Mangiferin Rich Products from Aphloia theiformis (Vahl) Benn Leaves: Extraction, Fractionation, Phytochemical Characterization, and Antioxidant Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extract Yields
2.2. Effect of Extraction Methods on the Antioxidant Capacity of Extracts
2.3. Fractionation of the Crude Hydroethanolic Extract and Characterisation of Obtained Fractions
2.4. Characterization of Secondary Metabolites by Chromatography–Mass Spectrometry
2.5. Correlation Between Different Values
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Preparation of Extracts
3.3.1. Soxhlet Extraction
3.3.2. Stirring Assisted Extraction
3.3.3. Pressurized Liquid Extraction (PLE)
3.3.4. Fractionation of Crude Extract
3.4. Assessment of Antioxidant Capacity
3.4.1. Total Phenolic Content (TPC)
3.4.2. The DPPH• Scavenging Assay
3.4.3. The ABTS•+ Scavenging (Decolorisation) Assay
3.4.4. Ferric Reducing Antioxidant Power (FRAP) Assay
3.5. Identification and Quantification of Secondary Metabolitesof A. theiformis by UPLC-MS/MS Analysis
3.6. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khaw, K.Y.; Parat, M.O.; Shaw, P.N.; Falconer, J.R. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef] [PubMed]
- Kraujalienė, V.; Pukalskas, A.; Venskutonis, P.R. Biorefining of goldenrod (Solidago virgaurea L.) leaves by supercritical fluid and pressurized liquid extraction and evaluation of antioxidant properties and main phytochemicals in the fractions and plant material. J. Funct. Foods 2017, 37, 200–208. [Google Scholar] [CrossRef]
- Fernández-Ponce, M.T.; Parjikolaei, B.R.; Lari, H.N.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J. Pilot-plant scale extraction of phenolic compounds from mango leaves using different green techniques: Kinetic and scale up study. Chem. Eng. J. 2016, 299, 420–430. [Google Scholar] [CrossRef]
- Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. 2005, 1089, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bampouli, A.; Kyriakopoulou, K.; Papaefstathiou, G.; Louli, V.; Krokida, M.; Magoulas, K. Comparison of different extraction methods of Pistacia lentiscus var. chia leaves: Yield, antioxidant activity and essential oil chemical composition. J. Appl. Res. Med. Aromat. Plants 2014, 1, 81–91. [Google Scholar] [CrossRef]
- Leitão, N.C.M.C.S.; Prado, G.H.C.; Veggi, P.C.; Meireles, M.A.A.; Pereira, C.G. Anacardium occidentale L. leaves extraction via SFE: Global yields, extraction kinetics, mathematical modeling and economic evaluation. J. Supercrit. Fluids 2013, 78, 114–123. [Google Scholar] [CrossRef]
- Ouhtit, A.; Gaur, R.L.; Abdraboh, M.; Ireland, S.K.; Rao, P.N.; Raj, S.G.; Al-Riyami, H.; Shanmuganathan, S.; Gupta, I.; Murthy, S.N.; et al. Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: Genes that underpin its mode of action. J. Cancer 2014, 4, 703–715. [Google Scholar] [CrossRef] [Green Version]
- Danthu, P.; Lubrano, C.; Flavet, L.; Rahajanirina, V.; Behra, O.; Fromageot, C.; Rabevohitra, R.; Roger, E. Biological factors influencing production of xanthones in Aphloia theiformis the Mascarene Islands and East Africa. Previously included in the Flacourtiaceae. Chem. Biodivers. 2010, 7, 140–150. [Google Scholar] [CrossRef]
- Poullain, C.; Girard-Valenciennes, E.; Smadja, J. Plants from Reunion island: Evaluation of their free radical scavenging and antioxidant activities. J. Ethnopharmacol. 2004, 95, 19–26. [Google Scholar] [CrossRef]
- Mootoosamy, A.; Fawzi Mahomoodally, M. Ethnomedicinal application of native remedies used against diabetes and related complications in Mauritius. J. Ethnopharmacol. 2014, 151, 413–444. [Google Scholar] [CrossRef]
- Clain, E.; Sinigaglia, L.; Koishi, A.C.; Gorgette, O.; Gadea, G.; Viranaicken, W.; Krejbich-Trotot, P.; Mavingui, P.; Desprès, P.; Dos Santos, C.N.D.; et al. Extract from Aphloia theiformis, an edible indigenous plant from Reunion Island, impairs Zika virus attachment to the host cell surface. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picot, M.C.N.; Mahomoodally, M.F. Effects of Aphloia theiformis on key enzymes related to diabetes mellitus. Pharm. Biol. 2017, 55, 864–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangasamy, O.; Raoelison, G.; Rakotoniriana, F.E.; Cheuk, K.; Urverg-Ratsimamanga, S.; Quetin-Leclercq, J.; Gurib-Fakim, A.; Subratty, A.H. Screening for anti-infective properties of several medicinal plants of the Mauritians flora. J. Ethnopharmacol. 2007, 109, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Telang, M.; Dhulap, S.; Mandhare, A.; Hirwani, R. Therapeutic and cosmetic applications of mangiferin: A patent review. Expert Opin. Ther. Pat. 2013, 23, 1561–1580. [Google Scholar] [CrossRef]
- Kulkarni, V.M.; Rathod, V.K. Extraction of mangiferin from Mangifera indica leaves using three phase partitioning coupled with ultrasound. Ind. Crops Prod. 2014, 52, 292–297. [Google Scholar] [CrossRef]
- Picot, M.C.N.; Bender, O.; Atalay, A.; Zengin, G.; Loffredo, L.; Hadji-Minaglou, F.; Mahomoodally, M.F. Multiple pharmacological targets, cytotoxicity, and phytochemical profile of Aphloia theiformis (Vahl.) Benn. Biomed. Pharmacother. 2017, 89, 342–350. [Google Scholar] [CrossRef]
- Gopalsamy, N.; Vargas, D.; Guého, J.; Ricaud, C.; Hostettmann, K. Saponins from leaves of Aphloia theiformis. Phytochemistry 1998, 27, 3593–3595. [Google Scholar] [CrossRef]
- Kraujalienė, V.; Pukalskas, A.; Venskutonis, P.R. Multi-stage recovery of phytochemicals from buckwheat (Fagopyrum esculentum Moench) flowers by supercritical fluid and pressurized liquid extraction methods. Ind. Crops Prod. 2017, 107, 271–280. [Google Scholar] [CrossRef]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F.; Soares, C.; Moreira, M.M.; Morais, S.; Mašković, P.; Gaurina Srček, V.; Slivac, I.; et al. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind. Crops Prod. 2018, 111, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Kraujalienė, V.; Pukalskas, A.; Kraujalis, P.; Venskutonis, P.R. Biorefining of Bergenia crassifolia L. roots and leaves by high pressure extraction methods and evaluation of antioxidant properties and main phytochemicals in extracts and plant material. Ind. Crops Prod. 2016, 89, 390–398. [Google Scholar] [CrossRef]
- Ledoux, A.; Cao, M.; Jansen, O.; Mamede, L.; Campos, P.E.; Payet, B.; Clerc, P.; Grondin, I.; Girard-Valenciennes, E.; Hermann, T.; et al. Antiplasmodial, anti-chikungunya virus and antioxidant activities of 64 endemic plants from the Mascarene Islands. Int. J. Antimicrob. Agents 2018, 52, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Pukalskas, A.; Venskutonis, P.R.; Salido, S.; Waard, P.D.; Van Beek, T.A. Isolation, identification and activity of natural antioxidants from horehound (Marrubium vulgare L.) cultivated in Lithuania. Food Chem. 2012, 130, 695–701. [Google Scholar] [CrossRef]
- Larrauri, M.; Zunino, M.P.; Zygadlo, J.A.; Grosso, N.R.; Nepote, V. Chemical characterization and antioxidant properties of fractions separated from extract of peanut skin derived from different industrial processes. Ind. Crop. Prod. 2016, 94, 964–971. [Google Scholar] [CrossRef]
- Vo, T.H.T.; Nguyen, T.D.; Nguyen, Q.H.; Ushakova, N.A. Extraction of mangiferin from the leaves of the mango tree Mangifera indica and evaluation of its biological activity in terms of blockade of α-glucosidase. Pharm. Chem. J. 2017, 51, 806–810. [Google Scholar] [CrossRef]
- Luo, F.; Lv, Q.; Zhao, Y.; Hu, G.; Huang, G.; Zhang, J.; Sun, C.; Li, X.; Chen, K. Quantification and purification of mangiferin from Chinese mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H2O2-induced stress. Int. J. Mol. Sci. 2012, 13, 11260–11274. [Google Scholar] [CrossRef]
- Tommasi, N.D.E.; Rastrelli, L.; Cumanda, J.; Speranza, G.; Pizza, C. Aryl and triterpenic glycosides from Margyricarpus setosus. Phytochemistry 1996, 42, 163–167. [Google Scholar] [CrossRef]
- Jian, C.; Li, M.; Zheng, W.; He, Y.; Ren, Y. Tormentic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts via inhibition of TLR4-mediated NF-kB and MAPK signalling pathway. Arch. Oral Biol. 2015, 60, 1327–1332. [Google Scholar] [CrossRef]
- Wang, Y.L.; Sun, G.Y.; Zhang, Y.; He, J.J.; Zheng, S.; Lin, J.N. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway. Mol. Med. Rep. 2016, 14, 3559–3564. [Google Scholar] [CrossRef] [Green Version]
- Gold-Smith, F.; Fernandez, A.; Bishop, K. Mangiferin and cancer: Mechanisms of action. Nutrients 2016, 8, 396. [Google Scholar] [CrossRef] [Green Version]
- Grauzdytė, D.; Raudoniūtė, J.; Kulvinskienė, I.; Bagdonas, E.; Stasiulaitienė, I.; Martuzevičius, D.; Bironaitė, D.; Aldonytė, R.; Venskutonis, P.R. Cytoprotective effects of mangiferin and Z-ligustilide in PAH-exposed human airway epithelium in vitro. Nutrients 2019, 11, 218. [Google Scholar] [CrossRef] [Green Version]
- Hsoidrou, S.; Bousta, D.; Lachkar, M.; Hassane, S.O.S.; Youbi-hamsas, A.E.; Mansouri, L.E.L.; Benjilali, J.; Farah, A. Phytochemical screening, immunomodulatory and anti-inflammatory activities of the phenolic fraction of Aphloia theiformis (Vahl) Benn. Plant Used in Comorian Traditional Medicine. Phytothérapie 2014, 12, 354–359. [Google Scholar] [CrossRef]
- Šliumpaitė, I.; Venskutonis, P.R.; Murkovic, M.; Pukalskas, A. Antioxidant properties and phenolics composition of common hedge hyssop (Gratiola officinalis L.). J. Funct. Foods 2013, 5, 1927–1937. [Google Scholar] [CrossRef]
- Kraujalis, P.; Venskutonis, P.R.; Pukalskas, A.; Kazernavičiūtė, R. Accelerated solvent extraction of lipids from Amaranthus spp. seeds and characterization of their composition. LWT Food Sci. Technol. 2013, 54, 528–534. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1998, 299, 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
Solvent, Procedure | Yield, % | TPC | DPPH• | ABTS•+ | FRAP | |||||
---|---|---|---|---|---|---|---|---|---|---|
DWR | DWP | DWE | DWP | DWE | DWP | DWE | DWP | DWE | DWP | |
Whole material, 1-step | ||||||||||
HE (SE) | 2.62 ± 0.04 a | 2.62 a | - | - | - | - | - | - | - | - |
ACs (SE) | 10.97 ± 0.79 e | 11.0 e | 247 ± 13.0 d | 27.1 c | 2451 ± 96.8 c | 269 c | 4533 ± 77.6 g | 497 c | 3360 ± 176 d | 369 d |
EHs (SAE) | 34.07 ± 0.66 j | 34.1 g | 330 ± 11.9 f | 112 g | 3267 ± 81.5 e | 1113 f | 4595 ± 111 f,g | 1566 f | 4473 ± 129 f | 1524 f |
Consecutive | ||||||||||
HE (SE) | 2.62 ± 0.04 a | 2.62 a | - | - | - | - | - | - | - | - |
ACc (SE) | 9.40 ± 0.37 d | 9.15 d | 275 ± 14.0 e | 25.1 c | 2902 ± 46.8 d | 266 c | 5091 ± 118 h | 466 c | 3905 ± 45.1 e | 367 d |
EHc (SAE) | 28.79 ± 0.33 i | 25.3 f | 317 ± 6.76 f | 80.2 e | 3121 ± 93.8 e | 791 e | 4313 ± 54.2 e,f | 1093 d | 3388 ± 117 d | 858 e |
∑ | 37.1 | 105 | 1057 | 1559 | 1225 | |||||
HEp70 (PLE) | 2.47 ± 0.23 a | 2.47 a | - | - | - | - | - | - | - | - |
ACp70 (PLE) | 6.65 ± 0.02 c | 6.49 c | 172 ± 5.00 c | 11.2 b | 1884 ± 51.1 b | 122 a | 3025 ± 76.8 d | 196 b | 2160 ± 79.5 b | 144 b |
EHp70 (PLE) | 27.86 ± 0.36 h | 25.4 f | 322 ± 23.4 f | 88.5 f | 2867 ± 34.4 d | 824 e | 4598 ± 146 g | 1166 e | 3504 ± 102 d,e | 889 e |
Wp70 (PLE) | 13.45 ± 0.29 f | 8.83 d | 138 ± 3.65 b | 12.2 b | 2314 ± 89.9 c | 204 b | 2378 ± 30.9 b | 210 b | 2317 ± 34.1 c | 205 c |
∑ | 43.2 | 112 | 1053 | 1572 | 1238 | |||||
HEp140 (PLE) | 3.59 ± 0.13 b | 3.59 b | - | - | - | - | - | - | - | - |
ACp140 (PLE) | 6.72 ± 0.01 c | 6.48 c | 154 ± 4.05 c | 10.0 b | 1748 ± 26.4 b | 113 a | 2683 ± 87.4 c | 174 b | 2119 ± 28.7 b | 142 b |
EHp140 (PLE) | 28.80 ± 0.13 i | 25.9 f | 291 ± 1.98 e | 75.4 d | 2837 ± 76.4 d | 735 d | 4165 ± 138 e | 1079 d | 3362 ± 97.3 d | 871 e |
Wp140 (PLE) | 14.65 ± 0.10 g | 9.38 d | 7.59 ± 0.55 a | 0.71 a | 1395 ± 111 a | 131 a | 107 ± 2.89 a | 10.1 a | 290 ± 26.3 a | 30.7 a |
∑ | 45.4 | 86 | 979 | 1263 | 1044 |
Product | Yield, % | TPC | DPPH• | ABTS•+ | FRAP |
---|---|---|---|---|---|
Crude hydroethanolic extract (EHs) | 34.07 ± 0.66 | 362 ± 6.28 e | 3267 ± 81.5 f | 4595 ± 111 e | 4473 ± 129 e |
Fractions obtained using liquid-liquid extraction | |||||
Hexane | 14.2 ± 0.3 | 42.4 ± 0.62 a | 302 ± 5.98 a | 511 ± 21.8 a | 461 ± 17.1 a |
Ethyl acetate | 17.0 ± 0.81 | 208 ± 2.77 b | 1340 ± 26.3 b | 2106 ± 46.0 b | 2030 ± 104 c |
n-Butanol | 48.0 ± 0.91 | 423 ± 4.79 f | 3496 ± 28.4 g | 4555 ± 26.2 e | 4818 ± 85.5 g |
Water | 17.7 ± 2.41 | 257 ± 4.78 c | 1969 ± 92.4 d | 2589 ± 14.1 c | 1476 ± 68.8 b |
Fractions obtained by cooling at 6 °C | |||||
Sto1g | 2.06 ± 8.23 | 201 ± 3.68 b | 1568 ± 51.5 c | 1946 ± 47.5 b | 1857 ± 109 c |
Sto1p | 14.14 ± 29.12 | 491 ± 16.6 g | 4333 ± 21.0 h | 6878 ± 47.8 f | 4298 ± 129 e |
Sto2p | 2.06 ± 19.54 | 599 ± 4.40 h | 4816 ± 62.3 i | 7951 ± 360 g | 5582 ± 87.7 f |
Tf | 63.7 | 300 ± 3.56 d | 2359 ± 39.7 e | 4054 ± 175 d | 2656 ± 54.6 d |
Mangiferin | - | 668 ± 8.58 i | 4282 ± 246 h | 7227 ± 226 f | 6750 ± 2.13 h |
Peak No. | RT | Compound | Molecular Formula | m/z | |
---|---|---|---|---|---|
[M − H]− | MS Fragments | ||||
1. | 0.35 | Unknown, [M − H]− similar to fructose | C6H12O6 | 179.0563 | - |
2. | 1.70 | Unknown, [M − H]− similar to iriflophenone-3-C-β-d-glucopyranoside | C19H20O10 | 407.0984 | - |
3. | 1.85 | Mangiferin ** | C19H18O11 | 421.0777 | - |
4. | 2.75 | Unknown saponin * | C37H60O14 | 727.3910 | - |
5. | 3.20 | Hydroxytormentic acid derivative * | C37H60O13 | 711.3961 | 503.3371 [HTA − H]− |
6. | 3.60 | Tormentic acid derivative * | C37H60O12 | 695.4012 | 649.3949, 487.3427 |
[TA − H]− | |||||
7a. | 3.61 | 23-Hydroxytormentic acid isomer * | C30H48O6 | 503.3372 | - |
7b. | 4.73 | 23-Hydroxytormentic acid ** | C30H48O6 | 503.3372 | - |
7c. | 5.14 | 23-Hydroxytormentic acid isomer * | C30H48O6 | 503.3372 | - |
8. | 4.45 | Unknown | C16H28O6 | 315.1813 | - |
9a. | 4.34 | Tormentic acid isomer * | C30H48O5 | 487.3429 | - |
9b. | 5.60 | Tormentic acid ** | C30H48O5 | 487.3429 | - |
9c. | 5.74 | Tormentic acid isomer * | C30H48O5 | 487.3429 | - |
10. | 5.85 | Unknown | C18H30O3 | 293.2027 | - |
11. | 6.35 | Unknown, [M − H]− similar to maslinic/corosolic acid | C30H48O4 | 471.3480 | - |
12. | 6.40 | Unknown | C18H32O3 | 295.2279 | - |
13. | 4.13 | Unknown | C30H48O7 | 520.7039 | - |
14. | 5.90 | Unknown, [M − H]− similar to quillaic acid | C30H46O5 | 485.3272 | - |
Sample | Mangiferin | Hydroxytormentic acid RT = 4.73 (7b) | Hydroxytormentic acid isomer * RT = 3.61 (7a) | Hydroxytormentic acid isomer * RT = 5.14 (7c) | Tormentic acid RT = 5.60 (9b) | Tormentic acid isomer * RT = 4.34 (9a) | Tormentic acid isomer * RT = 5.74 (9c) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DWE | DWP | DWE | DWP | DWE | DWP | DWE | DWP | DWE | DWP | DWE | DWP | DWE | DWP | |
1-step | ||||||||||||||
ACs (SE) | 38.10 ± 0.11 b | 4.18 b | 2.71 ± 0.02 e | 0.30 c | 3.19 ± 0.03 d | 0.35 d | 0.20 ± 0.00 b | 0.02 a | 0.16 ± 0.01 b | 0.02 b | 0.21 ± 0.01 b | 0.02 c | 3.70 ± 0.03 d | 0.40 d |
EHs (SAE) | 104.6 ± 3.99 f | 35.6 f | 1.26 ± 0.04 d | 0.43 e | 1.70 ± 0.21 c | 0.58 e | 0.01 ± 0.00 a | tr | 0.15 ± 0.00 a | 0.05 c | 0.24 ± 0.00 c | 0.08 d | 1.72 ± 0.12 c | 0.59 e |
Consecutive | ||||||||||||||
ACc (SE) | 43.03 ± 0.05 b,c | 3.94 b | 3.01 ± 0.05 f | 0.28 c | 3.36 ± 0.06 d | 0.31 b,c,d | 0.22 ± 0.01 b | 0.02 a | 0.18 ± 0.01 b | 0.02 b | 0.21 ± 0.00 b | 0.02 a | 3.45 ±0.06 d | 0.32 c |
EHc (SAE) | 101.0 ± 0.01 f | 25.6 e | 0.34 ± 0.01 c | 0.09 b | 0.86 ± 0.01 b | 0.22 b,c | nd | nd | nd | nd | 0.01 ± 0.00 a | tr | 1.03 ± 0.01 b | 0.26 b,c |
∑ | 29.5 | 0.37 | 0.53 | 0.02 | 0.02 | 0.02 | 0.58 | |||||||
ACp70 (PLE) | 48.64 ± 0.24c | 3.16 b | 3.94 ± 0.02 g | 0.26 c | 3.72 ± 0.03 e | 0.24 c | 0.31 ± 0.00 c | 0.02 a | 0.24 ± 0.00 c | 0.02 b | 0.28 ± 0.00 d | 0.02 a | 4.28 ± 0.12 e | 0.28 b,c |
EHp70 (PLE) | 90.46 ± 3.25 e | 23.0 d | 0.31 ± 0.00 b | 0.08 b | 0.95 ± 0.01 b | 0.24 c | nd | nd | nd | nd | 0.02 ± 0.00 a | tr | 0.99 ± 0.00 b | 0.25 b |
Wp70 (PLE) | 87.13 ± 0.02 e | 7.69 c | 0.04 ± 0.00 a | d | 0.27 ± 0.00 a | 0.02 a | nd | nd | nd | nd | Tr | tr | 0.52 ± 0.00 a | 0.05 a |
∑ | 33.9 | 0.34 | 0.50 | 0.02 | 0.02 | 0.02 | 0.58 | |||||||
ACp140 (PLE) | 72.20 ± 2.64 d | 4.68 b | 5.63 ± 0.08 h | 0.36 d | 3.25 ± 0.01 d | 0.21 b,c | 0.32 ± 0.01 c | 0.02 b | 0.15 ± 0.00 a | 0.01 a | 0.24 ± 0.01 c | 0.02 b | 4.05 ± 0.11 e | 0.26 b,c |
EHp140 (PLE) | 86.46 ± 0.06 e | 22.4 d | 0.14 ± 0.00 a | 0.04 a | 0.56 ± 0.01 a | 0.14 b | nd | nd | nd | nd | tr | tr | tr | tr |
Wp140 (PLE) | 12.18 ± 0.30 a | 1.14 a | tr | tr | tr | tr | nd | nd | nd | nd | nd | nd | tr | tr |
∑ | 28.2 | 0.40 | 0.35 | 0.02 | 0.01 | 0.02 | 0.26 |
Fraction | Mangiferin | Hydroxytormentic acid RT = 4.73 (7b) | Hydroxytormentic acid isomer * RT = 3.61 (7a) | Hydroxytormentic acid isomer * RT = 5.14 (7c) | Tormentic acid RT = 5.60 (9b) | Tormentic acid isomer * RT = 4.34 (9a) | Tormentic acid isomer * RT = 5.74 (9c) |
---|---|---|---|---|---|---|---|
Ethyl acetate | 191.7 ± 3.21 c | 4.02 ± 0.22 b | 5.83 ± 0.06 d | tr | tr | tr | 8.51 ± 0.01 b |
n-butanol | 416.3 ± 3.77 d | nd | 1.30 ± 0.06 b | nd | nd | nd | tr |
Water | 12.57 ± 0.10 a | tr | tr | nd | nd | nd | tr |
Sto1g | 152.5 ± 7.11 b | 6.31 ± 0.01 c | 0.59 ± 0.03 a | 0.05 ± 0.00 a | tr | nd | 1.00 ± 0.01 a |
Sto1p | 459.7 ± 11.2 e | 4.59 ± 0.28 b | nd | tr | tr | nd | 9.98 ± 0.10 c |
Sto2p | 557.0 ± 15.4 f | 0.10 ± 0.00 a | tr | tr | nd | nd | 8.30 ± 0.09 b |
Tf | 182.6 ± 5.97 c | tr | 3.19 ± 0.03 c | nd | nd | tr | tr |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grauzdytė, D.; Pukalskas, A.; El Kalamouni, C.; Venskutonis, P.R. Mangiferin Rich Products from Aphloia theiformis (Vahl) Benn Leaves: Extraction, Fractionation, Phytochemical Characterization, and Antioxidant Properties. Molecules 2020, 25, 2081. https://doi.org/10.3390/molecules25092081
Grauzdytė D, Pukalskas A, El Kalamouni C, Venskutonis PR. Mangiferin Rich Products from Aphloia theiformis (Vahl) Benn Leaves: Extraction, Fractionation, Phytochemical Characterization, and Antioxidant Properties. Molecules. 2020; 25(9):2081. https://doi.org/10.3390/molecules25092081
Chicago/Turabian StyleGrauzdytė, Dovilė, Audrius Pukalskas, Chaker El Kalamouni, and Petras Rimantas Venskutonis. 2020. "Mangiferin Rich Products from Aphloia theiformis (Vahl) Benn Leaves: Extraction, Fractionation, Phytochemical Characterization, and Antioxidant Properties" Molecules 25, no. 9: 2081. https://doi.org/10.3390/molecules25092081