Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a Conventional 1H-NMR Spectral Database
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials and Sample Preparation
3.2. NMR Spectroscopy
3.3. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jouffray, J.B.; Crona, B.; Wassénius, E.; Bebbington, J.; Scholtens, B. Leverage points in the financial sector for seafood sustainability. Sci. Adv. 2019, 5, eaax3324. [Google Scholar] [CrossRef] [Green Version]
- Stone, N.J. Fish consumption, fish oil, lipids, and coronary heart disease. Circulation 1996, 94, 2337–2340. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Yoshida, S.; Date, Y.; Akama, M.; Kikuchi, J. Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan. Sci. Rep. 2014, 4, 7005. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Sakata, K.; Asakura, T.; Date, Y.; Kikuchi, J. Systemic Homeostasis in Metabolome, Ionome, and Microbiome of Wild Yellowfin Goby in Estuarine Ecosystem. Sci. Rep. 2018, 8, 3478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckwith-Hall, B.M.; Thompson, N.A.; Nicholson, J.K.; Lindon, J.C.; Holmes, E. A metabonomic investigation of hepatotoxicity using diffusion-edited H-1 NMR spectroscopy of blood serum. Analyst 2003, 128, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.J.; Simpson, M.J.; Soong, R. Environmental Nuclear Magnetic Resonance Spectroscopy: An Overview and a Primer. Anal. Chem. 2018, 90, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Weljie, A.M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.M. Targeted profiling: Quantitative analysis of H-1 NMR metabolomics data. Anal. Chem. 2006, 78, 4430–4442. [Google Scholar] [CrossRef]
- Ito, K.; Sakata, K.; Date, Y.; Kikuchi, J. Integrated Analysis of Seaweed Components during Seasonal Fluctuation by Data Mining Across Heterogeneous Chemical Measurements with Network Visualization. Anal. Chem. 2014, 86, 1098–1105. [Google Scholar] [CrossRef]
- Karakach, T.K.; Knight, R.; Lenz, E.M.; Viant, M.R.; Walter, J.A. Analysis of time course 1H-NMR metabolomics data by multivariate curve resolution. Magn. Reson. Chem. 2009, 47 (Suppl. 1), S105–S117. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, L.M.; Bjorlenius, B.; Forlin, L.; Larsson, D.G. Reproducible (1)H-NMR-based metabolomic responses in fish exposed to different sewage effluents in two separate studies. Environ. Sci. Technol. 2011, 4, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.P.; Spicer, J.I.; Byrne, J.J.; Sommer, U.; Viant, M.R.; White, D.A.; Widdicombe, S. (1)H-NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced seawater pH, increased temperature, and a pathogen. Environ. Sci. Technol. 2014, 48, 7044–7052. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.; Trattner, S.; Pickova, J.; Gomez-Requeni, P.; Moazzami, A.A. H-1 NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem. 2014, 147, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Jarak, I.; Tavares, L.; Palma, M.; Rito, J.; Carvalho, R.A.; Viegas, I. Response to dietary carbohydrates in European seabass (Dicentrarchus labrax) muscle tissue as revealed by NMR-based metabolomics. Metabolomics 2018, 14, 95. [Google Scholar] [CrossRef]
- Bouveresse, D.J.R.; Moya-Gonzalez, A.; Ammari, F.; Rutledge, D.N. Two novel methods for the determination of the number of components in independent components analysis models. Chemometr. Intell. Lab. 2012, 112, 24–32. [Google Scholar] [CrossRef]
- Aursand, M.; Rainuzzo, J.R.; Grasdalen, H. Quantitative High-Resolution C-13 and H-1 Nuclear-Magnetic-Resonance of Omega-3-Fatty-Acids from White Muscle of Atlantic Salmon (Salmo-Salar). J. Am. Oil Chem. Soc. 1993, 70, 971–981. [Google Scholar] [CrossRef]
- Masoum, S.; Malabat, C.; Jalali-Heravi, M.; Guillou, C.; Rezzi, S.; Rutledge, D.N. Application of support vector machines to H-1 NMR data of fish oils: Methodology for the confirmation of wild and farmed salmon and their origins. Anal. Bioanal. Chem. 2007, 387, 1499–1510. [Google Scholar] [CrossRef]
- Parzanini, C.; Parrish, C.C.; Hamel, J.F.; Mercier, A. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS ONE 2018, 13, e0207395. [Google Scholar] [CrossRef]
- Watabe, S.; Ochiai, Y.; Kanoh, S.; Hashimoto, K. Proximate and Protein Compositions of Requiem Shark Muscle. Bull. Jpn. Soc. Sci. Fish 1983, 49, 265–268. [Google Scholar] [CrossRef]
- Pethybridge, H.R.; Parrish, C.C.; Bruce, B.D.; Young, J.W.; Nichols, P.D. Lipid, Fatty Acid and Energy Density Profiles of White Sharks: Insights into the Feeding Ecology and Ecophysiology of a Complex Top Predator. PLoS ONE 2014, 9, e97877. [Google Scholar] [CrossRef] [Green Version]
- Del Raye, G.; Jorgensen, S.J.; Krumhansl, K.; Ezcurra, J.M.; Block, B.A. Travelling light: White sharks (Carcharodon carcharias) rely on body lipid stores to power ocean-basin scale migration. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Yoshinaka, R.; Sato, M.; Shimizu, Y. Collagen Content in the Muscle of Fishes in Association with Their Swimming Movement and Meat Texture. Bull. Jpn. Soc. Sci. Fish 1986, 52, 1595–1600. [Google Scholar] [CrossRef] [Green Version]
- Misawa, T.; Wei, F.; Kikuchi, J. Application of Two-Dimensional Nuclear Magnetic Resonance for Signal Enhancement by Spectral Integration Using a Large Data Set of Metabolic Mixtures. Anal. Chem. 2016, 88, 6130–6134. [Google Scholar] [CrossRef] [Green Version]
- Asakura, T.; Sakata, K.; Yoshida, S.; Date, Y.; Kikuchi, J. Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches. PeerJ 2014, 2, e550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asakura, T.; Sakata, K.; Date, Y.; Kikuchi, J. Regional feature extraction of various fishes based on chemical and microbial variable selection using machine learning. Anal. Methods 2018, 17, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Asakura, T.; Date, Y.; Kikuchi, J. Application of ensemble deep neural network to metabolomics studies. Anal. Chim. Acta 2018, 1037, 230–236. [Google Scholar] [CrossRef]
- Date, Y.; Kikuchi, J. Application of a Deep Neural Network to Metabolomics Studies and Its Performance in Determining Important Variables. Anal. Chem. 2018, 90, 1805–1810. [Google Scholar] [CrossRef]
- Yamazawa, A.; Iikura, T.; Shino, A.; Date, Y.; Kikuchi, J. Solid-, Solution-, and Gas-state NMR Monitoring of 13C-Cellulose Degradation in an Anaerobic Microbial Ecosystem. Molecules 2013, 18, 9021–9033. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, T.; Ohishi, R.; Shino, A.; Akashi, K.; Kikuchi, J. Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-Iotopologue Monitoring in Initial Growth Metabolism of Jatropha curcas L. Metabolites 2014, 4, 1018–1033. [Google Scholar] [CrossRef] [Green Version]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Ito, K.; Sakata, K.; Date, Y.; Kikuchi, J. Pretreatment and integrated analysis of spectral data reveal seaweed similarities based on chemical diversity. Anal. Chem. 2015, 87, 2819–2826. [Google Scholar] [CrossRef] [PubMed]
- Motegi, H.; Tsuboi, Y.; Saga, A.; Kagami, T.; Inoue, M.; Toki, H.; Minowa, O.; Noda, T.; Kikuchi, J. Identification of Reliable Components in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS): A Data-Driven Approach across Metabolic Processes. Sci. Rep. 2015, 5, 15710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, S.; Ito, K.; Kurotani, A.; Yamada, Y.; Chikayama, E.; Kikuchi, J. InterSpin: Integrated Supportive Webtools for Low- and High-Field NMR Analyses toward Molecular Complexity. ACS Omega 2019, 4, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Durbin, J.; Watson, G.S. Testing for Serial Correlation in Least Squares Regression 1. Biometrika 1950, 37, 409–428. [Google Scholar]
Sample Availability: The data sets used in the present study is available at http://dmar.riken.jp/NMRinformatics/. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F.; Fukuchi, M.; Ito, K.; Sakata, K.; Asakura, T.; Date, Y.; Kikuchi, J. Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a Conventional 1H-NMR Spectral Database. Molecules 2020, 25, 1966. https://doi.org/10.3390/molecules25081966
Wei F, Fukuchi M, Ito K, Sakata K, Asakura T, Date Y, Kikuchi J. Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a Conventional 1H-NMR Spectral Database. Molecules. 2020; 25(8):1966. https://doi.org/10.3390/molecules25081966
Chicago/Turabian StyleWei, Feifei, Minoru Fukuchi, Kengo Ito, Kenji Sakata, Taiga Asakura, Yasuhiro Date, and Jun Kikuchi. 2020. "Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a Conventional 1H-NMR Spectral Database" Molecules 25, no. 8: 1966. https://doi.org/10.3390/molecules25081966
APA StyleWei, F., Fukuchi, M., Ito, K., Sakata, K., Asakura, T., Date, Y., & Kikuchi, J. (2020). Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a Conventional 1H-NMR Spectral Database. Molecules, 25(8), 1966. https://doi.org/10.3390/molecules25081966