Nutraceuticals and Metastasis Development
Abstract
:1. Introduction
2. The Role of Nutrigenomics in Metastasis Proliferation
2.1. The Enhancing Effects of Specific Dietary Compounds on Metastasis Development
2.1.1. Targeting Reactive Oxygen Species (ROS)
2.1.2. Targeting Estrogen Receptors
2.1.3. Targeting Other Cellular Pathways
2.2. The Enhancing Effects of a High-Fat and/or High-Carbohydrate Diet on Metastasis Development
3. The Role of Nutrigenomics in Metastasis Prevention
3.1. The Preventive Effects of Specific Dietary Compounds on Metastasis Development
3.2. The Preventive Effects of the Mixture of Nutraceuticals on Metastasis Development
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Visentin, S.; Sedic, M.; Pavelić, S.K.; Pavelić, K. Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. Curr. Med. Chem. 2020, 27, 1367–1381. [Google Scholar] [CrossRef]
- Pržulj, N. Analysis of the Signatures of Cancer Stem Cells in Malignant Tumors Using Protein Interactomes and the STRING Database. In Analyzing Network Data in Biology and Medicine; Cambridge University Press (CUP): Cambridge, UK, 2019; pp. 593–620. [Google Scholar]
- Kraljević Pavelić, S.; Sedić, M.; Bosnjak, H.; Spaventi, S.; Pavelić, K. Metastasis: New perspectives on an old problem. Mol. Cancer 2011, 10, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josic, D.; Martinović, T.; Pavelić, K. Glycosylation and metastases. Electrophoresis 2018, 40, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017, 387, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zou, L.; Huang, C.; Lei, Y. Redox Regulation of Cancer Metastasis: Molecular Signaling and Therapeutic Opportunities. Drug Dev. Res. 2014, 75, 331–341. [Google Scholar] [CrossRef]
- Raj, L.; Ide, T.; Gurkar, A.U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N.J.; Golub, T.R.; Carr, S.A.; Shamji, A.F.; et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011, 475, 231–234. [Google Scholar] [CrossRef]
- Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; et al. Glutathione and Thioredoxin Antioxidant Pathways Synergize to Drive Cancer Initiation and Progression. Cancer Cell 2015, 27, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015, 527, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Le Gal, K.; Ibrahim, M.X.; Wiel, C.; Sayin, V.I.; Akula, M.K.; Karlsson, C.; Dalin, M.G.; Akyürek, L.M.; Lindahl, P.; Nilsson, J.; et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 2015, 7, 308re8. [Google Scholar] [CrossRef]
- Lee, Y.-T.M. Patterns of metastasis and natural courses of breast carcinoma. Cancer Metastasis Rev. 1985, 4, 153–172. [Google Scholar] [CrossRef]
- Braun, S.; Vogl, F.D.; Naume, B.; Janni, W.; Osborne, M.P.; Coombes, R.C.; Schlimok, G.; Diel, I.J.; Gerber, B.; Gebauer, G.; et al. A Pooled Analysis of Bone Marrow Micrometastasis in Breast Cancer. New Engl. J. Med. 2005, 353, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Nachvak, S.M.; Moradi, S.; Anjom-Shoae, J.; Rahmani, J.; Nasiri, M.; Maleki, V.; Sadeghi, O. Soy, Soy Isoflavones, and Protein Intake in Relation to Mortality from All Causes, Cancers, and Cardiovascular Diseases: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. J. Acad. Nutr. Diet. 2019, 119, 1483–1500.e17. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-B.; Zhang, Y.-F.; Yang, J.-D.; Lu, K.-L. Study on soy isoflavone consumption and risk of breast cancer and survival. Asian Pac. J. Cancer Prev. 2012, 13, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.-O.; Zheng, Y.; Cai, H.; Gu, K.; Chen, Z.; Zheng, W.; Lu, W. Soy Food Intake and Breast Cancer Survival. JAMA 2009, 302, 2437–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baglia, M.L.; Zheng, W.; Li, H.; Yang, G.; Gao, J.; Gao, Y.-T.; Shu, X.-O. The association of soy food consumption with the risk of subtype of breast cancers defined by hormone receptor and HER2 status. Int. J. Cancer 2016, 139, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Belosay, A.; Hartman, J.A.; Song, H.; Zhang, Y.; Wang, W.; Doerge, D.R.; Helferich, W.G. Dietary soy isoflavones increase metastasis to lungs in an experimental model of breast cancer with bone micro-tumors. Clin. Exp. Metastasis 2015, 32, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Allred, C.D.; Allred, K.F.; Ju, Y.H.; Virant, S.M.; Helferich, W.G. Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer Res. 2001, 61, 5045–5050. [Google Scholar]
- Wu, C.; Liu, Z.; Zhang, Z.; Jiang, Y.; Zhang, H. The effect of selected food phytochemicals on breast cancer metastasis based on in vivo capture of circulating tumor cells. Food Funct. 2017, 8, 2698–2701. [Google Scholar] [CrossRef]
- Yan, L.; Demars, L.C. Effects of a High-Fat Diet on Spontaneous Metastasis of Lewis Lung Carcinoma in Plasminogen Activator Inhibitor-1 Deficient and Wild-Type Mice. PLoS ONE 2014, 9, e110869. [Google Scholar] [CrossRef]
- Sundaram, S.; Yan, L. High-fat Diet Enhances Mammary Tumorigenesis and Pulmonary Metastasis and Alters Inflammatory and Angiogenic Profiles in MMTV-PyMT Mice. Anticancer. Res. 2016, 36, 6279–6288. [Google Scholar] [CrossRef]
- Yan, L.; Combs, G.F. Consumption of a high-fat diet abrogates inhibitory effects of methylseleninic acid on spontaneous metastasis of Lewis lung carcinoma in mice. Carcinogenesis 2014, 35, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Demars, L.C. Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice. Int. J. Cancer 2011, 131, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, Q.; Tang, H.; Zhang, F.; Zheng, Y.; Wang, S.; Zhang, J.; Wang, Z.; Xie, X. Direct inhibition of ACTN4 by ellagic acid limits breast cancer metastasis via regulation of β-catenin stabilization in cancer stem cells. J. Exp. Clin. Cancer Res. 2017, 36, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buhrmann, C.; Shayan, P.; Goel, A.; Shakibaei, M. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules. Nutrients 2017, 9, 1073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lei, Z.; Huang, Z.; Zhang, X.; Zhou, Y.; Luo, Z.; Zeng, W.; Su, J.; Peng, C.; Chen, X. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity. Oncotarget 2016, 7, 79557–79571. [Google Scholar] [CrossRef]
- Park, H.-R.; Hwang, D.; Suh, H.-J.; Yu, K.-W.; Kim, T.Y.; Shin, K.-S. Antitumor and antimetastatic activities of rhamnogalacturonan-II-type polysaccharide isolated from mature leaves of green tea via activation of macrophages and natural killer cells. Int. J. Boil. Macromol. 2017, 99, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Yan, L. Dietary Supplementation with Methylseleninic Acid Inhibits Mammary Tumorigenesis and Metastasis in Male MMTV-PyMT Mice. Boil. Trace Element Res. 2017, 184, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Roomi, M.W.; Kalinovsky, T.; Rath, M.; Niedzwiecki, A. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs. Nutrients 2017, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.S.; Lee, W.S.; Joo, Y.N.; Choi, Y.H.; Kim, G.S.; Jung, J.-M.; Ryu, C.-H.; Shin, S.C.; Kim, H.J. Polyphenol mixtures of Euphorbia supina the inhibit invasion and metastasis of highly metastatic breast cancer MDA-MB-231 cells. Oncol. Rep. 2015, 34, 3035–3042. [Google Scholar] [CrossRef] [Green Version]
- Shakya, G.; Balasubramanian, S.; Hoda, M.; Rajagopalan, R. Inhibition of metastasis and angiogenesis in Hep-2 cells by wheatgrass extract – an in vitro and in silico approach. Toxicol. Mech. Methods 2018, 28, 205–218. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Zhou, J.; Luo, L.-P.; Han, B.; Li, F.; Chen, J.-Y.; Zhu, Y.-F.; Chen, W.; Yu, X.-P. Black Rice Anthocyanins Suppress Metastasis of Breast Cancer Cells by Targeting RAS/RAF/MAPK Pathway. BioMed Res. Int. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, M.H.; Mahdavi, M.; Setayesh, N.; Esfandyar, M.; Shahverdi, A. Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU J. Pharm. Sci. 2013, 21, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragón, F.; Carino, S.; Perdigon, G.; Leblanc, A.D.M.D. Inhibition of Growth and Metastasis of Breast Cancer in Mice by Milk Fermented with Lactobacillus casei CRL 431. J. Immunother. 2015, 38, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Cancer and metastasis: Prevention and treatment by green tea. Cancer Metastasis Rev. 2010, 29, 435–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, F.; Galan, P.; Douville, P.; Bairati, I.; Kegle, P.; Bertrais, S.; Estaquio, C.; Hercberg, S. Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. Int. J. Cancer 2005, 116, 182–186. [Google Scholar] [CrossRef]
- Lockwood, K.; Moesgaard, S.; Hanioka, T.; Folkers, K. Apparent partial remission of breast cancer in ‘High Risk’ patients supplemented with nutritional antioxidants, essential fatty acids and Coenzyme Q10. Mol. Asp. Med. 1994, 15, s231–s240. [Google Scholar] [CrossRef]
- Lippman, S.M.; Klein, E.E.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of Selenium and Vitamin E on Risk of Prostate Cancer and Other Cancers. JAMA 2008, 301, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Shakibaie, M.; Khorramizadeh, M.; Faramarzi, M.A.; Sabzevari, O.; Shahverdi, A.R. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol. Appl. Biochem. 2010, 56, 7–15. [Google Scholar] [CrossRef]
Source | Compound | Type of the Experiment | Effect and Mechanism (if Analyzed) | Reference |
---|---|---|---|---|
NA* | N-acetylcisteine | In vivo: Mice with endogenous malignant melanoma | Increase in lymph node metastases Increase in migration and invasiveness of human melanoma cells by enrolment in the glutathione pathway | [10] |
NA | Vitamin E | Increase in migration and invasiveness of human melanoma cells by enrolment in the glutathione pathway | ||
Soy | Genistein | In vivo: Breast cancer with bone metastases using a model of murine mammary cancer (4T1 cells) | Stimulation of the metastasis formation in lungs Increase of Ki-67 protein expression in metastasized tumors | [17] |
Daidzein | ||||
(-)-Equol | ||||
Mixture of a soy isoflavones | ||||
β-sitosterol | In vivo: Circulating tumor cell capture method using a mouse tumor model | Increase in lung metastases (potential increase in number of circulating cancer stem cells) | [19] | |
High-carbohydrate diet | In vivo: Circulating tumor cell capture method using a mouse tumor model | Enlargement of primary tumors Higher number of circulating tumor cells | [19] | |
High-fat diet | Higher number of circulating tumor cells | |||
High-fat diet | In vivo: Lewis lung carcinoma (spontaneous metastasis); PAI-1-deficient and wild type mice | Increase in the number of pulmonary metastases, tumor cross-section area, and tumor volume by increased expression of the plasminogen activator inhibitor-1 | [20] | |
High-fat diet | In vivo: MMTV-PyMT mice; luminal B breast cancer | Enhanced primary tumorigenesis and metastasis by increasing proinflammation and angiogenesis signaling | [21] |
Source | Group | Compound | Type of the Experiment | Effect and Mechanism (if Analyzed) | Reference |
---|---|---|---|---|---|
Chemical standard | Phenolic compound | Ellagic acid | In vivo: MMTV-PyMT mice; luminal B breast cancer | Inhibition of the actinin alpha 4 (ACTN4) gene (responsible for breast cancer stem cell self-renewal and their metastatic abilities) | [24] |
Chemical standard | Resveratrol | In vitro: Colorectal cancer cell lines (HCT116 and SW480) | Inhibition of nuclear factor-κB (NF-κB)-dependent gene end-products | [25] | |
Chemical standard | Epigallocatechin-3-gallate (EGCG) | In vitro: Human malignant melanoma cell lines SK-MEL-5, SK-MEL-28, A375, G361, and HEK293T | Suppression of melanoma cell growth and metastasis by targeting tumor necrosis factor receptor associated factor 6 (TRAF6) activity | [26] | |
Mature tea leaves | Polysaccharide | Rhamnogalacturonan-II-type polysaccharide | In vivo: Mice with lung metastases | Stimulation of the immune system by increasing activity of macrophages and natural killer (NK) cells | [27] |
In vitro: Yac-1 tumor cells (Moloney murine leukemia virus-induced lymphoma cell line) | |||||
Dietary supplement | Trace mineral | Methylseleninic acid (MSeA) | In vivo: MMTV-PyMT male mice; luminal B breast cancer | Multitargeting mechanism including downregulation of the urokinase plasminogen activator system, angiogenesis inhibition, and inflammation suppression | [28] |
Nutrient mixture (EPQ) | Multiple active components | Mixture containing ascorbic acid, lysine, proline, green tea extract, and quercetin | In vivo: Mouse tumor model | Inhibition of matrix metalloproteinase (MMP) 9 expression | [29] |
In vitro: Human ovarian cancer line A-2780; ovarian cancer metastases | |||||
Euphorbia supina | Phenolic compounds | Polyphenol mixture of plant Euphorbia supina | In vitro: Metastatic breast cancer MDA-MB-231 cells | Inhibition of MMP 9 and lysyl oxidase production | [30] |
Decrease of vascular cell adhesion molecule 1 (VCAM-1) expression | |||||
Wheatgrass | Multiple active components (including phenolic compounds) | Methanol extract of wheatgrass (MEWG) | In vitro: Human laryngeal squamous cell carcinoma (Hep-2) In silico approach | Inhibition of the upstream PI3K/AKT pathway | [31] |
Reduction of vascular endothelial growth factor (VEGF), MMPs and inflammatory marker protein cyclooxygenase-2 (COX-2) | |||||
Black rice | Phenolic compounds | Black rice anthocyanins (BRACs) | In vitro: HER2+ breast cancer cells | Inhibition of mRNA expression | [32] |
Activation of key components of the RAF/MAPK pathway | |||||
Decreased interactions of human epidermal growth factor receptor 2 (HER2) with downstream signaling components from the RAF/MAPK pathway | |||||
Decreased interaction of MMP2 and MMP9 with their upstream regulators | |||||
Dietary supplement | Probiotic and trace mineral | Lactobacillus brevis bacteria enriched with selenium—elemental selenium nanoparticles (SeNPs) | In vivo: Metastatic form of mouse breast cancer | Increased cytokines IFN-γ and IL-17 | [33] |
Increased NK cytotoxicity—delayed-type hypersensitivity (DHT) responses | |||||
Fermented milk | Probiotic | Milk fermented by Lactobacillus casei CRL 431 (FM) | In vivo: Mouse breast cancer model | Modulation of the immune reaction in the metastatic area by improving the antitumor response associated to CD8+, increasing the CD4+ lymphocyte number, and decreasing the infiltration of macrophages in the lungs | [34] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saftić Martinović, L.; Peršurić, Ž.; Pavelić, K. Nutraceuticals and Metastasis Development. Molecules 2020, 25, 2222. https://doi.org/10.3390/molecules25092222
Saftić Martinović L, Peršurić Ž, Pavelić K. Nutraceuticals and Metastasis Development. Molecules. 2020; 25(9):2222. https://doi.org/10.3390/molecules25092222
Chicago/Turabian StyleSaftić Martinović, Lara, Željka Peršurić, and Krešimir Pavelić. 2020. "Nutraceuticals and Metastasis Development" Molecules 25, no. 9: 2222. https://doi.org/10.3390/molecules25092222
APA StyleSaftić Martinović, L., Peršurić, Ž., & Pavelić, K. (2020). Nutraceuticals and Metastasis Development. Molecules, 25(9), 2222. https://doi.org/10.3390/molecules25092222