NMR Lipid Profile of Milk from Alpine Goats with Supplemented Hempseed and Linseed Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. NMR Sample Preparation and Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morand-Fehr, P.; Fedele, V.; DeCandia, M.; Le Frileux, Y. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rumin. Res. 2007, 68, 20–34. [Google Scholar] [CrossRef]
- Goetsch, A.; Zeng, S.; Gipson, T. Factors affecting goat milk production and quality. Small Rumin. Res. 2011, 101, 55–63. [Google Scholar] [CrossRef]
- Schmidely, P.; Morand-Fehr, P.; Tessier, J.; Rouzeau, A. Effect of extruded soya seed on reversion of fat and protein percentage and fatty acid composition of goat milk. In Nutrition and feeding strategies of sheep and goats under harsh climates; Ben Salem, H., Nefzaoui, A., Morand-Fehr, P., Eds.; CIHEAM: Zaragoza, Spain, 2004; pp. 91–93. [Google Scholar]
- Caroprese, M.; Marzano, A.; Marino, R.; Gliatta, G.; Muscio, A.; Sevi, A. Flaxseed supplementation improves fatty acid profile of cow milk. J. Dairy Sci. 2010, 93, 2580–2588. [Google Scholar] [CrossRef] [PubMed]
- Cattani, M.; Mantovani, R.; Schiavon, S.; Bittante, G.; Bailoni, L. Recovery of n-3 polyunsaturated fatty acids and conjugated linoleic acids in ripened cheese obtained from milk of cows fed different levels of extruded flaxseed. J. Dairy Sci. 2014, 97, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santillo, A.; Caroprese, M.; Marino, R.; D’Angelo, F.; Sevi, A.; Albenzio, M. Fatty acid profile of milk and Cacioricotta cheese from Italian Simmental cows as affected by dietary flaxseed supplementation. J. Dairy Sci. 2016, 99, 2545–2551. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Battacone, G.; Usai, M.; Fancellu, S.; Pulina, G. Supplementation with Extruded Linseed Cake Affects Concentrations of Conjugated Linoleic Acid and Vaccenic Acid in Goat Milk. J. Dairy Sci. 2006, 89, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Luna, P.; Bach, A.; Juárez, M.; De La Fuente, M.A. Effect of a Diet Enriched in Whole Linseed and Sunflower Oil on Goat Milk Fatty Acid Composition and Conjugated Linoleic Acid Isomer Profile. J. Dairy Sci. 2008, 91, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Caroprese, M.; Ciliberti, M.G.; Santillo, A.; Marino, R.; Sevi, A.C.; Albenzio, M. Immune response, productivity and quality of milk from grazing goats as affected by dietary polyunsaturated fatty acid supplementation. Res. Veter- Sci. 2016, 105, 229–235. [Google Scholar] [CrossRef]
- Klir, Z.; Castro-Montoya, J.M.; Novoselec, J.; Molkentin, J.; Domacinovic, M.; Mioc, B.; Dickhoefer, U.; Antunovic, Z. Influence of pumpkin seed cake and extruded linseed on milk production and milk fatty acid profile in Alpine goats. Animal 2017, 11, 1772–1778. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Mustafa, A.; Zhao, X. Effects of flaxseed supplementation to lactating ewes on milk composition, cheese yield, and fatty acid composition of milk and cheese. Small Rumin. Res. 2006, 63, 233–241. [Google Scholar] [CrossRef]
- Caroprese, M.; Albenzio, M.; Bruno, A.; Fedele, V.; Santillo, A.; Sevi, A. Effect of solar radiation and flaxseed supplementation on milk production and fatty acid profile of lactating ewes under high ambient temperature. J. Dairy Sci. 2011, 94, 3856–3867. [Google Scholar] [PubMed] [Green Version]
- Cremonesi, P.; Conte, G.; Severgnini, M.; Turri, F.; Monni, A.; Capra, E.; Rapetti, L.; Colombini, S.; Chessa, S.; Battelli, G.; et al. Evaluation of the effects of different diets on microbiome diversity and fatty acid composition of rumen liquor in dairy goat. Animal 2018, 12, 1856–1866. [Google Scholar] [CrossRef] [PubMed]
- Klir, Ž.; Novoselec, J.; Antunović, Z. An overview on the use of hemp (Cannabis sativa L.) in animal nutrition. Poljoprivreda 2019, 25, 52–61. [Google Scholar] [CrossRef]
- Cozma, A.; Andrei, S.; Pintea, A.; Miere, D.; Filip, L.; Loghin, F.; Ferlay, A. Effect of hemp seed oil supplementation on plasma lipid profile, liver function, milk fatty acid, cholesterol, and vitamin A concentrations in Carpathian goats. Czech J. Anim. Sci. 2016, 60, 289–301. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.A. Milk Fat Technologies and Markets: A Summary of the Wisconsin Milk Marketing Board 1988 Milk Fat Roundtable. J. Dairy Sci. 1989, 72, 3109–3115. [Google Scholar]
- Haenlein, G. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Hodgkinson, A.; Wallace, O.A.; Boggs, I.; Broadhurst, M.; Prosser, C.G. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018, 245, 275–281. [Google Scholar]
- Hartigh, L.J.D. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Tsiafoulis, C.; Papaemmanouil, C.; Alivertis, D.; Tzamaloukas, O.; Miltiadou, D.; Balayssac, S.; Malet-Martino, M.; Gerothanassis, I.P. NMR-Based Μetabolomics of the Lipid Fraction of Organic and Conventional Bovine Milk. Molecules 2019, 24, 1067. [Google Scholar] [CrossRef] [Green Version]
- Andreotti, G.; Trivellone, E.; Lamanna, R.; Di Luccia, A.; Motta, A. Milk Identification of Different Species: 13C-NMR Spectroscopy of Triacylglycerols from Cows and Buffaloes’ Milks. J. Dairy Sci. 2000, 83, 2432–2437. [Google Scholar] [CrossRef]
- Andreotti, G.; Lamanna, R.; Trivellone, E.; Motta, A. 13 C NMR spectra of TAG: An easy way to distinguish milks from different animal species. J. Am. Oil Chem. Soc. 2002, 79, 123–127. [Google Scholar] [CrossRef]
- Brescia, M.; Mazzilli, V.; Sgaramella, A.; Ghelli, S.; Fanizzi, F.P.; Sacco, A. 1 H NMR characterization of milk lipids: A comparison between cow and buffalo milk. J. Am. Oil Chem. Soc. 2004, 81, 431–436. [Google Scholar] [CrossRef]
- Scano, P.; Anedda, R.; Melis, M.P.; Dessi’, M.A.; Lai, A.; Roggio, T. 1 H- and 13 C-NMR Characterization of the Molecular Components of the Lipid Fraction of Pecorino Sardo Cheese. J. Am. Oil Chem. Soc. 2011, 88, 1305–1316. [Google Scholar] [CrossRef]
- Tsiafoulis, C.G.; Skarlas, T.; Tzamaloukas, O.; Miltiadou, D.; Gerothanassis, I.P. Direct nuclear magnetic resonance identification and quantification of geometric isomers of conjugated linoleic acid in milk lipid fraction without derivatization steps: Overcoming sensitivity and resolution barriers. Anal. Chim. Acta 2014, 821, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanouil, C.; Tsiafoulis, C.G.; Alivertis, D.; Tzamaloukas, O.; Miltiadou, D.; Tzakos, A.G.; Gerothanassis, I.P. Selective One-Dimensional Total Correlation Spectroscopy Nuclear Magnetic Resonance Experiments for a Rapid Identification of Minor Components in the Lipid Fraction of Milk and Dairy Products: Toward Spin Chromatography? J. Agric. Food Chem. 2015, 63, 5381–5387. [Google Scholar] [CrossRef]
- Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.I.; Tsiafoulis, C.G.; Gerothanassis, I.P. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, 22, 1663. [Google Scholar] [CrossRef]
- Sébédio, J.-L.; Gnaedig, S.; Chardigny, J.-M. Recent advances in conjugated linoleic acid research. Curr. Opin. Clin. Nutr. Metab. Care 1999, 2, 499–506. [Google Scholar] [CrossRef]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pr. 2014, 8, e525–e532. [Google Scholar] [CrossRef]
- Yang, B.; Chen, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y.Q.; Chen, W. Review of the roles of conjugated linoleic acid in health and disease. J. Funct. Foods 2015, 15, 314–325. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Bichi, E.; Toral, P.; Hervás, G.; Frutos, P.; Gómez-Cortés, P.; Juárez, M.; De La Fuente, M. Inhibition of ∆9-desaturase activity with sterculic acid: Effect on the endogenous synthesis of cis-9 18:1 and cis-9, trans-11 18:2 in dairy sheep. J. Dairy Sci. 2012, 95, 5242–5252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilliard, Y.; Toral, P.; Shingfield, K.; Rouel, J.; Leroux, C.; Bernard, L. Effects of diet and physiological factors on milk fat synthesis, milk fat composition and lipolysis in the goat: A short review. Small Rumin. Res. 2014, 122, 31–37. [Google Scholar] [CrossRef]
Peak | Assignment | Functional Group | δ 1H ppm | Multiplicity1 |
---|---|---|---|---|
1 | Cholesterol | -CH3 | 0.65 | s |
2 | FA | -CH3 | 0.85 | t |
3 | Butyric FA | -CH3 | 0.91 | t |
4 | All n-3 FA | -CH3 | 0.95 | t |
5 | All FA | -(CH2)n | 1.25 | m |
6 | All FA | -OOC-CH2-CH2- | 1.58 | m |
7 | Trans UFA | -CH2-CH=CH- | 1.93 | m |
8 | Cis UFA | -CH2-CH=CH- | 1.98 | m |
9 | All FA | -OOC-CH2-CH2- | 2.27 | t |
10 | Linoleic FA | =CH-CH2-CH= | 2.73 | t, or, m |
11 | Linolenic FA | =CH-CH2-CH= | 2.77 | t |
12 | Glycerol in 1,2-DAG | OH-CH2-CH- | 3.67 | dd |
13 | Glycerol in 1,3-DAG | -CH2-OOC- | 3.98 | m |
14 | Glycerol in TAG | -CH2-OOC- | 4.11 | dd |
15 | Glycerol in TAG | -CH2-OOC- | 4.27 | m |
16 | Caproleic FA | =CH | 4.88–4.94 | dd |
17 | Glycerol in 1,2-DAG | -CH-OOC- | 5.06 | m |
18 | Glycerol in TAG | -CH-OOC- | 5.23 | m |
19 | Cis UFA | -CH=CH- | 5.30 | m |
20 | Trans UFA | -CH=CH- | 5.34 | m |
21 | CLA cis-9, trans-11 | =CH- | 5.60 | m |
22 | Caproleic FA | -CH=CH2 | 5.75 | m |
23 | CLA cis-9, trans-11 | -CH=CH- | 5.92 | t |
24 | CLA trans-9, trans-11 | -CH=CH- | 5.95 | m |
25 | CLA trans-10, trans-12 | -CH=CH- | 5.99 | m |
26 | CLA cis-9, trans-11 | -CH=CH- | 6.25 | dd |
27 | CLA trans-10, cis-12 | -CH=CH- | 6.24 | dd |
28 | CLA cis-10, cis-12 | -CH=CH- | 6.13 | m |
Compound | Group C | Group L | Group H | ||
---|---|---|---|---|---|
% mol | % mol | Fold change% | % mol | Fold change% | |
All FA (I9)1 | 100 | 100 | 100 | ||
Linoleic acid (I10) | 1.86 | 1.71 | -8 | 1.96 | 5 |
Linolenic acid (I11/2) | 0.80 | 1.80 | 125 | 0.85 | 6 |
CLA cis-9, trans-11 (I26 ∙ 2) | 0.40 | 0.54 | 35 | 0.48 | 20 |
CLA trans, trans (I24) | 0.06 | 0.10 | 67 | 0.07 | 17 |
Caproleic acid (I16) | 1.37 | 0.74 | –46 | 1.01 | –26 |
MUFA (UFA – PUFA) | 16.47 | 28.19 | 71 | 22.34 | 36 |
UFA (I7 + I8)/2 | 19.13 | 31.70 | 66 | 25.15 | 31 |
PUFA [(I10) + (I11/2)] | 2.66 | 3.51 | 32 | 2.81 | 6 |
SFA = all FA – UFA | 80.87 | 68.30 | –16 | 74.85 | –7 |
Trans-bond FA (I20) | 4.63 | 10.26 | 122 | 7.18 | 55 |
1,2-DAG (I17 ∙ 2) | 0.58 | 0.54 | –7 | 0.32 | –45 |
1,3-DAG (I13) | 0.39 | 0.27 | -31 | 0.36 | -8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccia, A.C.; Cusano, E.; Scano, P.; Consonni, R. NMR Lipid Profile of Milk from Alpine Goats with Supplemented Hempseed and Linseed Diets. Molecules 2020, 25, 1491. https://doi.org/10.3390/molecules25071491
Boccia AC, Cusano E, Scano P, Consonni R. NMR Lipid Profile of Milk from Alpine Goats with Supplemented Hempseed and Linseed Diets. Molecules. 2020; 25(7):1491. https://doi.org/10.3390/molecules25071491
Chicago/Turabian StyleBoccia, Antonella Caterina, Erica Cusano, Paola Scano, and Roberto Consonni. 2020. "NMR Lipid Profile of Milk from Alpine Goats with Supplemented Hempseed and Linseed Diets" Molecules 25, no. 7: 1491. https://doi.org/10.3390/molecules25071491
APA StyleBoccia, A. C., Cusano, E., Scano, P., & Consonni, R. (2020). NMR Lipid Profile of Milk from Alpine Goats with Supplemented Hempseed and Linseed Diets. Molecules, 25(7), 1491. https://doi.org/10.3390/molecules25071491