In Situ FTIR Spectroscopic Monitoring of the Formation of the Arene Diazonium Salts and Its Applications to the Heck–Matsuda Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Instrumental Conditions and Data Processing
3.3. Formation of Diazonium Salts and Alkene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sandomierski, M.; Buchwald, T.; Strzemiecka, B.; Voelkel, A. Modification of Ti6Al4V surface by diazonium compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem. 2013, 11, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling Reactions. Chem. Rev. 2006, 106, 4622–4643. [Google Scholar] [CrossRef] [PubMed]
- Oger, N.; D’Halluin, M.; Le Grognec, E.; Felpin, F.-X. Using Aryl Diazonium Salts in Palladium-Catalyzed Reactions under Safer Conditions. Org. Process. Res. Dev. 2014, 18, 1786–1801. [Google Scholar] [CrossRef]
- Murphy, D.M.; Cullen, R.J.; Jayasundara, D.; Scanlan, E.M.; Colavita, P.E. Study of the spontaneous attachment of polycyclic aryldiazonium salts onto amorphous carbon substrates. RSC Adv. 2012, 2, 6527. [Google Scholar] [CrossRef]
- Wang, M.; Funabiki, K.; Matsui, M. Synthesis and properties of bis(hetaryl)azo dyes. Dye. Pigment. 2003, 57, 77–86. [Google Scholar] [CrossRef]
- Rathore, A.S.; Bhambure, R.; Ghare, V. Process analytical technology (PAT) for biopharmaceutical products. Anal. Bioanal. Chem. 2010, 398, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Chanda, A.; Daly, A.; Foley, D.A.; LaPack, M.A.; Mukherjee, S.; Orr, J.; Reid, G.L.; Thompson, D.R.; Ward, H.W. Industry Perspectives on Process Analytical Technology: Tools and Applications in API Development. Org. Process. Res. Dev. 2014, 19, 63–83. [Google Scholar] [CrossRef]
- The ReactIR, 45m, IR 4.0; Mettler-Toledo AutoChem, 7075 Samuel Morse Drive: Columbia, MD, USA, 2010.
- Carter, C.F.; Lange, H.; Ley, S.V.; Baxendale, I.R.; Wittkamp, B.; Goode, J.G.; Gaunt, N.L. ReactIR Flow Cell: A New Analytical Tool for Continuous Flow Chemical Processing. Org. Process. Res. Dev. 2010, 14, 393–404. [Google Scholar] [CrossRef]
- Stead, D.; Carbone, G.; O’Brien, P.; Campos, K.R.; Coldham, I.; Sanderson, A. Asymmetric Deprotonation of N-Boc Piperidine: React IR Monitoring and Mechanistic Aspects. J. Am. Chem. Soc. 2010, 132, 7260–7261. [Google Scholar] [CrossRef] [PubMed]
- Foley, D.A.; Doecke, C.W.; Buser, J.Y.; Merritt, J.M.; Murphy, L.; Kissane, M.; Collins, S.; Maguire, A.R.; Kaerner, A. ReactNMR and ReactIR as Reaction Monitoring and Mechanistic Elucidation Tools: The NCS Mediated Cascade Reaction of α-Thioamides to α-Thio-β-chloroacrylamides. J. Org. Chem. 2011, 76, 9630–9640. [Google Scholar] [CrossRef]
- Chernyak, N.; Buchwald, S.L. Continuous-Flow Synthesis of Monoarylated Acetaldehydes Using Aryldiazonium Salts. J. Am. Chem. Soc. 2012, 134, 12466–12469. [Google Scholar] [CrossRef] [PubMed]
- Patai, S. The Chemistry of Diazonium and Diazo Groups, Part 2; Wiley-Blackwell: Hoboken, NJ, USA, 1978; ISBN 0-471-99493-99496. [Google Scholar]
- Zollinger, H. Reactivity and stability of arene diazonium ions. Acc. Chem. Res. 1973, 6, 335–341. [Google Scholar] [CrossRef]
- Chaudhari, T.Y.; Hossian, A.; Manna, M.K.; Jana, R. Chemo-, regio-, and stereoselective Heck–Matsuda arylation of allylic alcohols under mild conditions. Org. Biomol. Chem. 2015, 13, 4841–4845. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, K.S.; Siva, B.; Reddy, S.D.; Naresh, N.R.; Pratap, T.V.; Rao, B.V.; Hong, Y.-A.; Kumar, B.V.; Raju, A.K.; Reddy, P.M.; et al. In Situ FTIR Spectroscopic Monitoring of the Formation of the Arene Diazonium Salts and Its Applications to the Heck–Matsuda Reaction. Molecules 2020, 25, 2199. https://doi.org/10.3390/molecules25092199
Reddy KS, Siva B, Reddy SD, Naresh NR, Pratap TV, Rao BV, Hong Y-A, Kumar BV, Raju AK, Reddy PM, et al. In Situ FTIR Spectroscopic Monitoring of the Formation of the Arene Diazonium Salts and Its Applications to the Heck–Matsuda Reaction. Molecules. 2020; 25(9):2199. https://doi.org/10.3390/molecules25092199
Chicago/Turabian StyleReddy, K. Sateesh, Bandi Siva, S. Divya Reddy, N. Reddy Naresh, T. V. Pratap, B. Venkateswara Rao, Yi-An Hong, B. Vijaya Kumar, A. Krishnam Raju, P. Muralidhar Reddy, and et al. 2020. "In Situ FTIR Spectroscopic Monitoring of the Formation of the Arene Diazonium Salts and Its Applications to the Heck–Matsuda Reaction" Molecules 25, no. 9: 2199. https://doi.org/10.3390/molecules25092199
APA StyleReddy, K. S., Siva, B., Reddy, S. D., Naresh, N. R., Pratap, T. V., Rao, B. V., Hong, Y.-A., Kumar, B. V., Raju, A. K., Reddy, P. M., & Hu, A. (2020). In Situ FTIR Spectroscopic Monitoring of the Formation of the Arene Diazonium Salts and Its Applications to the Heck–Matsuda Reaction. Molecules, 25(9), 2199. https://doi.org/10.3390/molecules25092199