |
Radical Scavenging towards DPPH (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (min) | Addition of Opuntia (%) | ||||||||||
0 | 2.5 | 5.0 | 7.5 | 10.0 | 12.5 | 15.0 | Opuntia Fruit | Gallic Acid | |||
0 | 18.25 a | 13.57 b | 14.69 b | 17.92 b,c | 22.18 c | 33.37 d | 33.37 d | 35.38 e | 99.37 c | ||
± 0.22 | ± 0.05 | ± 0.10 | ± 0.06 | ± 0.68 | ± 0.89 | ± 0.01 | ± 0.01 | ± 0.01 | |||
5 | 82.75 a | 93.95 b | 93.95 b | 94.67 b,c | 94.26 b,c | 96.03 c | 94.92 b,c | 96.88 c | 100.00 b,c | ||
± 0.33 | ± 1.32 | ± 1.21 | ± 0.59 | ± 1.32 | ± 0.01 | ± 0.04 | ± 0.56 | ± 0.00 | |||
10 | 83.02 a | 93.95 b | 94.52 b,c | 95.16 c | 95.76 c | 96.23 c,d | 97.04 d | 99.78 e | 100.00 c | ||
± 0.01 | ± 0.67 | ± 0.11 | ± 0.21 | ± 0.03 | ± 0.02 | ± 0.33 | ± 0.23 | ± 0.00 | |||
15 | 83.02 a | 93.95 b | 94.52 b,c | 95.16 c | 95.76 c | 96.23 c,d | 97.04 d | 99.78 e | 100.00 b,c | ||
± 0.02 | ± 0.01 | ± 0.00 | ± 0.03 | ± 0.00 | ± 0.03 | ± 0.00 | ± 0.03 | ± 0.00 | |||
20 | 83.02 a | 93.95 b | 94.52 b,c | 95.16 c | 95.76 c | 96.23 c,d | 97.04 d | 99.78 e | 100.00 b,c | ||
± 0.00 | ± 0.01 | ± 0.02 | ± 0.01 | ± 0.03 | ± 0.01 | ± 0.00 | ± 0.00 | ± 0.00 |
Addition of Opuntia(%) | Content of Phenolic Acids (µg/g) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protocatechuic | Caffeic | Syryngic | 4-OH-Benzoic | Vanilic | Gentisic | trans- Sinapic | cis- Sinapic | p-Coumaric | Ferulic | Isoferulic | m-Coumaric | 3,4-Dimetoxycinnamic | Salicylic | Sum | |
Opuntia fruit | 0.616d ± 0.008 | 0.404 | 1.552 | 3.558d | BQL | 0.196d | 1.025 | 0.042 | 1.680d | 4.160e | 43.223e | 0.252ab | 0.724d | 0.515a | 57.957 |
± 0.002 | ± 0.043 | ± 0.038 | ± 0.005 | ± 0.003 | ± 0.0001 | ± 0.011 | ± 0.105 | ± 0.345 | ± 0.001 | ± 0.008 | ± 0.009 | ||||
0 | 0.087a ± 0.002 | ND | ND | 1.046a | ND | 0.035a | ND | ND | 0.252a | 0.393a | 23.124a | 0.268b | 0.252a | 1.214d | 26.671 |
± 0.019 | ± 0.0002 | ± 0.008 | ± 0.013 | ± 0.2052 | ± 0.001 | ± 0.014 | ± 0.022 | ||||||||
2.5 | 0.093a ± 0.003 | ND | ND | 1.492ab | ND | 0.040ab | ND | ND | 0.278a | 0.408a | 24.416ab | 0.247a | 0.265a | 1.120cd | 28.359 |
± 0.043 | ± 0.0000 | ± 0.003 | ± 0.008 | ± 0.012 | ± 0.012 | ± 0.005 | ± 0.021 | ||||||||
5.0 | 0.112ab ± 0.003 | ND | ND | 1.612b | ND | 0.046b | ND | ND | 0.307ab | 0.409a | 25.636b | 0.258ab | 0.277ab | 0.869c | 29.525 |
± 0.051 | ± 0.0000 | ± 0.001 | ± 0.012 | ± 0.018 | ± 0.012 | ± 0.010 | ± 0.031 | ||||||||
7.5 | 0.184b ± 0.004 | ND | ND | 2.316bc | ND | 0.051b | ND | ND | 0.358b | 0.557ab | 27.677bc | 0.240a | 0.292b | 0.828bc | 32.503 |
± 0.033 | ± 0.0001 | ± 0.012 | ± 0.014 | ± 0.122 | ± 0.011 | ± 0.001 | ± 0.029 | ||||||||
10 | 0.192b ± 0.006 | ND | ND | 2.644c | ND | 0.057bc | ND | ND | 0.420bc | 0.735b | 28.751c | 0.266b | 0.316b | 0.716b | 34.097 |
± 0.024 | ± 0.0002 | ± 0.024 | ± 0.032 | ± 0.030 | ± 0.007 | ± 0.000 | ± 0.001 | ||||||||
12.5 | 0.242bc ± 0.007 | ND | ND | 2.720c | ND | 0.061c | ND | ND | 0.486bc | 0.992c | 30.428cd | 0.246a | 0.336bc | 0.642ab | 36.153 |
± 0.038 | ± 0.0003 | ± 0.007 | ± 0.027 | ± 0.424 | ± 0.006 | ± 0.008 | ± 0.018 | ||||||||
15.0 | 0.344c ± 0.005 | ND | ND | 2.856c | ND | 0.063c | ND | ND | 0.536c | 1.544d | 32.321d | 0.258ab | 0.362c | 0.638ab | 38.876 |
± 0.132 | ± 0.0001 | ± 0.006 | ± 0.065 | ± 0.692 | ± 0.006 | ± 0.006 | ± 0.013 |
Total Polyphenols | Free Phenolic Acid | DPPH Radical Scavenging Activity | |
---|---|---|---|
Opuntia fruit content | 0.994 ** | 0.995 ** | 0.768 * |
Total polyphenols | 0.979 ** | 0.795 * | |
Free phenolic acids | 0.729 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oniszczuk, A.; Wójtowicz, A.; Oniszczuk, T.; Matwijczuk, A.; Dib, A.; Markut-Miotła, E. Opuntia Fruits as Food Enriching Ingredient, the First Step towards New Functional Food Products. Molecules 2020, 25, 916. https://doi.org/10.3390/molecules25040916
Oniszczuk A, Wójtowicz A, Oniszczuk T, Matwijczuk A, Dib A, Markut-Miotła E. Opuntia Fruits as Food Enriching Ingredient, the First Step towards New Functional Food Products. Molecules. 2020; 25(4):916. https://doi.org/10.3390/molecules25040916
Chicago/Turabian StyleOniszczuk, Anna, Agnieszka Wójtowicz, Tomasz Oniszczuk, Arkadiusz Matwijczuk, Ahlem Dib, and Ewa Markut-Miotła. 2020. "Opuntia Fruits as Food Enriching Ingredient, the First Step towards New Functional Food Products" Molecules 25, no. 4: 916. https://doi.org/10.3390/molecules25040916
APA StyleOniszczuk, A., Wójtowicz, A., Oniszczuk, T., Matwijczuk, A., Dib, A., & Markut-Miotła, E. (2020). Opuntia Fruits as Food Enriching Ingredient, the First Step towards New Functional Food Products. Molecules, 25(4), 916. https://doi.org/10.3390/molecules25040916