Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plant Growth
2.2. Chemical Composition
2.2.1. Proximate Analysis and Energetic Value
2.2.2. Tocopherols Content
2.2.3. Free Sugars Content
2.2.4. Organic Acids Content
2.2.5. Fatty Acids Composition
2.2.6. Phenolic Compounds Composition
2.3. Bioactivity
2.3.1. Antioxidant Activity
2.3.2. Cytotoxic Effects
2.3.3. Antimicrobial Properties
3. Materials and Methods
3.1. Plant Material and Growing Conditions
3.2. Standards and Reagents
3.3. Chemical Analyses Assays
3.3.1. Proximate Analysis and Energetic Value
3.3.2. Tocopherols
3.3.3. Free Sugars
3.3.4. Organic Acids
3.2.5. Fatty Acids
3.2.6. Phenolic Compounds
3.4. Antioxidant Activity
3.4.1. OxHLIA Assay
3.4.2. TBARS Assay
3.5. Hepatotoxicity and Cytotoxicity Assays
3.6. Antimicrobial Properties
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petropoulos, S.; Ntatsi, G.; Levizou, E.; Barros, L.; Ferreira, I. Nutritional profile and chemical composition of Cichorium spinosum ecotypes. Lwt-Food Sci. Technol. 2016, 73, 95–101. [Google Scholar] [CrossRef]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef]
- Hazell, P.; Poulton, C.; Wiggins, S.; Dorward, A. The future of small farms: Synthesis paper. World Dev. Rep. 2006, 12, 1–51. [Google Scholar]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Nebel, S.; Heinrich, M. Ta chórta: A comparative ethnobotanical-linguistic study of wild food plants in a graecanic area in Calabria, Southern Italy. Econ. Bot. 2009, 63, 78–92. [Google Scholar] [CrossRef]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C.F.R. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today ’s society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, chemical composition and cytotoxic properties of common purslane (Portulaca oleracea L.) in relation to harvesting stage and plant part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Karkanis, A.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R.; Ntatsi, G.; Petrotos, K.; Lykas, C.; Khah, E. Chemical composition and yield of six genotypes of common purslane (Portulaca oleracea L.): An alternative source of omega-3 fatty acids. Plant Foods Hum. Nutr. 2015, 70, 420–426. [Google Scholar] [CrossRef]
- Luczaj, L.; Pieroni, A.; Tardío, J.; Pardo-De-Santayana, M.; Sõukand, R.; Svanberg, I.; Kalle, R. Wild food plant use in 21st century Europe: The disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Soc. Bot. Pol. 2012, 81, 359–370. [Google Scholar] [CrossRef]
- Disciglio, G.; Tarantino, A.; Frabboni, L.; Gagliardi, A.; Michela, M.; Tarantino, E.; Gatta, G.; Beta, L.; Miller, F.; Cichorium, L.; et al. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity. Ital. J. Agron. 2017, 12, 383–394. [Google Scholar]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Tawaha, A.; Al-Tawaha, A.R.; Gammoh, S.; Ereifej, K.I.; Al-Karaki, G.; Hamasha, H.R.; Tranchant, C.C.; et al. Herbal yield, nutritive composition, phenolic contents and antioxidant activity of purslane (Portulaca oleracea L.) grown in different soilless media in a closed system. Ind. Crop. Prod. 2019, 141, 111746. [Google Scholar]
- Papafilippaki, A.; Nikolaidis, N.P. Comparative study of wild and cultivated populations of Cichorium spinosum: The influence of soil and organic matter addition. Sci. Hortic. (Amst. ). 2020, 261, 108942. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Di Gioia, F.; Kolovou, P.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of Cichorium spinosum L. in relation to nitrate/ammonium nitrogen ratio. J. Sci. Food Agric. 2019, 99, 6741–6750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean wild edible plants: Weeds or “new functional crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.; Fernandes, A.; Barros, L.; Ferreira, I. A comparison of the phenolic profile and antioxidant activity of different Cichorium spinosum L. ecotypes. J. Sci. Food Agric. 2017, 98, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Res. Int. 2011, 44, 2634–2640. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez-García, I.; Himénez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Guil, J.L.; Rodríguez-García, I.; Torija, E. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum. Nutr. 1997, 51, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Kristanc, L.; Kreft, S. European medicinal and edible plants associated with subacute and chronic toxicity part I: Plants with carcinogenic, teratogenic and endocrine-disrupting effects. Food Chem. Toxicol. 2016, 92, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Kristanc, L.; Kreft, S. European medicinal and edible plants associated with subacute and chronic toxicity part II: Plants with hepato-, neuro-, nephro- and immunotoxic effects. Food Chem. Toxicol. 2016, 92, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Della, A.; Paraskeva-Hadjichambi, D.; Hadjichambis, A.C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2006, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubacey, T.; Haggag, E.; El-Toumy, S.; Ahmed, A.; El-Ashmawy, I.; Youns, M. Biological activity and flavonoids from Centaurea alexanderina leaf extract. J. Pharm. Res. 2012, 5, 3352–3361. [Google Scholar]
- Pieroni, A.; Janiak, V.; Dürr, C.M.; Lüdeke, S.; Trachsel, E.; Heinrich, M. In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy. Phyther. Res. 2002, 16, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Csupor, D.; Widowitz, U.; Blazsõ, G.; Laczkõ-Zöld, E.; Tatsimo, J.S.N.; Balogh, Á.; Boros, K.; Dankõ, B.; Bauer, R.; Hohmann, J. Anti-inflammatory activities of eleven Centaurea species occurring in the Carpathian basin. Phyther. Res. 2013, 27, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Tekeli, Y.; Zengin, G.; Aktumsek, A.; Mehmet, S.; Torlak, E. Antibacterial activities of extracts from twelve Centaurea species from Turkey. Arch. Biol. Sci. 2011, 63, 685–690. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crop. Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Escher, G.B.; Santos, J.S.; Rosso, N.D.; Marques, M.B.; Azevedo, L.; do Carmo, M.A.V.; Daguer, H.; Molognoni, L.; Prado-Silva, L.d.; Sant’Ana, A.S.; et al. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract. Food Chem. Toxicol. 2018, 118, 439–453. [Google Scholar] [CrossRef]
- Erol-Dayi, Ö.; Pekmez, M.; Bona, M.; Aras-Perk, A.; Arda, N. Total phenolic contents, antioxidant activities cytotoxicity of three Centaurea species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa C. spicata. Free Radic. Antioxid. 2011, 1, 31–36. [Google Scholar] [CrossRef]
- Ostad, S.N.; Rajabi, A.; Khademi, R.; Farjadmand, F.; Eftekhari, M.; Hadjiakhoondi, A.; Khanavi, M. Cytotoxic potential of Centaurea bruguierana ssp. belangerana: The MTT assay. Acta Med. Iran. 2016, 54, 583–589. [Google Scholar] [PubMed]
- Ifantis, T.M.; Solujić, S.; Pavlović-Muratspahić, D.; Skaltsa, H. Secondary metabolites from the aerial parts of Centaurea pannonica (Heuff.) Simonk. from Serbia and their chemotaxonomic importance. Phytochemistry 2013, 94, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Ćiricć, A.; Karioti, A.; Koukoulitsa, C.; Sokovic̈, M.; Skaltsa, H. Sesquiterpene lactones from Centaurea zuccariniana and their antimicrobial activity. Chem. Biodivers. 2012, 9, 2843–2853. [Google Scholar] [CrossRef] [PubMed]
- Özcan, K.; Acet, T.; Çorbacı, C. Centaurea hypoleuca DC: Phenolic content, antimicrobial, antioxidant and enzyme inhibitory activities. South Afr. J. Bot. 2019, 127, 313–318. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E.; Casal, S. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Res. Int. 2019, 123, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey. Food Chem. 2013, 141, 91–97. [Google Scholar] [CrossRef]
- Erdogan, T.; Gonenc, T.; Cakilcioglu, U.; Kivcak, B. Fatty acid composition of the aerial parts of some Centaurea species in Elazig, Turkey. Trop. J. Pharm. Res. 2014, 13, 613–616. [Google Scholar] [CrossRef] [Green Version]
- Panagouleas, C.; Skaltsa, H.; Lazari, D.; Skaltsounis, A.L.; Sokovic, M. Antifungal activity of secondary metabolites of Centaurea raphanina ssp. mixta, growing wild in Greece. Pharm. Biol. 2003, 41, 266–270. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Gioia, F.D.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and cultivated Centaurea raphanina subsp. mixta: A valuable source of bioactive compounds. Antioxidants 2020, 9, 314. [Google Scholar] [CrossRef]
- Negaresh, K.; Rahiminejad, M.R. A contribution to the taxonomy of Centaurea sect. Cynaroides (Asteraceae, Cardueae-Centaureinae) in Iran. Phytotaxa 2014, 158, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Hilpold, A.; Garcia-Jacas, N.; Vilatersana, R.; Susanna, A. Taxonomical and nomenclatural notes on Centaurea: A proposal of classification, a description of new sections and subsections, and a species list of the redefined section Centaurea. Collect. Bot. 2014, 33, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.; Chamalides, C.; Foufa, E.; Kaloudis, T.; Kromhout, D.; Miskaki, P.; Petrochilou, I.; Poulima, E.; et al. Nutritional composition and flavonoid content of edible wild greens and green pies: A potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chem. 2000, 70, 319–323. [Google Scholar] [CrossRef]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F. The protective ability of Mediterranean dietary plants against the oxidative damage: The role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chem. 2009, 112, 587–594. [Google Scholar] [CrossRef]
- Mikropoulou, E.V.; Vougogiannopoulou, K.; Kalpoutzakis, E.; Sklirou, A.D.; Skaperda, Z.; Houriet, J.l.; Wolfender, J.L.; Trougakos, I.P.; Kouretas, D.; Halabalaki, M.; et al. Phytochemical composition of the decoctions of Greek edible greens (chórta) and evaluation of antioxidant and cytotoxic properties. Molecules 2018, 23, 1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Marín, B.; Milla, R.; Martín-Robles, N.; Arc, E.; Kranner, I.; Becerril, J.M.; García-Plazaola, J.I. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. Bmc Plant Biol. 2014, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Fernandes, A.; Vaz, J.; Petropoulos, S.; Georgiou, E.; Ciric, A.; Sokovic, M.; Oludemi, T.; Barros, L.; Ferreira, I. Chemical composition and bioactive properties of Sanguisorba minor Scop. under Mediterranean growing conditions. Food Funct. 2019, 10, 1340–1351. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Vasileios, A.; Ntatsi, G.; Barros, L.; Ferreira, I.I.C.F.R.; Antoniadis, V.; Ntatsi, G.; Barros, L.; Ferreira, I.I.C.F.R. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chem. 2018, 239, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Cros, V.; Martínez-Sánchez, J.J.; Franco, J.A. Good yields of common purslane with a high fatty acid content can be obtained in a peat-based floating system. Horttechnology 2007, 17, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends Food Sci. Technol. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Glassworts: From wild salt marsh species to sustainable edible crops. Agriculture 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Pereira, C.; Tzortzakis, N.; Barros, L.; Ferreira, I.C.F.R. Nutritional value and bioactive compounds characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in central Greece. Front. Plant Sci. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montesano, F.F.; Gattullo, C.E.; Parente, A.; Terzano, R.; Renna, M. Cultivation of potted sea fennel, an emerging mediterranean halophyte, using a renewable seaweed-based material as a peat substitute. Agriculture 2018, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 2017, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Daferera, D.; Polissiou, M.G.; Passam, H.C. The effect of salinity on the growth, yield and essential oils of turnip-rooted and leaf parsley cultivated within the Mediterranean region. J. Sci. Food Agric. 2009, 89, 1534–1542. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. (Amst. ). 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Radić, S.; Radić-Stojković, M.; Pevalek-Kozlina, B. Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. J. Plant Physiol. 2006, 163, 1284–1292. [Google Scholar] [CrossRef]
- Radić, S.; Prolić, M.; Pavlica, M.; Pevalek-Kozlina, B. Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L. Env. Exp. Bot. 2005, 54, 213–218. [Google Scholar] [CrossRef]
- Nosratti, I.; Soltanabadi, S.; Honarmand, S.J.; Chauhan, B.S. Environmental factors affect seed germination and seedling emergence of invasive Centaurea balsamita. Crop. Pasture Sci. 2017, 68, 583–589. [Google Scholar] [CrossRef]
- Lidón, A.; Boscaiu, M.; Collado, F.; Vicente, O. Soil requirements of three salt tolerant, endemic species from south-east Spain. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 64–70. [Google Scholar]
- Abusaief, H.; Husien, D.; Naby, A. Al Salinity tolerance of the flora halophytes to coastal habitat of Jarjr-oma in Libya. Nat. Sci. 2013, 11, 29–45. [Google Scholar]
- Yimathldimathztugay, E.; Sekmen, A.H.; Turkan, I.; Kucukoduk, M. Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Plant Physiol. Biochem. 2011, 49, 816–824. [Google Scholar]
- Rouphael, Y.; Kyriacou, M.C. Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation. Front. Plant Sci. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Di Gioia, F.; Rosskopf, E.N.; Leonardi, C.; Giuffrida, F. Effects of application timing of saline irrigation water on broccoli production and quality. Agric. Water Manag. 2018, 203, 97–104. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Svecova, E.; Rea, E.; Lucini, L. Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 2013, 93, 1119–1127. [Google Scholar] [CrossRef]
- Tarchoune, I.; Sgherri, C.; Baâtour, O.; Izzo, R.; Lachaâl, M.; Navari-Izzo, F.; Ouerghi, Z. Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Ann. Appl. Biol. 2013, 163, 23–32. [Google Scholar] [CrossRef]
- Klados, E.; Tzortzakis, N. Effects of substrate and salinity in hydroponically grown Cichorium spinosum. J. Soil Sci. Plant Nutr. 2014, 14, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Chennupati, P.; Seguin, P.; Liu, W. Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. J. Agric. Food Chem. 2011, 59, 13081–13088. [Google Scholar] [CrossRef]
- Wojciechowska, R.; Dugosz-Grochowska, O.; Koton, A.; Zupnik, M. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci. Hortic. 2015, 187, 80–86. [Google Scholar] [CrossRef]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars-metabolism, sensing and abiotic stress a complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, F.; Sacchetti, G.; Tosi, B.; Fogagnolo, M.; Chillemi, G.; Lazzarin, R.; Bruni, A. Variation in the content of the main guaianolides and sugars in Cichorium intybus var. “Rosso di Chioggia” selections during cultivation. Food Chem. 2002, 76, 139–147. [Google Scholar] [CrossRef]
- Sokovic, M.; Ciric, A.; Glamoclija, J.; Skaltsa, H. Biological activities of sesquiterpene lactones isolated from the genus Centaurea L. (Asteraceae). Curr. Pharm. Des. 2017, 23, 2767–2786. [Google Scholar] [CrossRef]
- Shakeri, A.; Masullo, M.; Bottone, A.; Asili, J.; Emami, S.A.; Piacente, S.; Iranshahi, M. Sesquiterpene lactones from Centaurea rhizantha C.A. Meyer. Nat. Prod. Res. 2019, 33, 2016–2023. [Google Scholar] [CrossRef]
- Blom-Zandstra, M.; Lampe, J.E.M.; Ammerlaan, F.H.M. C and N utilization of two lettuce genotypes during growth under non-varying light conditions and after changing the light intensity. Physiol. Plant. 1988, 74, 147–153. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, X.; Zhang, Y.; Zheng, S.J.; Du, S. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant Nutr. 2005, 28, 2011–2025. [Google Scholar] [CrossRef]
- Fujii, N.; Watanabe, M.; Watanabe, Y.; Shimada, N. Rate of oxalate biosynthesis from glycolate and ascorbic acid in spinach leaves. Soil Sci. Plant Nutr. 1993, 39, 627–634. [Google Scholar] [CrossRef]
- Tekeli, Y.; Sezgin, M.; Aktumsek, A.; Ozmen Guler, G.; Aydin Sanda, M. Fatty acid composition of six Centaurea species growing in Konya, Turkey. Nat. Prod. Res. 2010, 24, 1883–1889. [Google Scholar] [CrossRef]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Screening for in vitro antioxidant properties and fatty acid profiles of five Centaurea L. species from Turkey flora. Food Chem. Toxicol. 2011, 49, 2914–2920. [Google Scholar] [CrossRef]
- Cao, J.; Li, H.; Xia, X.; Zou, X.-G.; Li, J.; Zhu, X.-M.; Deng, Z.-Y. Effect of fatty acid and tocopherol on oxidative stability of vegetable oils with limited air. Int. J. Food Prop. 2015, 18, 808–820. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; Sage, T.L.; Isaac, G.; Welti, R.; Dellapenna, D. Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 2008, 20, 452–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodriguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A 1996, 719, 229–235. [Google Scholar] [CrossRef]
- Dalar, A.; Uzun, Y.; Mukemre, M.; Turker, M.; Konczak, I. Centaurea karduchorum Boiss. from Eastern Anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. J. Herb. Med. 2015, 5, 211–216. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J. Sci. Food Agric. 2019, 99, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Islam, M.T.; Oba, S. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS ONE 2018, 13, 1–18. [Google Scholar] [CrossRef]
- Neffati, M.; Sriti, J.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem. 2011, 124, 221–225. [Google Scholar] [CrossRef]
- Boulaaba, M.; Abdelly, C. Effect of salinity on growth, leaf-phenolic content and antioxidant scavenging activity in Cynara cardunculus L. In Biosaline Agriculture and Salinity Tolerance in Plants; Abdelly, C., Öztürk, M., Ashraf, M., Grignon, C., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2008; pp. 335–344. [Google Scholar]
- Azzi, A.; Stocker, A. Vitamin E: Non-antioxidant roles. Prog. Lipid Res. 2000, 39, 231–255. [Google Scholar] [CrossRef]
- Freyer, M.J. The antioxidant effects of thylakoid Vitamin E (α-tocopherol). Plant. Cell Env.. 1992, 15, 381–392. [Google Scholar] [CrossRef]
- Keles, Y.; Oncel, I. Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci. 2002, 163, 783–790. [Google Scholar] [CrossRef]
- Morales, P.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Molina, M.; Ferreira, I.C.F.R. Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet. Resour. Crop. Evol. 2012, 59, 851–863. [Google Scholar] [CrossRef]
- Kollia, E.; Markaki, P.; Zoumpoulakis, P.; Proestos, C. Antioxidant activity of Cynara scolymus L. and Cynara cardunculus L. extracts obtained by different extraction techniques. Nat. Prod. Res. 2016, 31, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Pereira, C.; Barros, L.; Ferreira, I.C.F.R. Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. Food Funct. 2017, 8, 2022–2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamenderes, C.; Konyalioglu, S.; Khan, S.; Khan, I.A. Total phenolic contents, free radical scavenging activities and inhibitory effects on the activation of NF-kappa B of eight Centaurea L. species. Phyther. Res. 2007, 21, 488–491. [Google Scholar] [CrossRef]
- Cappadone, C.; Mandrone, M.; Chiocchio, I.; Sanna, C.; Malucelli, E.; Bassi, V.; Picone, G.; Poli, F. Antitumor potential and phytochemical profile of plants from sardinia (Italy), a hotspot for biodiversity in the mediterranean basin. Plants 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Koukoulitsa, C.; Geromichalos, G.D.; Skaltsa, H. VolSurf analysis of pharmacokinetic properties for several antifungal sesquiterpene lactones isolated from Greek Centaurea sp. J. Comput. Aided. Mol. Des. 2005, 19, 617–623. [Google Scholar] [CrossRef]
- Lahneche, A.M.; Boucheham, R.; Ozen, T.; Altun, M.; Boubekri, N.; Demirtas, I.; Bicha, S.; Bentamene, A.L.I.; Benayache, F.; Benayache, S.; et al. In vitro antioxidant, dna-damaged protection and antiproliferative activities of ethyl acetate and n-butanol extracts of Centaurea sphaerocephala L. . Acad. Bras. Cienc. 2019, 91, 1–11. [Google Scholar]
- Karioti, A.; Skaltsa, H.; Lazari, D.; Sokovic, M.; Garcia, B.; Harvala, C. Secondary metabolites from Centaurea deusta with antimicrobial activity. Z. Fur Nat. Sect. C J. Biosci. 2002, 57, 75–80. [Google Scholar] [CrossRef]
- D’Antuono, I.; Garbetta, A.; Linsalata, V.; Minervini, F.; Cardinali, A. Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): In vitro bio-accessibility, intestinal uptake and bioavailability. Food Funct. 2015, 6, 1268–1277. [Google Scholar]
- Pereira, C.; Calhelha, R.C.; Barros, L.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Synergisms in antioxidant and anti-hepatocellular carcinoma activities of artichoke, milk thistle and borututu syrups. Ind. Crop. Prod. 2014, 52, 709–713. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official methods of analysis of AOAC International. In Official Methods of Analysis of AOAC International; Horwitz, W., Latimer, G., Eds.; MD: AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chem. 2013, 136, 718–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crop. Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2- carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [Green Version]
- Sokovic, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Harvesting Time * | Salinity Level | Fresh Weight (g Per Plant) | Rosette Diameter (cm) | Number of Leaves | Leaf Thickness (mm) |
---|---|---|---|---|---|
1st | C | 11.1 ± 0.7a | 19.8 ± 1.1a | 12.5 ± 2.1a | 0.75 ± 0.05a |
S1 | 9.8 ± 1.1b | 22.5 ± 2.3a | 12.2 ± 2.8a | 0.7 ± 0.1a | |
S2 | 8.05 ± 1.17c | 19.8 ± 1.7a | 11.95 ± 1.78a | 0.74 ± 0.08a |
H * | S | Moisture | Fat | Proteins | Ash | Carbohydrates | Energy |
---|---|---|---|---|---|---|---|
1st | C | 88.9 ± 0.6d | 0.31 ± 0.01d | 3.82 ± 0.01b | 1.76 ± 0.04e | 5.22 ± 0.02c | 38.9 ± 0.1b |
S1 | 88.8 ± 0.2d | 0.33 ± 0.03c | 3.71 ± 0.01c | 1.86 ± 0.07d | 5.3 ± 0.1b | 39.0 ± 0.1b | |
S2 | 87.6 ± 0.4e | 0.45 ± 0.01a | 3.9 ± 0.2a | 2.19 ± 0.07b | 5.9 ± 0.1a | 43.2 ± 0.2a | |
2nd | C | 90.6 ± 0.5a | 0.30 ± 0.01d | 2.67 ± 0.01f | 1.77 ± 0.02e | 4.68 ± 0.01f | 32.1 ± 0.1d |
S1 | 89.8 ± 0.2b | 0.41 ± 0.02b | 2.82 ± 0.02d | 2.02 ± 0.01c | 4.93 ± 0.02e | 34.7 ± 0.1c | |
S2 | 89.3 ± 0.7c | 0.40 ± 0.01b | 2.75 ± 0.02e | 2.54 ± 0.01a | 5.04 ± 0.02d | 34.7 ± 0.1c |
H * | S | α-Tocopherol | γ-Tocopherol | Total Tocopherols |
---|---|---|---|---|
1st | C | 0.094 ± 0.001e | 0.025 ± 0.001e | 0.120 ± 0.001e |
S1 | 0.404 ± 0.006c | 0.072 ± 0.001a | 0.480 ± 0.007c | |
S2 | 0.368 ± 0.007d | 0.055 ± 0.001b | 0.430 ± 0.007d | |
2nd | C | 0.68 ± 0.01a | 0.047 ± 0.001c | 0.730 ± 0.007a |
S1 | 0.69 ± 0.01a | 0.055 ± 0.001b | 0.74 ± 0.01a | |
S2 | 0.559 ± 0.003b | 0.036 ± 0.005d | 0.600 ± 0.007b |
H * | S | Fructose | Glucose | Sucrose | Trehalose | Total Sugars |
---|---|---|---|---|---|---|
1st | C | 0.23 ± 0.03c | 0.206 ± 0.004b | 0.155 ± 0.006d | 0.167 ± 0.007f | 0.76 ± 0.05c |
S1 | 0.14 ± 0.02f | 0.205 ± 0.003b | 0.139 ± 0.003e | 0.190 ± 0.005e | 0.67 ± 0.01e | |
S2 | 0.25 ± 0.03b | 0.216 ± 0.006a | 0.139 ± 0.008e | 0.201 ± 0.007d | 0.80 ± 0.04b | |
2nd | C | 0.16 ± 0.02e | 0.083 ± 0.001e | 0.285 ± 0.007a | 0.211 ± 0.004c | 0.74 ± 0.03d |
S1 | 0.170 ± 0.001d | 0.122 ± 0.001c | 0.244 ± 0.003c | 0.271 ± 0.001b | 0.810 ± 0.002b | |
S2 | 0.50 ± 0.03a | 0.106 ± 0.009d | 0.261 ± 0.007b | 0.322 ± 0.002a | 1.19 ± 0.03a |
H * | S | Oxalic Acid | Malic Acid | Ascorbic Acid | Citric Acid | Fumaric Acid | Total Organic Acids |
---|---|---|---|---|---|---|---|
1st | C | 1060 ± 2c | 718 ± 1a | 0.28 ± 0.01b | 431 ± 9f | tr | 2210 ± 7a |
S1 | 1101 ± 2a | 289 ± 3e | 0.28 ± 0.01b | 478 ± 5e | tr | 1868 ± 10c | |
S2 | 1072 ± 4b | 299 ± 5d | 0.210 ± 0.006c | 581 ± 5a | tr | 1957 ± 8b | |
2nd | C | 877 ± 2e | 447 ± 2b | 0.60 ± 0.02a | 492 ± 3d | 0.08 ± 0.02 | 1817 ± 3d |
S | 895 ± 3d | 316 ± 2c | 0.08 ± 0.02d | 568 ± 3b | tr | 1779 ± 2e | |
S2 | 793 ± 4f | 259 ± 1f | tr | 544.1 ± 0.1c | tr | 1596 ± 6f |
1st Harvest * | 2nd Harvest | |||||
---|---|---|---|---|---|---|
Fatty Acid | Control | S1 | S2 | Control | S1 | S2 |
C8:0 | 0.066 ± 0.004c | 0.068 ± 0.002 | 0.096 ± 0.004a | 0.067 ± 0.004c | 0.09 ± 0.02b | 0.091 ± 0.006b |
C10:0 | 0.053 ± 0.005d | 0.057 ± 0.001d | 0.089 ± 0.004b | 0.083 ± 0.008bc | 0.08 ± 0.01c | 0.109 ± 0.005a |
C11:0 | 0.139 ± 0.009d | 0.216 ± 0.001c | 0.37 ± 0.02a | 0.30 ± 0.03b | 0.25 ± 0.04c | 0.36 ± 0.03a |
C12:0 | 0.239 ± 0.002d | 0.31 ± 0.03c | 0.095 ± 0.002e | 0.25 ± 0.02d | 0.462 ± 0.005a | 0.43 ± 0.01b |
C14:0 | 2.6 ± 0.2d | 1.08 ± 0.01e | 1.06 ± 0.05e | 5.71 ± 0.06c | 12.0 ± 0.1a | 9.3 ± 0.1b |
C14:1 | 0.033 ± 0.001d | 0.044 ± 0.002c | 0.109 ± 0.001b | 0.017 ± 0.001f | 0.023 ± 0.001e | 0.234 ± 0.006a |
C15:0 | 0.26 ± 0.02a | 0.25 ± 0.01ab | 0.185 ± 0.003d | 0.215 ± 0.001c | 0.213 ± 0.001c | 0.238 ± 0.008b |
C16:0 | 21.7 ± 0.1b | 19.2 ± 0.9d | 16.95 ± 0.04e | 20.3 ± 0.2c | 21.7 ± 0.2b | 22.84 ± 0.02a |
C17:0 | 0.283 ± 0.006bc | 0.225 ± 0.003d | 0.217 ± 0.004e | 0.28 ± 0.01c | 0.287 ± 0.006b | 0.347 ± 0.005a |
C18:0 | 2.4 ± 0.2b | 2.0 ± 0.1c | 1.65 ± 0.04d | 1.97 ± 0.05c | 2.07 ± 0.01c | 2.62 ± 0.01a |
C18:1n9c | 2.05 ± 0.05c | 1.51 ± 0.06e | 2.1 ± 0.1c | 1.92 ± 0.02d | 2.24 ± 0.01b | 2.73 ± 0.01a |
C18:2n6c | 26.3 ± 0.2a | 26.5 ± 0.6a | 26.4 ± 0.2a | 23.7 ± 0.1c | 24.47 ± 0.03b | 24.36 ± 0.05b |
C18:3n3 | 40.7 ± 0.2d | 45.4 ± 0.1b | 48.37 ± 0.07a | 43.1 ± 0.1c | 33.86 ± 0.08e | 33.35 ± 0.05f |
C20:0 | 0.43 ± 0.04b | 0.35 ± 0.02d | 0.317 ± 0.003e | 0.365 ± 0.001d | 0.399 ± 0.009c | 0.53 ± 0.02a |
C21:0 | 0.149 ± 0.009b | 0.168 ± 0.004a | 0.167 ± 0.004a | 0.084 ± 0.003d | 0.070 ± 0.008e | 0.13 ± 0.01c |
C22:0 | 0.68 ± 0.02b | 0.68 ± 0.06b | 0.575 ± 0.009d | 0.613 ± 0.005cd | 0.63 ± 0.03c | 0.98 ± 0.05a |
C23:0 | 0.39 ± 0.01a | 0.30 ± 0.01b | 0.181 ± 0.009e | 0.25 ± 0.01d | 0.281 ± 0.001c | 0.284 ± 0.001c |
C24:0 | 1.42 ± 0.08b | 1.69 ± 0.08a | 1.1 ± 0.1c | 0.748 ± 0.005e | 0.89 ± 0.04d | 1.03 ± 0.02c |
SFA | 30.9 ± 0.4b | 26.6 ± 0.5c | 23.02 ± 0.01d | 31.2 ± 0.1b | 39.4 ± 0.1a | 39.3 ± 0.1a |
MUFA | 2.08 ± 0.05c | 1.56 ± 0.06e | 2.2 ± 0.1b | 1.94 ± 0.02d | 2.26 ± 0.01b | 2.96 ± 0.01a |
PUFA | 67.0 ± 0.4c | 71.9 ± 0.4b | 74.8 ± 0.1a | 66.8 ± 0.1c | 58.3 ± 0.1d | 57.7 ± 0.1e |
PUFA/SFA | 2.17 ± 0.4c | 2.7 ± 0.4b | 3.25 ± 0.05a | 2.1 ± 0.1c | 1.5 ± 0.1d | 1.47 ± 0.1d |
n6/n3 | 0.65 ± 0.18b | 0.58 ± 0.15c | 0.55 ± 0.14d | 0.55 ± 0.11d | 0.72 ± 0.45a | 0.73 ± 0.04a |
Peak | Rt (min) | λmax (nm) | [M−H]− (m/z) | MS2 (m/z) | Tentative Identification |
---|---|---|---|---|---|
1 | 14.16 | 349 | 493 | 317(100) | Myricetin-O-glucoside |
2 | 18.1 | 344 | 477 | 301(100) | Quercetin-3-O-glucoside |
3 | 18.63 | 334 | 461 | 285(100) | Kaempherol-O-glucoronide |
4 | 20.4 | 334 | 579 | 285(100) | Kaempherol-O-hexoside-pentoside |
5 | 22.14 | 334 | 563 | 269(100) | Apigenin-O-hexoside-pentoside |
6 | 22.9 | 334 | 445 | 269(100) | Apigenin-O-glucoronide |
7 | 25.44 | 332 | 665 | 621(100), 285(45) | Kaempherol-O-malonyl-pentoside |
8 | 28.28 | 286/326 | 549 | 429(12), 297(14), 279(5), 255(41) | Pinocembrim arabirosyl glucoside |
9 | 29.47 | 286/326 | 563 | 443(12), 401(5), 297(21), 255(58) | Pinocembrim neohesperidoside |
10 | 31.39 | 288/328 | 591 | 549(30), 429(20), 297(15), 279(5), 255(32) | Pinocembrim acetylarabirosyl glucoside |
11 | 31.79 | 285/326 | 605 | 563(12), 545(5), 443(30), 401(10), 255(40) | Pinocembrim acetyl neohesperidoside isomer I |
12 | 32.14 | 286/328 | 605 | 563(10), 545(5), 443(28), 401(9), 255(39) | Pinocembrim acetyl neohesperidoside isomer II |
Peaks | 1st Harvest * | 2nd Harvest | ||||
---|---|---|---|---|---|---|
C | S1 | S2 | C2 | S1 | S2 | |
1 | 0.074 ± 0.001a | 0.071 ± 0.001a | 0.073 ± 0.001a | 0.062 ± 0.002b | 0.057 ± 0.001c | 0.063 ± 0.001b |
2 | 0.021 ± 0.001a | 0.016 ± 0.001b | 0.010 ± 0.002c | 0.015 ± 0.001b | 0.011 ± 0.001c | 0.013 ± 0.001bc |
3 | 0.047 ± 0.001a | 0.031 ± 0.001b | 0.014 ± 0.001e | 0.034 ± 0.001b | 0.019 ± 0.001d | 0.029 ± 0.001c |
4 | 0.024 ± 0.001a | 0.02 ± 0.004b | 0.014 ± 0.001c | 0.018 ± 0.001b | 0.012 ± 0.001c | 0.019 ± 0.001b |
5 | 0.022 ± 0.001a | 0.019 ± 0.001b | 0.013 ± 0.001c | 0.02 ± 0.01ab | 0.013 ± 0.001c | 0.019 ± 0.001b |
6 | 0.023 ± 0.001a | 0.02 ± 0.001b | 0.013 ± 0.001d | 0.019 ± 0.001bc | 0.012 ± 0.001d | 0.017 ± 0.001c |
7 | 0.015 ± 0.001b | 0.014 ± 0.001b | 0.019 ± 0.001a | 0.015 ± 0.001b | 0.011 ± 0.001c | 0.015 ± 0.001b |
8 | 0.033 ± 0.001d | 0.023 ± 0.001e | 0.078 ± 0.001a | 0.055 ± 0.003b | 0.045 ± 0.0002c | 0.032 ± 0.001d |
9 | 0.86 ± 0.02a | 0.79 ± 0.05b | tr | 0.7 ± 0.1c | 0.65 ± 0.01d | 0.64 ± 0.01d |
10 | 0.041 ± 0.002d | 0.024 ± 0.001e | tr | 0.156 ± 0.003a | 0.091 ± 0.002b | 0.049 ± 0.001c |
11 | 0.030 ± 0.001d | 0.020 ± 0.001e | 0.007 ± 0.001f | 0.113 ± 0.004a | 0.074 ± 0.004c | 0.087 ± 0.004b |
12 | 0.29 ± 0.01d | 0.16 ± 0.01e | tr | 0.94 ± 0.04a | 0.64 ± 0.01c | 0.9 ± 0.1b |
Tfols | 0.181 ± 0.001a | 0.152 ± 0.002b | 0.133 ± 0.001e | 0.144 ± 0.001c | 0.124 ± 0.001f | 0.139 ± 0.001d |
Tflavones | 0.045 ± 0.001a | 0.039 ± 0.001b | 0.025 ± 0.001e | 0.039 ± 0.001b | 0.034 ± 0.001d | 0.036 ± 0.001c |
Tflav | 1.25 ± 0.03d | 1.0 ± 0.1e | 0.086 ± 0.001f | 1.9 ± 0.1a | 1.50 ± 0.02c | 1.7 ± 0.1b |
TPC | 1.48 ± 0.03d | 1.2 ± 0.1e | 0.245 ± 0.001f | 2.1 ± 0.1a | 1.63 ± 0.02c | 1.9 ± 0.1b |
H * | S | OxHLIA (IC50; µg/mL); Δt = 60 min | TBARS (EC50, μg/mL) |
---|---|---|---|
1st | C | 81 ± 5f | 46.1 ± 0.5a |
S1 | 139 ± 9b | 40 ± 2b | |
S2 | 89 ± 3e | 40 ± 2b | |
2nd | C | 111 ± 3d | 32 ± 2d |
S1 | 189 ± 2a | 34 ± 2c | |
S2 | 116 ± 3c | 46 ± 2a |
Cytotoxicity to Non-Tumor Cell Lines | Cytotoxicity to Tumor Cell Lines | |||||
---|---|---|---|---|---|---|
H * | S | PLP2 (Porcine Liver Primary Culture) | HeLa (Cervical Carcinoma) | HepG2 (Hepatocellular Carcinoma) | MCF-7 (Breast Carcinoma) | NCI-H460 (Non-Small Cell Lung Cancer) |
1st | C | >400 | >400 | 307 ± 13c | >400 | 297 ± 5b |
S1 | >400 | >400 | 225 ± 13d | 354 ± 20a | 369 ± 29a | |
S2 | >400 | >400 | >400 | >400 | >400 | |
2nd | C | >400 | >400 | >400 | >400 | 286 ± 1c |
S1 | >400 | >400 | 332 ± 31b | >400 | >400 | |
S2 | >400 | >400 | 388 ± 3a | 297 ± 17b | 280 ± 20d |
H * | S | MIC/MBC | S. aureus (ATCC 11632) | B. cereus (Food Isolate) | L. monocytogenes (NCTC 7973) | E. coli (ATCC 25922) | S. typhimurium (ATCC 13311) | E. cloacae (ATCC 35030) |
---|---|---|---|---|---|---|---|---|
1st | C | MIC | 1 | 1 | 2 | 1 | 2 | 2 |
MBC | 2 | 2 | 4 | 2 | 4 | 4 | ||
S1 | MIC | 0.5 | 0.5 | 2 | 0.5 | 2 | 2 | |
MBC | 1 | 1 | 4 | 1 | 4 | 4 | ||
S2 | MIC | 1 | 1 | 2 | 0.5 | 1 | 4 | |
MBC | 2 | 2 | 4 | 1 | 2 | 8 | ||
2nd | C | MIC | 1 | 1 | 2 | 0.5 | 2 | 2 |
MBC | 2 | 2 | 4 | 1 | 4 | 4 | ||
S | MIC | 1 | 1 | 2 | 0.5 | 2 | 2 | |
MBC | 2 | 2 | 4 | 1 | 4 | 4 | ||
S2 | MIC | 1 | 0.5 | 2 | 0.5 | 2 | 2 | |
MBC | 2 | 1 | 4 | 1 | 4 | 4 | ||
Positive controls | Streptomycin | MIC | 0.1 | 0.025 | 0.15 | 0.1 | 0.1 | 0.025 |
MBC | 0.2 | 0.05 | 0.3 | 0.2 | 0.2 | 0.05 | ||
Ampicillin | MIC | 0.1 | 0.1 | 0.15 | 0.15 | 0.1 | 0.1 | |
MBC | 0.15 | 0.15 | 0.3 | 0.2 | 0.2 | 0.15 |
H * | S | MIC/MFC | Aspergillus fumigatus (ATCC 9197) | Aspergillus niger (ATCC 6275) | Aspergillus versicolor (ATCC 11730) | Penicillium funiculosum (ATCC 36839 | Trichoderma viride (IAM 5061) | Penicillium verrucosum var. cyclopium (Food Isolate) |
---|---|---|---|---|---|---|---|---|
1st | Control 1st | MIC | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.5 |
MFC | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | ||
S1 1st | MIC | 0.5 | 0.5 | 0.25 | 0.25 | 0.12 | 0.25 | |
MFC | 1 | 1 | 0.5 | 0.5 | 0.25 | 0.5 | ||
S2 1st | MIC | 0.25 | 0.25 | 0.25 | 0.25 | 0.12 | 0.25 | |
MFC | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 | 0.5 | ||
2nd | Control 2nd | MIC | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 | 0.25 |
MFC | 1 | 1 | 1 | 0.5 | 0.5 | 0.5 | ||
S1 2nd | MIC | 0.5 | 0.5 | 0.5 | 0.25 | 0.12 | 0.25 | |
MFC | 1 | 1 | 1 | 0.5 | 0.25 | 0.5 | ||
S2 2nd | MIC | 0.5 | 0.5 | 0.5 | 0.25 | 0.12 | 0.25 | |
MFC | 1 | 1 | 1 | 0.5 | 0.25 | 0.5 | ||
Positive controls | Bifonazole | MIC | 0.15 | 0.15 | 0.1 | 0.2 | 0.15 | 0.1 |
MFC | 0.2 | 0.2 | 0.2 | 0.25 | 0.2 | 0.2 | ||
Ketoconazole | MIC | 0.2 | 0.2 | 0.2 | 0.2 | 1 | 0.2 | |
MFC | 0.5 | 0.5 | 0.5 | 0.5 | 1.5 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Petropoulos, S.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; D. Sokovic, M.; Barros, L.; et al. Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions. Molecules 2020, 25, 2204. https://doi.org/10.3390/molecules25092204
A. Petropoulos S, Fernandes Â, Dias MI, Pereira C, Calhelha RC, Chrysargyris A, Tzortzakis N, Ivanov M, D. Sokovic M, Barros L, et al. Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions. Molecules. 2020; 25(9):2204. https://doi.org/10.3390/molecules25092204
Chicago/Turabian StyleA. Petropoulos, Spyridon, Ângela Fernandes, Maria Ines Dias, Carla Pereira, Ricardo C. Calhelha, Antonios Chrysargyris, Nikolaos Tzortzakis, Marija Ivanov, Marina D. Sokovic, Lillian Barros, and et al. 2020. "Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions" Molecules 25, no. 9: 2204. https://doi.org/10.3390/molecules25092204
APA StyleA. Petropoulos, S., Fernandes, Â., Dias, M. I., Pereira, C., Calhelha, R. C., Chrysargyris, A., Tzortzakis, N., Ivanov, M., D. Sokovic, M., Barros, L., & Ferreira, I. C. F. R. (2020). Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions. Molecules, 25(9), 2204. https://doi.org/10.3390/molecules25092204