Model Optimization for the Prediction of Red Wine Phenolic Compounds Using Ultraviolet–Visible Spectra
Abstract
:1. Introduction
2. Results and Discussion
2.1. Algorithm Comparison and Overall Performance
2.2. Spectral Multicollinearity
2.3. Instrumentation
2.4. Phenolic Evolution
3. Materials and Methods
3.1. Instrumentation
3.2. Sample Collection and Analysis
3.3. Model Comparison
3.4. Software
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Downey, M.O.; Dokoozlian, K.; Krstic, M.P. Cultural and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vit. 2006, 57, 257–268. [Google Scholar]
- Goldberg, D.M.; Yan, J.Y.; Ng, E.; Diamandis, E.P.; Karumanchiri, A.; Soleas, G.; Waterhouse, A.L. A global survey of trans-resveratrol concentrations in commercial wines. Am. J. Enol. Vit. 1995, 46, 159–165. [Google Scholar]
- Goldberg, D.M.; Karumanchiri, A.; Tsang, E.; Soleas, G.L. Catechin and epicatechin concentrations in red wines: Regional and cultivar-related differences. Am. J. Enol. Vit. 1998, 49, 23–34. [Google Scholar]
- Buscema, F.; Boulton, R.B. Phenolic composition of Malbec: A comparative study of research-scale wines between Argentina and the United States. Am. J. Enol. Vit. 2015, 66, 30–36. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Keller, M. Rootstock effects of deficit-irrigation wine grapes in a dry climate: Grape and wine composition. Am. J. Enol. Vit. 2012, 63, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vit. 2005, 56, 197–206. [Google Scholar]
- Singleton, V.L. Tannins and the qualities of wines. In Plant Polyphenols; Hemingway, R.W., Laks, P.E., Eds.; Plenum Press: New York, NY, USA, 1992; pp. 859–880. [Google Scholar]
- Singleton, V.L.; Esau, P. Phenolic substances in grapes and wine, and their significance. In Volume 1 of Advances in Food Research: Supplement; Stewart, G.F., Mrak, E.M., Eds.; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Waterman, P.G.; Mole, S. Analysis of phenolics in plant metabolites; Oxford Blackwell Scientific Publications: New York, NY, USA, 1994. [Google Scholar]
- Flamini, R. Mass spectrometry in grape and wine chemistry. Part 1: Polyphenols. Mass Spec. Rev. 2003, 22, 218–250. [Google Scholar] [CrossRef]
- Herderich, M.J.; Smith, P.A. Analysis of grape and wine tannin: Methods, applications and challenges. Aus. J. Grape Wine Res. 2005, 11, 205–214. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Spayd, S. Measuring phenolics in the winery. Am. J. Enol. Vit. 2006, 57, 280–288. [Google Scholar]
- Kelm, M.A.; Johnson, C.; Robbins, R.J.; Hammerstone, J.F.; Schmitz, H.H. High-performance liquid chromatography separation and purification of cacao (Theobroma L.) procyanidins according to degree of polymerization using a diol stationary phase. J. Ag. Food Chem. 2006, 54, 1571–1576. [Google Scholar] [CrossRef]
- Vapnik, V.N. Introduction: Four periods in the research of the learning problem. In The Nature of Statistical Learning Theory; Jordan, M., Lawless, J., Lauritzen, S.L., Nair, V., Eds.; Springer Science+Business Media, LLC: New York, NY, USA, 2000; pp. 1–14. [Google Scholar]
- Awad, A.I. Machine learning techniques for fingerprint identification: A short review. In Advanced Machine Learning Technologies and Applications; Hassanien, A.E., Salem, A.M., Kim, T., Eds.; Springer: New York, NY, USA, 2012; pp. 524–531. [Google Scholar]
- Zahraa, S.A.; Gaber, M.M.; Srinivasan, B.; Kishnaswamy, S. CBARS: Cluster based classification for activity recognition systems. In Advanced Machine Learning Technologies and Applications; Hassanien, A.E., Salem, A.M., Kim, T., Eds.; Springer: New York, NY, USA, 2012; pp. 82–91. [Google Scholar]
- Krollner, B.; Vanstone, B.; Finnie, G. Financial time series forecasting with machine learning techniques: A survey. In Proceedings of the European Symposium on Artificial Neural Networks: Computational and Machine Learning, Bruges, Belgium, 28–30 April 2010. [Google Scholar]
- Skogerson, K.; Downey, M.; Mazza, M.; Boulton, R. Rapid determination of phenolic components in red wines from Uv-visible spectra and the method of partial least squares. Am. J. Enol. Vit. 2007, 58, 318–325. [Google Scholar]
- Hosu, A.; Cristea, V.; Cimpoiu, C. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 2014, 150, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Niu, X.Y.; Lin, H.J.; Ying, Y.B.; Li, B.B.; Pan, X.X. A feasibility study on on-line determination of rice wine composition by Vis–NIR spectroscopy and least-squares support vector machines. Food Chem. 2009, 113, 291–296. [Google Scholar] [CrossRef]
- Lombardo, R.; Veaux, R.D. Model building in multivariate adaptive partial least squares splines via the GCV criterion. J. Chemom. 2009, 23, 605–617. [Google Scholar] [CrossRef]
- Sanna, R.; Piras, C.; Marincola, F.C.; Lecca, V.; Maurichi, S.; Scano, P. Multivariate statistical analysis of the UV-Vis profiles of wine polyphenolic extracts during vinification. J. Ag. Sci. 2014, 6, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Nel, A.P. Tannins and anthocyanins: From their origin to wine analysis—A review. S. Afr. J. Enol. Vitic. 2018, 39, 1–21. [Google Scholar]
- Rivas-Gonzalo, J.C.; Gutierrez, Y.; Hebrero, E.; Santos-Buelga, C. Comparison of methods for the determination of anthocyanins in red wines. Am. J. Enol. Vitic. 1992, 43, 210–214. [Google Scholar]
- Harbertson, J.F.; Mireles, M.; Yue, Y. Improvement of BSA tannin precipitation assay by reformation of resuspension buffer. Am. J. Enol. Vitic. 2015, 66, 95–99. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Picciotto, E.A.; Adams, D.O. Measurement of polymeric pigments in grape berry extract and wines using protein a precipitation assay combined with bisulfite bleaching. Am J. Enol. Vitic. 2003, 54, 301–306. [Google Scholar]
- Boulet, J.C.; Trarieux, C.; Souquet, J.M.; Ducasse, M.A.; Caille, S.; Samson, A.; Williams, P.; Doco, T.; Cheynier, V. Models based on ultraviolet spectroscopy polyphenols oligosaccharides and polysaccharides for prediction of wine astringency. Food Chem. 2016, 190, 357–363. [Google Scholar] [CrossRef]
- Fulcrand, H.; Dueñas, M.; Salas, E.; Cheynier, V. Phenolic reactions during winemaking and aging. Am. J. Enol. Vitic. 2006, 57, 289–297. [Google Scholar]
- Smola, A.J.; Schölkopf, B. An introduction to support vector regression. Stat. Comp. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Vovk, V. Kernel ridge regression. In Empirical Inference; Schölkopf, B., Luo, Z., Vovk, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–116. [Google Scholar]
- Rosipal, R.; Trejo, L.J. Kernel partial least squares regression in reproducing kernel Hilbert space. J. Mach. Learn. Res. 2001, 2, 97–123. [Google Scholar]
- e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Available online: https://cran.r-project.org/web/packages/e1071/index.html (accessed on 27 March 2020).
- glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. Available online: https://cran.r-project.org/web/packages/glmnet/index.html (accessed on 27 March 2020).
- Chemometrics: Multivariate Statistical Analysis in Chemometrics. Available online: https://cran.r-project.org/web/packages/chemometrics/index.html (accessed on 27 March 2020).
- pls: Partial Least Squares and Principal Component Regression. Available online: https://cran.r-project.org/web/packages/pls/index.html (accessed on 27 March 2020).
- caret: Classification and Regression Training. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 27 March 2020).
Sample Availability: Samples of the compounds are not available from the authors. |
Phenolic Algorithm | R2C | RMSEC | R2P | RMSEP | R2cv | RMSECV |
---|---|---|---|---|---|---|
AnthocyaninsSVR | 0.84 | 55.27 | 0.87 | 57.80 | 0.96 | 43.69 |
AnthocyaninsKRR | 0.87 | 48.61 | 0.87 | 54.99 | 0.91 | 54.34 |
AnthocyaninsKPLSR | 0.84 | 54.47 | 0.89 | 50.43 | 0.94 | 49.77 |
TanninsSVR | 0.91 | 98.06 | 0.94 | 94.18 | 0.97 | 68.70 |
TanninsKRR | 0.92 | 97.80 | 0.94 | 97.55 | 0.95 | 105.68 |
TanninsKPLSR | 0.84 | 124.20 | 0.90 | 121.45 | 0.97 | 77.84 |
TIPsSVR | 0.88 | 217.55 | 0.92 | 215.47 | 0.94 | 219.33 |
TIPsKRR | 0.92 | 186.73 | 0.92 | 219.26 | 0.93 | 225.07 |
TIPsKPLSR | 0.87 | 218.71 | 0.90 | 237.79 | 0.90 | 228.00 |
Phenolic ID | Initial | Week 1 | Week 2 | Week 3 | Week 4 |
---|---|---|---|---|---|
Anthos @520 | 0.75 | 0.04 | 0.80 | −0.03 | −0.04 |
TIPs@520 | 0.71 | −0.59 | 0.54 | 0.54 | 0.22 |
Tannin@520 | 0.04 | 0.44 | 0.47 | 0.36 | 0.11 |
Anthos@280 | 0.45 | 0.57 | 0.63 | 0.04 | 0.44 |
TIPs@280 | 0.73 | 0.89 | 0.94 | 0.61 | 0.36 |
Tannin@280 | 0.43 | 0.89 | 0.94 | 0.54 | 0.34 |
Phenolic ID | Initial | Week 1 | Week 2 | Week 3 | Week 4 |
---|---|---|---|---|---|
TIPs | 0.69 | 0.33 | 0.51 | 0.01 | −0.63 |
Tannins | 0.03 | 0.19 | 0.44 | 0.10 | −0.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaver, C.; Collins, T.S.; Harbertson, J. Model Optimization for the Prediction of Red Wine Phenolic Compounds Using Ultraviolet–Visible Spectra. Molecules 2020, 25, 1576. https://doi.org/10.3390/molecules25071576
Beaver C, Collins TS, Harbertson J. Model Optimization for the Prediction of Red Wine Phenolic Compounds Using Ultraviolet–Visible Spectra. Molecules. 2020; 25(7):1576. https://doi.org/10.3390/molecules25071576
Chicago/Turabian StyleBeaver, Chris, Thomas S Collins, and James Harbertson. 2020. "Model Optimization for the Prediction of Red Wine Phenolic Compounds Using Ultraviolet–Visible Spectra" Molecules 25, no. 7: 1576. https://doi.org/10.3390/molecules25071576