Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity
Abstract
:1. Introduction
2. Results–Discussion
2.1. Choice of the Method of Extraction
2.2. Total Phenolic Compounds (TPC) in Potato By-Products
2.3. Individual Polyphenolic Compounds (Chlorogenic Acids)
2.4. Oxygen Radical Absorbance Capacity (ORAC) of Potato Samples
3. Materials and Methods
3.1. Reagents
3.2. Potato Samples
3.3. Potato Samples; Preparation of Potato Samples and Extraction
3.4. Determination of Total Phenolic Compounds
3.5. Determination of Phenolic Acids (Chlorogenic Acids) in Potato Extracts by HPLC
3.6. Oxygen Radical Absorbance Capacity (ORAC) According to the Catalog OxiSelect ™
3.6.1. Reagent Preparation
3.6.2. Preparation of Standards
3.6.3. Preparation of Samples
3.6.4. Calculation of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Mauro, A.; Arena, E.; Fallico, B.; Passerini, A.; Maccarone, E. Recovery of Anthocyanins from Pulp Wash of Pigmented Oranges by Concentration on Resins. J. Agric. Food Chem. 2002, 50, 5968–5974. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, E.; Cinelli, P.; Chiellini, F.; Imam, S.H. Environmentally Degradable Bio-Based Polymeric Blends and Composites. Macromol. Biosci. 2004, 4, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M.; García, J.; Faraldi, M.; Colvine, S. Value-Added for the European Tomato Processing Industry. Acta Hortic. 2009, 823, 195–198. [Google Scholar] [CrossRef]
- The Potato—International Year of the Potato. 2008. Available online: http://www.fao.org/potato-2008/en/potato/index.html (accessed on 27 April 2020).
- Charmley, E.; Nelson, D.; Zvomuya, F. Nutrient Cycling in the Vegetable Processing Industry: Utilization of Potato by-Products. Can. J. Soil Sci. 2006, 86, 621–629. [Google Scholar]
- Schieber, A.; Saldaña, M.D.A. Potato Peels: A Source of Nutritionally and Pharmacologically Interesting Compounds—A Review. Available online: https://era.library.ualberta.ca/items/2c83e934-98e3-47b9-a099-7b1ea6b412d7 (accessed on 27 April 2020).
- Soulé, S.; Vázquez, A.; González, G.; Moyna, P.; Ferreira, F. Preparative Isolation of Solanum Tuberosum L. Glycoalkaloids in MPLC. Potato Res. 1997, 40, 413–416. [Google Scholar] [CrossRef]
- Eltayeb, E.A.; Al-Sinani, S.S.; Khan, I.A. Determination of the Glycoalkaloids α-Solanine and α-Chaconine Levels in 18 Varieties of Potato (Solarium Tuberosum L.) Grown in Oman. Potato Res. 2003, 46, 57. [Google Scholar] [CrossRef]
- Friedman, M.; Roitman, J.N.; Kozukue, N. Glycoalkaloid and Calystegine Contents of Eight Potato Cultivars. J. Agric. Food Chem. 2003, 51, 2964–2973. [Google Scholar] [CrossRef]
- Toma, R.B.; Orr, P.H.; D’appolonia, B.; Dlntzis, F.R.; Tabekhia, M.M. Physical and Chemical Properties of Potato Peel as a Source of Dietary Fiber in Bread. J. Food Sci. 1979, 44, 1403–1407. [Google Scholar] [CrossRef]
- Camire, M.E.; Zhao, J.X.; Violette, D.A. In Vitro Binding of Bile Acids by Extruded Potato Peels. J. Agric. Food Chem. 1993, 41, 2391–2394. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Adhikari, H.; Rai, S.K. Production of Alkaline Protease by a Thermophilic Bacillus Subtilis under Solid-State Fermentation (SSF) Condition Using Imperata Cylindrica Grass and Potato Peel as Low-Cost Medium: Characterization and Application of Enzyme in Detergent Formulation. Biochem. Eng. J. 2008, 39, 353–361. [Google Scholar]
- Friedman, M. Chemistry, Biochemistry, and Dietary Role of Potato Polyphenols: A Review. J. Agric. Food Chem. 1997, 45, 1523–1540. [Google Scholar] [CrossRef]
- Malmberg, A.G.; Theander, O. Determination of Chlorogenic Acid in Potato Tubers. J. Agric. Food Chem. 1985, 33, 549–551. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J. Phenolic Acids in Potatoes, Vegetables, and Some of Their Products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Lewis, C.E.; Walker, J.R.L.; Lancaster, J.E.; Sutton, K.H. Determination of Anthocyanins, Flavonoids and Phenolic Acids in Potatoes I: Coloured Cultivars of Solanum Tuberosum L. J. Sci. Food Agric. 1998, 77, 45–57. [Google Scholar] [CrossRef]
- Sotillo, D.R.D.; Hadley, M.; Holm, E.T. Phenolics in Aqueous Potato Peel Extract: Extraction, Identification and Degradation. J. Food Sci. 1994, 59, 649–651. [Google Scholar] [CrossRef]
- Singh, N.; Rajini, P.S. Free Radical Scavenging Activity of an Aqueous Extract of Potato Peel. Food Chem. 2004, 85, 611–616. [Google Scholar] [CrossRef]
- Khalil, A. Evaluation of Antioxidant Activity of Some Plant Extracts and Their Application to Ground Beef Patties. Food Chem. 2000, 69, 135–141. [Google Scholar]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.; Verardo, V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chander, R.; Radhakrishna, P.; Sharma, A. Potato Peel Extracta Natural Antioxidant for Retarding Lipid Peroxidation in Radiation Processed Lamb Meat. J. Agric. Food Chem. 2005, 53, 1499–1504. [Google Scholar] [CrossRef]
- Al-Weshahy, A.; Venket Rao, A. Isolation and Characterization of Functional Components from Peel Samples of Six Potatoes Varieties Growing in Ontario. Food Res. Int. 2009, 42, 1062–1066. [Google Scholar] [CrossRef]
- Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G.S.V. Microwave-Assisted Extraction of Phenolic Antioxidants from Potato Peels. Molecules 2011, 16, 2218–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Sun, X.; Xiao, W.; Liu, X.; Zhang, W.; Ma, K.; Zhu, Y. Optimization of Microwave-Assisted Extraction of Solanesol from Potato Leaves and Stems. Med. Chem. Res. 2010, 19, 732–742. [Google Scholar] [CrossRef]
- Al-Weshahy, A.; El-Nokety, M.; Bakhete, M.; Rao, V. Effect of Storage on Antioxidant Activity of Freeze-Dried Potato Peels. Food Res. Int. 2013, 50, 507–512. [Google Scholar] [CrossRef]
- Samarin, A.; Poorazarang, H.; Hematyar, N.; Elhamirad, A. Phenolics in Potato Peels: Extraction and Utilization as Natural Antioxidants. World Appl. Sci. J. 2012, 18, 191–195. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Blenkinsop, R.W.; Copp, L.J.; Yada, R.Y.; Marangoni, A.G. Changes in Compositional Parameters of Tubers of Potato (Solanum Tuberosum) during Low-Temperature Storage and Their Relationship to Chip Processing Quality. J. Agric. Food Chem. 2002, 50, 4545–4553. [Google Scholar] [CrossRef] [PubMed]
- Amado, I.R.; Franco, D.; Sánchez, M.; Zapata, C.; Vázquez, J.A. Optimisation of Antioxidant Extraction from Solanum Tuberosum Potato Peel Waste by Surface Response Methodology. Food Chem. 2014, 165, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Truong, V.-D.; McFeeters, R.F.; Thompson, R.T.; Dean, L.L.; Shofran, B. Phenolic Acid Content and Composition in Leaves and Roots of Common Commercial Sweetpotato (Ipomea Batatas L.) Cultivars in the United States. J. Food Sci. 2007, 72, C343–C349. [Google Scholar] [CrossRef]
- Teow, C.C.; Truong, V.-D.; McFeeters, R.F.; Thompson, R.L.; Pecota, K.V.; Yencho, G.C. Antioxidant Activities, Phenolic and β-Carotene Contents of Sweet Potato Genotypes with Varying Flesh Colours. Food Chem. 2007, 103, 829–838. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef]
- Nara, K.; Miyoshi, T.; Honma, T.; Koga, H. Antioxidative Activity of Bound-Form Phenolics in Potato Peel. Biosci. Biotechnol. Biochem. 2006, 70, 1489–1491. [Google Scholar] [CrossRef]
- Reyes, L.F.; Miller, J.C.; Cisneros-Zevallos, L. Antioxidant Capacity, Anthocyanins and Total Phenolics in Purple-and Red-Fleshed Potato (Solanum Tuberosum L.) Genotypes. Am. J. Potato Res. 2005, 82, 271. [Google Scholar] [CrossRef]
- Ru, W.; Pang, Y.; Gan, Y.; Liu, Q.; Bao, J. Phenolic Compounds and Antioxidant Activities of Potato Cultivars with White, Yellow, Red and Purple Flesh. Antioxidants 2019, 8, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic Content and Antioxidant Activities of Selected Potato Varieties and Their Processing By-Products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Takenaka, M.; Nanayama, K.; Isobe, S.; Murata, M. Changes in Caffeic Acid Derivatives in Sweet Potato (Ipomoea Batatas L.) during Cooking and Processing. Biosci. Biotechnol. Biochem. 2006, 70, 172–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ah-Hen, K.; Fuenzalida, C.; Hess, S.; Contreras, A.; Vega-Gálvez, A.; Lemus-Mondaca, R. Antioxidant Capacity and Total Phenolic Compounds of Twelve Selected Potato Landrace Clones Grown in Southern Chile. Chil. J. Agric. Res. 2012, 72, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gregorio, M.R.; García-Falcón, M.S.; Simal-Gándara, J. Flavonoids Changes in Fresh-Cut Onions during Storage in Different Packaging Systems. Food Chem. 2011, 124, 652–658. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and Hydrophilic Antioxidant Capacities of Common Foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Kourouma, V.; Mu, T.-H.; Zhang, M.; Sun, H.-N. Effects of Cooking Process on Carotenoids and Antioxidant Activity of Orange-Fleshed Sweet Potato. LWT 2019, 104, 134–141. [Google Scholar] [CrossRef]
- Tian, J.; Chen, J.; Lv, F.; Chen, S.; Chen, J.; Liu, D.; Ye, X. Domestic Cooking Methods Affect the Phytochemical Composition and Antioxidant Activity of Purple-Fleshed Potatoes. Food Chem. 2016, 197, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cai, W.; Xu, B. Profiles of Phenolics, Carotenoids and Antioxidative Capacities of Thermal Processed White, Yellow, Orange and Purple Sweet Potatoes Grown in Guilin, China. Food Sci. Hum. Wellness 2015, 4, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Tsao, R.; Liu, R.; Sullivan, J.A.; McDonald, M.R. Influence of Cultivar and Year on Phytochemical and Antioxidant Activity of Potato (Solanum Tuberosum L.) in Ontario. . Can. J. Plant Sci. 2012, 92, 485–493. [Google Scholar] [CrossRef]
- Brown, C.R.; Culley, D.; Bonierbale, M.; Amorós, W. Anthocyanin, Carotenoid Content, and Antioxidant Values in Native South American Potato Cultivars. HortScience 2007, 42, 1733–1736. [Google Scholar] [CrossRef] [Green Version]
- Awika, J.M.; Rooney, L.W.; Wu, X.; Prior, R.L.; Cisneros-Zevallos, L. Screening Methods to Measure Antioxidant Activity of Sorghum (Sorghum Bicolor) and Sorghum Products. J. Agric. Food Chem. 2003, 51, 6657–6662. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Cai, Y.; Sun, M.; Wang, G.; Corke, H. Anthocyanins, Flavonols, and Free Radical Scavenging Activity of Chinese Bayberry (Myrica Rubra) Extracts and Their Color Properties and Stability. J. Agric. Food Chem. 2005, 53, 2327–2332. [Google Scholar] [CrossRef] [PubMed]
- Rabah, I.O.; Hou, D.X.; Komine, S.-I.; Fujii, M. Potential Chemopreventive Properties of Extract from Baked Sweet Potato (Ipomoea batatas Lam. Cv. Koganesengan). J. Agric. Food Chem. 2004, 52, 7152–7157. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear (Opuntia Spp.) Clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
Methods of Extraction | Total Phenolic Compounds (TPC) by Colorimetric Method Folin–Ciocalteu Reagent) (mg (Chlorogenic Acid)/g of Sample | Individual Phenolic Compounds by HPLC (µg (Chlorogenic Acid)/g of Sample) |
---|---|---|
Heating at 40 °C/30 min | 4.78 ± 0.23 | 106.45 ± 3.55 |
Maceration at RT/48 h | 2.39 ± 0.06 | 102.64 ± 7.06 |
Soxhlet | 3.17 ± 0.22 | 48.91 ± 3.38 |
Reflux | 2.07 ± 0.09 | 83.20 ± 1.26 |
Percolation | 1.53 ± 0.18 | 31.94 ± 4.39 |
Ultrasound | 1.67 ± 0.09 | 94.84 ± 5.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joly, N.; Souidi, K.; Depraetere, D.; Wils, D.; Martin, P. Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity. Molecules 2021, 26, 177. https://doi.org/10.3390/molecules26010177
Joly N, Souidi K, Depraetere D, Wils D, Martin P. Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity. Molecules. 2021; 26(1):177. https://doi.org/10.3390/molecules26010177
Chicago/Turabian StyleJoly, Nicolas, Kaies Souidi, David Depraetere, Daniel Wils, and Patrick Martin. 2021. "Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity" Molecules 26, no. 1: 177. https://doi.org/10.3390/molecules26010177
APA StyleJoly, N., Souidi, K., Depraetere, D., Wils, D., & Martin, P. (2021). Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity. Molecules, 26(1), 177. https://doi.org/10.3390/molecules26010177