Exercise Affects Blood Glucose Levels and Tissue Chromium Distribution in High-Fat Diet-Fed C57BL6 Mice
Abstract
:1. Introduction
2. Results
2.1. Metabolic Effects of Exercise on Body Weight, Food/Energy Intake, and Leptin
2.2. Exercise Affected Blood Glucose and Insulin Concentration
2.3. Exercise Affected Insulin Sensitivity and β-Cell Function Indices
2.4. Exercise Affected Chromium Distribution in the Tissue
3. Discussion
4. Materials and Methods
4.1. Animals and Diet
4.2. Animal Experiment
4.3. Measurement of Body Weight, Food, Energy, and Chromium Intake
4.4. Blood Glucose and Hormone Concentration Determination
4.5. Insulin Sensitivity and β-cell Function Indices
4.6. Tissue Preparation and Chromium Concentration Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, G.R.; Chen, P.L.; Hou, P.H.; Mao, F.C. Resveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice. Iran J. Basic Med. Sci. 2015, 18, 1063–1071. [Google Scholar] [PubMed]
- Chang, G.R.; Wu, Y.Y.; Chiu, Y.S.; Chen, W.Y.; Liao, J.W.; Hsu, H.M.; Chao, T.H.; Hung, S.W.; Mao, F.C. Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HlJ mice. Basic Clin. Pharm. Toxicol. 2009, 105, 188–198. [Google Scholar] [CrossRef]
- Nam, S.M.; Hwang, I.K.; Yi, S.S.; Yoo, K.Y.; Park, O.K.; Yan, B.; Song, W.; Won, M.H.; Yoon, Y.S.; Seong, J.K. Differential effects of treadmill exercise on calretinin immunoreactivity in type 2 diabetic rats in early and chronic diabetic stages. J. Vet. Med. Sci. 2011, 73, 1037–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, G.R.; Chiu, Y.S.; Wu, Y.Y.; Lin, Y.C.; Hou, P.H.; Mao, F.C. Rapamycin impairs HPD-induced beneficial effects on glucose homeostasis. Br. J. Pharm. 2015, 172, 3793–3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegelman, B.M.; Flier, J.S. Obesity and the regulation of energy balance. Cell 2001, 104, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Douen, A.G.; Ramlal, T.; Rastogi, S.; Bilan, P.J.; Cartee, G.D.; Vranic, M.; Holloszy, J.O.; Klip, A. Exercise induces recruitment of the insulin-responsive glucose transporter. Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J. Biol. Chem. 1990, 265, 13427–13430. [Google Scholar]
- Chang, G.R.; Chen, W.K.; Hou, P.H.; Mao, F.C. Isoproterenol exacerbates hyperglycemia and modulates chromium distribution in mice fed with a high fat diet. J. Trace Elem. Med. Biol. 2017, 44, 315–321. [Google Scholar] [CrossRef]
- Wang, H.; Kruszewski, A.; Brautigan, D.L. Cellular chromium enhances activation of insulin receptor kinase. Biochemistry 2005, 44, 8167–8175. [Google Scholar] [CrossRef]
- Howlett, K.F.; Sakamoto, K.; Hirshman, M.F.; Aschenbach, W.G.; Dow, M.; White, M.F.; Goodyear, L.J. Insulin signaling after exercise in insulin receptor substrate-2-deficient mice. Diabetes 2002, 51, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Clodfelder, B.J.; Upchurch, R.G.; Vincent, J.B. A comparison of the insulin-sensitive transport of chromium in healthy and model diabetic rats. J. Inorg. Biochem. 2004, 98, 522–533. [Google Scholar] [CrossRef]
- Volpe, S.L.; Huang, H.W.; Larpadisorn, K.; Lesser, I.I. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J. Am. Coll. Nutr. 2001, 20, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, S.; Zdanowski, R.; Krzyżowska, M.; Lewicka, A.; Dębski, B.; Niemcewicz, M.; Goniewicz, M. The role of Chromium III in the organism and its possible use in diabetes and obesity treatment. Ann. Agric. Environ. Med. 2014, 21, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Lei, T.; Xin, L.; Zhou, L.; Zhou, L.; Cheng, J.; Qin, L.; Han, S.; Wan, Z. Depot-specific effects of treadmill running and rutin on white adipose tissue function in diet-induced obese mice. J. Physiol. Biochem. 2016, 72, 453–467. [Google Scholar] [CrossRef]
- Chen, P.W.; Lin, C.; Chen, C.D.; Chen, W.Y.; Mao, F.C. Chromium levels in insulin-sensitive tissues and the thigh bone are modulated by prednisolone and high-fat diets in mice. Biometals. 2013, 26, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.R.; Chiu, Y.S.; Wu, Y.Y.; Chen, W.Y.; Liao, J.W.; Chao, T.H.; Mao, F.C. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J. Pharm. Sci. 2009, 109, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Møller, N.C.; Grøntved, A.; Wedderkopp, N.; Ried-Larsen, M.; Kristensen, P.L.; Andersen, L.B.; Froberg, K. Cardiovascular disease risk factors and blood pressure response during exercise in healthy children and adolescents: The european youth heart study. J. Appl. Physiol. 2010, 109, 1125–1132. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, D.J.; Karlsson, H.K.; McQuaid, S.; Yousif, O.; Rahman, Y.; Gasparro, D.; Glund, S.; Chibalin, A.V.; Zierath, J.R.; Nolan, J.J. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 2006, 49, 2983–2992. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.H.; Chang, G.R.; Chen, C.P.; Lin, Y.L.; Chao, I.S.; Shen, T.T.; Mao, F.C. Long-term administration of olanzapine induces adiposity and increases hepatic fatty acid desaturation protein in female C57BL/6J mice. Iran J. Basic. Med. Sci. 2018, 21, 495–501. [Google Scholar]
- Park, S.; Jang, J.S.; Jun, D.W.; Hong, S.M. Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinology 2005, 82, 282–293. [Google Scholar] [CrossRef]
- Frøsig, C.; Rose, A.J.; Treebak, J.T.; Kiens, B.; Richter, E.A.; Wojtaszewski, J.F. Effects of endurance exercise training on insulin signaling in human skeletal muscle: Interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes 2007, 56, 2093–2102. [Google Scholar] [CrossRef] [PubMed]
- Zierath, J.R. Invited review: Exercise training-induced changes in insulin signaling in skeletal muscle. J. Appl. Physiol. 2002, 93, 773–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.B.; Jang, J.S.; Park, S. Estrogen and exercise may enhance beta-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology 2005, 146, 4786–4794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimotoyodome, A.; Haramizu, S.; Inaba, M.; Murase, T.; Tokimitsu, I. Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice. Med. Sci. Sports Exerc. 2005, 37, 1884–1892. [Google Scholar] [CrossRef] [PubMed]
- Chavanelle, V.; Boisseau, N.; Otero, Y.F.; Combaret, L.; Dardevet, D.; Montaurier, C.; Delcros, G.; Peltier, S.L.; Sirvent, P. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci. Rep. 2017, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Gwinup, G. Effect of exercise alone on the weight of obese women. Arch. Intern. Med. 1975, 135, 676–680. [Google Scholar] [CrossRef]
- Baek, S. The effect of physical activity on children’s obesity. Korean J. Obes. 2008, 17, 55–64. [Google Scholar]
- Lin, C.; Chen, P.W.; Chen, W.Y.; Sun, C.C.; Mao, F.C. Glucagon and insulin have opposite effects on tissue chromium distribution in an obese mouse model. J. Diabetes Investig. 2013, 4, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Wojtaszewski, J.F.; Higaki, Y.; Hirshman, M.F.; Michael, M.D.; Dufresne, S.D.; Kahn, C.R.; Goodyear, L.J. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J. Clin. Invest. 1999, 104, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Mazepa, R.C.; Cuevas, M.J.; Collado, P.S.; González-Gallego, J. Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci. 2000, 66, 153–160. [Google Scholar] [CrossRef]
- Bradley, R.L.; Jeon, J.Y.; Liu, F.F.; Maratos-Flier, E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E586–E594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Q.; Zhang, X.H.; Russell, J.C.; Hulver, M.; Cefalu, W.T. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR: LA-cp rats. J. Nutr. 2006, 136, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Pierzynowski, S.G.; Gregory, P.C.; Filip, R.; Woliński, J.; Pierzynowska, K.G. Glucose homeostasis dependency on acini-islet-acinar (AIA) axis communication: A new possible pathophysiological hypothesis regarding diabetes mellitus. Nutr. Diabetes 2018, 8, 55. [Google Scholar] [CrossRef]
- Pierzynowski, S.G.; Goncharova, K.; Gregory, P.C.; Weström, B.; Podpryatov, S.E.; Podpriatov, S.S.; Woliński, J.; Repich, H.; Wierup, N.; Lozinska, L. Experiments suggesting extra-digestive effects of enteral pancreatic amylase and its peptides on glucose homeostasis in a pig model. Sci. Rep. 2017, 7, 8628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.W.; Anderson, R.A. Effects of aerobic exercise and training on the trace minerals chromium, zinc and copper. Sports Med. 1987, 4, 9–18. [Google Scholar] [CrossRef]
- Anderson, R.A.; Bryden, N.A.; Polansky, M.M.; Deuster, P.A. Exercise effects on chromium excretion of trained and untrained men consuming a constant diet. J. Appl. Physiol. 1988, 64, 249–252. [Google Scholar] [CrossRef]
- Anderson, R.A.; Cheng, N.; Bryden, N.A.; Polansky, M.M.; Cheng, N.; Chi, J.; Feng, J. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997, 46, 1786–1791. [Google Scholar] [CrossRef]
- Grant, K.E.; Chandler, R.M.; Castle, A.L.; Ivy, J.L. Chromium and exercise training: Effect on obese women. Med. Sci. Sports Exerc. 1997, 29, 992–998. [Google Scholar] [CrossRef]
- Hakimi, P.; Yang, J.; Casadesus, G.; Massillon, D.; Tolentino-Silva, F.; Nye, C.K.; Cabrera, M.E.; Hagen, D.R.; Utter, C.B.; Baghdy, Y.; et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J. Biol. Chem. 2007, 282, 32844–32855. [Google Scholar] [CrossRef] [Green Version]
- Bonora, E.; Formentini, G.; Calcaterra, F.; Lombardi, S.; Marini, F.; Zenari, L.; Saggiani, F.; Poli, M.; Perbellini, S.; Raffaelli, A.; et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: Prospective data from the verona diabetes complications study. Diabetes Care 2002, 25, 1135–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luukkonen, P.K.; Zhou, Y.; Sädevirta, S.; Leivonen, M.; Arola, J.; Orešič, M.; Hyötyläinen, T.; Yki-Järvinen, H. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1167–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, J.B.; Dixon, A.F.; O’Brien, P.E. Improvements in insulin sensitivity and beta-cell function (HOMA) with weight loss in the severely obese. Homeostatic model assessment. Diabet Med. 2003, 20, 127–134. [Google Scholar] [CrossRef] [PubMed]
- El Magadmi, M.; Ahmad, Y.; Turkie, W.; Yates, A.P.; Sheikh, N.; Bernstein, R.M.; Durrington, P.N.; Laing, I.; Bruce, I.N. Hyperinsulinemia, insulin resistance, and circulating oxidized low density lipoprotein in women with systemic lupus erythematosus. J. Rheumatol. 2006, 33, 50–56. [Google Scholar]
- Gerstein, H.C.; Anand, S.; Yi, Q.L.; Vuksan, V.; Lonn, E.; Teo, K.; Malmberg, K.; McQueen, M.; Yusuf, S. The relationship between dysglycemia and atherosclerosis in South Asian, Chinese, and European individuals in Canada: A randomly sampled cross-sectional study. Diabetes Care 2003, 26, 144–149. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: No sample is available. |
Variable | HFD | HFD + EX |
---|---|---|
Blood (ppb) (×102) | 2.13 ± 0.10 | 1.88 ± 0.02 * |
Bone (ppb) (×102) | 3.56 ± 0.26 | 2.79 ± 0.15 * |
Muscle (ppb) (×102) | 7.85 ± 0.20 | 9.17 ± 0.33 ** |
Liver (ppb) (×102) | 1.21 ± 0.15 | 1.97 ± 0.28 * |
Epididymal fat pads (ppb) (×102) | 1.07 ± 0.19 | 1.54 ± 0.13 * |
Kidney (ppb) (×102) | 1.21 ± 0.06 | 1.57 ± 0.13 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, G.-R.; Hou, P.-H.; Chen, W.-K.; Lin, C.-T.; Tsai, H.-P.; Mao, F.C. Exercise Affects Blood Glucose Levels and Tissue Chromium Distribution in High-Fat Diet-Fed C57BL6 Mice. Molecules 2020, 25, 1658. https://doi.org/10.3390/molecules25071658
Chang G-R, Hou P-H, Chen W-K, Lin C-T, Tsai H-P, Mao FC. Exercise Affects Blood Glucose Levels and Tissue Chromium Distribution in High-Fat Diet-Fed C57BL6 Mice. Molecules. 2020; 25(7):1658. https://doi.org/10.3390/molecules25071658
Chicago/Turabian StyleChang, Geng-Ruei, Po-Hsun Hou, Wen-Kai Chen, Chien-Teng Lin, Hsiao-Pei Tsai, and Frank Chiahung Mao. 2020. "Exercise Affects Blood Glucose Levels and Tissue Chromium Distribution in High-Fat Diet-Fed C57BL6 Mice" Molecules 25, no. 7: 1658. https://doi.org/10.3390/molecules25071658
APA StyleChang, G.-R., Hou, P.-H., Chen, W.-K., Lin, C.-T., Tsai, H.-P., & Mao, F. C. (2020). Exercise Affects Blood Glucose Levels and Tissue Chromium Distribution in High-Fat Diet-Fed C57BL6 Mice. Molecules, 25(7), 1658. https://doi.org/10.3390/molecules25071658