Total Versus Inorganic and Organic Species of As, Cr, and Sb in Flavored and Functional Drinking Waters: Analysis and Risk Assessment
Abstract
:1. Introduction
2. Results
2.1. The Amounts of TAs, TCr, and TSb
2.2. The Speciation Analysis of Five Toxic Species of As, Cr, and Sb
2.3. The Screening of Metal Complexes in Water Samples
2.4. The Risk Assessment of TAs, TCr, and TSb, and Their Inorganic Species in Bottled Flavored and Functional Drinking Water
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Preparation
4.2. Determination of Total As, Cr, and Sb
4.3. Determination of Inorganic Species of As, Cr, and Sb
4.4. Determination of Organic Species of As, Cr, and Sb
4.5. Figures of Merit
4.6. The Risk Assessment of TAs, TCr, and TSb, and Their Inorganic Species in Bottled Flavored and Functional Drinking Water
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cidu, R.; Frau, F.; Tore, P. Drinking water quality: Comparing inorganic components in bottled water and Italian tap water. J. Food Compos. Anal. 2011, 24, 184–193. [Google Scholar] [CrossRef]
- Kończyk, J.; Muntean, E.; Gega, J.; Frymus, A.; Michalski, R. Major inorganic anions and cations in selected European bottled waters. J. Geochem. Explor. 2019, 197, 27–36. [Google Scholar] [CrossRef]
- Etale, A.; Jobin, M.; Siegrist, M. Tap versus bottled water consumption: The influence of social norms, affect and image on consumer choice. Appetite 2018, 121, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Mandlate, J.S.; Soares, B.M.; Seeger, T.S.; Vecchia, P.D.; Mello, P.A.; Flores, E.M.M.; Duarte, F.A. Determination of cadmium and lead at sub-ppt level in soft drinks: An efficient combination between dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Food Chem. 2017, 221, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Vieux, F.; Maillot, M.; Rehm, C.D.; Barrios, P.; Drewnowski, A. Trends in tap and bottled water consumption among children and adults in the United States: Analyses of NHANES 2011–16 data. Nutr. J. 2020, 19, 10. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M.; Filzmoser, P. Temperature-dependent leaching of chemical elements from mineral water bottle materials. Appl. Geochem. 2012, 27, 1492–1498. [Google Scholar] [CrossRef]
- Rowell, C.; Kuiper, N.; Preud’Homme, H. Is container type the biggest predictor of trace element and BPA leaching from drinking water bottles? Food Chem. 2016, 202, 88–93. [Google Scholar] [CrossRef]
- Tvermoes, B.E.; Banducci, A.M.; Devlin, K.D.; Kerger, B.D.; Abramson, M.M.; Bebenek, I.G.; Monnot, A.D. Screening level health risk assessment of selected metals in apple juice sold in the United States. Food Chem. Toxicol. 2014, 71, 42–50. [Google Scholar] [CrossRef]
- Marcinkowska, M.; Lorenc, W.; Barałkiewicz, D. Study of the impact of bottles material and color on the presence of AsIII, AsV, SbIII, SbV and CrVI in matrix-rich mineral water—Multielemental speciation analysis by HPLC/ICP-DRC-MS. Microchem. J. 2017, 132, 1–7. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M.; Filzmoser, P. Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification. Appl. Geochem. 2010, 25, 1030–1046. [Google Scholar] [CrossRef]
- Hansen, H.R.; Pergantis, S.A. Detection of antimony species in citrus juices and drinking water stored in PET containers. J. Anal. At. Spectrom. 2006, 21, 731–733. [Google Scholar] [CrossRef]
- Zheng, J.; Iijima, A.; Furuta, N. Complexation effect of antimony compounds with citric acid and its application to the speciation of antimony(III) and antimony(V) using HPLC-ICP-MS. J. Anal. At. Spectrom. 2001, 16, 812–818. [Google Scholar] [CrossRef]
- dos Silva, E.D.S.; da Silva, E.G.P.; Silva, E.G.P.; Novaes, C.G.; Amorim, F.A.C.; dos Santos, M.J.S.; Bezerra, M.A. Evaluation of macro and micronutrient elements content from soft drinks using principal component analysis and Kohonen self-organizing maps. Food Chem. 2019, 273, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, G.N.; Ahmed, M.B.M.; Sabry, B.A.; Ali, S.S.M. Heavy metals content in some non-alcoholic beverages (carbonated drinks, flavored yogurt drinks, and juice drinks) of the Egyptian markets. Toxicol. Rep. 2019, 6, 210–214. [Google Scholar] [CrossRef]
- Kiyataka, P.H.M.; Dantas, S.T.; Albino, A.C.; Pallone, J.A.L. Antimony Assessment in PET Bottles for Soft Drink. Food Anal. Methods 2018, 11, 1–9. [Google Scholar] [CrossRef]
- Marcinkowska, M.; Komorowicz, I.; Barałkiewicz, D. New procedure for multielemental speciation analysis of five toxic species: As(III), As(V), Cr(VI), Sb(III) and Sb(V) in drinking water samples by advanced hyphenated technique HPLC/ICP-DRC-MS. Anal. Chim. Acta 2016, 920, 102–111. [Google Scholar] [CrossRef]
- World Health Organization Arsenic in Drinking-Water: Background Document for the Development of WHO Guidelines for Drinking-Water Quality. Available online: https://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf (accessed on 16 February 2018).
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. EXS 2012, 101, 133–164. [Google Scholar]
- Zhitkovich, A. Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef]
- Marcinkowska, M.; Barałkiewicz, D. Multielemental speciation analysis by advanced hyphenated technique—HPLC/ICP-MS: A review. Talanta 2016, 161, 177–204. [Google Scholar] [CrossRef]
- World Health Organization Guidelines for Drinking-water Quality; World Health Organization: Geneva, Switzerland, 2011; ISBN 9789241548151.
- El-Hadri, F.; Morales-Rubio, A.; de la Guardia, M. Determination of total arsenic in soft drinks by hydride generation atomic fluorescence spectrometry. Food Chem. 2007, 105, 1195–1200. [Google Scholar] [CrossRef]
- Misund, A.; Frengstad, B.; Siewers, U.; Reimann, C. Variation of 66 elements in European bottled mineral waters. Sci. Total Environ. 1999, 243–244, 21–41. [Google Scholar] [CrossRef]
- Hansen, C.; Tsirigotaki, A.; Bak, S.A.; Pergantis, S.A.; St€, S.; Gammelgaard, B.; R€Usz Hansen, H. Elevated antimony concentrations in commercial juices. J. Environ. Monit. 2010, 12, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.S.; Junior, J.B.P.; de Araújo Gomes, A.; Carvalho, F.I.M.; Filho, H.A.D.; das Graças Fernandes Dantas, K. Mineral Composition Evaluation in Energy Drinks Using ICP OES and Chemometric Tools. Biol. Trace Elem. Res. 2020, 194, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Zmit, B.; Belhaneche-Bensemra, N. Antimony leaching from PET plastic into bottled water in Algerian market. Environ. Monit. Assess. 2019, 191, 749. [Google Scholar] [CrossRef]
- Markiewicz, B.; Komorowicz, I.; Sajnóg, A.; Belter, M.; Barałkiewicz, D. Chromium and its speciation in water samples by HPLC/ICP-MS—technique establishing metrological traceability: A review since 2000. Talanta 2015, 132, 814–828. [Google Scholar] [CrossRef]
- Komorowicz, I.; Barałkiewicz, D. Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—Last decade review. Talanta 2011, 84, 247–261. [Google Scholar] [CrossRef]
- Coelho, N.M.M.; Coelho, L.M.; De Lima, E.S.; Pastor, A.; De La Guardia, M. Determination of arsenic compounds in beverages by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Talanta 2005, 66, 818–822. [Google Scholar] [CrossRef]
- WHO Safety Evaluation of Certain Contaminants in Food. Available online: https://apps.who.int/iris/bitstream/handle/10665/44520/9789241660631_eng.pdf;jsessionid=DD11977E4426EF44D287EB24D367BBF0?sequence = 1 (accessed on 27 August 2019).
- International Organization for Standardization [ISO] ISO 17294-2:2016—Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes; International Organization for Standardization: Geneva, Switzerland, 2016.
- Lorenc, W.; Markiewicz, B.; Kruszka, D.; Kachlicki, P.; Barałkiewicz, D. Study on Speciation of As, Cr, and Sb in Bottled Flavored Drinking Water Samples Using Advanced Analytical Techniques IEC/SEC-HPLC/ICP-DRC-MS and ESI-MS/MS. Molecules 2019, 24, 668. [Google Scholar] [CrossRef] [Green Version]
- International Conference on Harmonisation Validation of Analytical Procedures: Text and Methodology Q2 (R1). Available online: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed on 25 January 2018).
- Joint Committee for Guides in Metrology Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement. Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 25 January 2018).
- UNESDA Consumption and Sales—UNESDA. Available online: https://www.unesda.eu/consumption/ (accessed on 24 August 2019).
- Mehouel, F.; Bouayad, L.; Berber, A.; Van Hauteghem, I.; Van de Wiele, M. Analysis and risk assessment of arsenic, cadmium and lead in two fish species (Sardina pilchardus and Xiphias gladius) from Algerian coastal water. Food Addit. Contam. Part. A 2019, 1–7. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds of AsIII, AsV, MMA, DMA and AsB are available from the authors. |
Statistical Parameter | Flavored Bottled Drinking Water | Functional Bottled Drinking Water | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AsIII | AsV | CrVI | SbIII | SbV | AsIII | AsV | CrVI | SbIII | SbV | |
Min. (µg∙L−1) | 0.133 ± 0.012 | 0.0708 ± 0.0065 | - | - | 0.524 ± 0.032 * | 0.158 ± 0.015 | 0.0600 ± 0.0055 | - | - | - |
Max. (µg∙L−1) | 0.414 ± 0.039 | 3.26 ± 0.30 | - | - | 0.524 ± 0.032 * | 0.580 ± 0.055 | 0.620 ± 0.057 | - | - | - |
Mean (µg∙L−1) | 0.292 | 0.904 | - | - | 0.524 ± 0.032 * | 0.349 | 0.218 | - | - | - |
Median (µg∙L−1) | 0.291 | 0.650 | - | - | 0.524 ± 0.032 * | 0.390 | 0.120 | - | - | - |
Q1 (µg∙L−1) | 0.245 | 0.326 | - | - | - | 0.250 | 0.095 | - | - | - |
Q3 (µg∙L−1) | 0.339 | 1.136 | - | - | - | 0.400 | 0.267 | - | - | - |
R (µg∙L−1) | 0.28 | 3.19 | - | - | - | 0.42 | 0.56 | - | - | - |
CV (%) | 26 | 97 | - | - | - | 40 | 94 | - | - | - |
AsB | AsIII | DMA | MMA | AsV | AsB | AsIII | DMA | MMA | AsV | |
Min. (µg∙L−1) | 0.0541 ± 0.0053 | 0.129 ± 0.013 | - | - | 0.1103 ± 0.0082 | 0.0804 ± 0.0079 | 0.159 ± 0.016 | - | - | 0.1123 ± 0.0083 |
Max. (µg∙L−1) | 0.849 ± 0.083 | 0.432 ± 0.043 | - | - | 3.16 ± 0.23 | 0.350 ± 0.034 | 0.600 ± 0.059 | - | - | 0.594 ± 0.044 |
Mean (µg∙L−1) | 0.312 | 0.288 | - | - | 0.945 | 0.164 | 0.350 | - | - | 0.271 |
Median (µg∙L−1) | 0.247 | 0.292 | - | - | 0.683 | 0.174 | 0.381 | - | - | 0.161 |
Q1 (µg∙L−1) | 0.203 | 0.249 | - | - | 0.324 | 0.080 | 0.254 | - | - | 0.115 |
Q3 (µg∙L−1) | 0.370 | 0.353 | - | - | 1.143 | 0.200 | 0.401 | - | - | 0.372 |
R (µg∙L−1) | 0.79 | 0.30 | - | - | 3.05 | 0.27 | 0.44 | - | - | 0.48 |
CV (%) | 73 | 28 | - | - | 94 | 78 | 41 | - | - | 77.5 |
tAs | tCr | tSb | tAs | tCr | tSb | |||||
Min. (µg∙L−1) | 0.1496 ± 0.0090 | 0.0740 ± 0.066 | 0.0797 ± 0.0026 | 0.0922 ± 0.0067 | 0.0474 ± 0.0014 | 0.1976 ± 0.0083 | ||||
Max. (µg∙L−1) | 8.37 ± 0.52 | 1.252 ± 0.097 | 1.145 ± 0.019 | 1.22 ± 0.023 | 1.310 ± 0.045 | 0.6125 ± 0.0066 | ||||
Mean (µg∙L−1) | 1.606 | 0.395 | 0.372 | 0.485 | 0.511 | 0.392 | ||||
Median (µg∙L−1) | 0.817 | 0.380 | 0.275 | 0.411 | 0.514 | 0.431 | ||||
Q1 (µg∙L−1) | 0.432 | 0.193 | 0.222 | 0.258 | 0.202 | 0.298 | ||||
Q3 (µg∙L−1) | 1.678 | 0.465 | 0.443 | 0.587 | 0.690 | 0.469 | ||||
R (µg∙L−1) | 8.22 | 1.18 | 1.07 | 1.13 | 1.26 | 0.41 | ||||
CV (%) | 117 | 65 | 66 | 67.5 | 76 | 32 |
EDI Mean * (μg/kg/day) | THQ Mean * (mg/kg/day) | EDI Max * (μg/kg/day) | THQ Max * (mg/kg/day) | ||
---|---|---|---|---|---|
TAs | Flavored | 0.0069 | 0.0014 | 0.036 | 0.0072 |
Functional | 0.0021 | 0.00042 | 0.0053 | 0.0011 | |
TCr | Flavored | 0.0017 | 0.000034 | 0.0054 | 0.00011 |
Functional | 0.0022 | 0.000044 | 0.0056 | 0.00011 | |
TSb | Flavored | 0.0016 | 0.00016 | 0.0049 | 0.00049 |
Functional | 0.0017 | 0.00017 | 0.0026 | 0.00026 | |
As species ** | Flavored | 0.0051 | 0.0010 | 0.016 | 0.0032 |
Functional | 0.0024 | 0.00049 | 0.0052 | 0.0010 | |
Sb V *** | Flavored | 0.0023 | 0.00023 | 0.0023 | 0.00023 |
HI Mean * (mg/kg/day) | HI Max * (mg/kg/day) | ||
---|---|---|---|
Total As, Cr, and Sb | Flavored | 0.0016 | 0.0078 |
Functional | 0.00063 | 0.0014 | |
As, Cr, and Sb species | Flavored | 0.0013 | 0.0034 |
Functional | 0.00049 | 0.0010 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenc, W.; Markiewicz, B.; Kruszka, D.; Kachlicki, P.; Barałkiewicz, D. Total Versus Inorganic and Organic Species of As, Cr, and Sb in Flavored and Functional Drinking Waters: Analysis and Risk Assessment. Molecules 2020, 25, 1099. https://doi.org/10.3390/molecules25051099
Lorenc W, Markiewicz B, Kruszka D, Kachlicki P, Barałkiewicz D. Total Versus Inorganic and Organic Species of As, Cr, and Sb in Flavored and Functional Drinking Waters: Analysis and Risk Assessment. Molecules. 2020; 25(5):1099. https://doi.org/10.3390/molecules25051099
Chicago/Turabian StyleLorenc, Wiktor, Barbara Markiewicz, Dariusz Kruszka, Piotr Kachlicki, and Danuta Barałkiewicz. 2020. "Total Versus Inorganic and Organic Species of As, Cr, and Sb in Flavored and Functional Drinking Waters: Analysis and Risk Assessment" Molecules 25, no. 5: 1099. https://doi.org/10.3390/molecules25051099
APA StyleLorenc, W., Markiewicz, B., Kruszka, D., Kachlicki, P., & Barałkiewicz, D. (2020). Total Versus Inorganic and Organic Species of As, Cr, and Sb in Flavored and Functional Drinking Waters: Analysis and Risk Assessment. Molecules, 25(5), 1099. https://doi.org/10.3390/molecules25051099