Soluble Salts Quantitative Characterization and Thermodynamic Modeling on Roman Bricks to Assess the Origin of Their Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Building under Study, the State of Conservation and the Environmental Scenario
2.2. Sampling Procedure
2.3. Analytical Procedure
3. Results and Discussion
Possible Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Scatigno, C. The Environment-System Interface Study via Discrete Monitoring: The Effect of the Hypogeum Environment on Roman Wall-Building Materials. In Masonry: Design, Materials and Techniques; Nova Science Publishers, 415 Oser Avenue, Suite N Hauppauge: Hauppauge, NY, USA, 2018. [Google Scholar]
- El-Gohary, M. Environmental impacts: Weathering factors, mechanism and forms affected the stone decaying in Petra. J. Afr. Earth Sci. 2017, 135, 204–212. [Google Scholar] [CrossRef]
- Scatigno, C.; Prieto-Taboada, N.; Martinez, M.P.; Conte, A.M.; García-Diego, F.J.; Madariaga, J.M. Analytical techniques for the characterisation of historical building materials: Case study “Casa di Diana” Mithraeum (archeological site in Ostia Antica, Italy). Adv. Mater. Sci. Res. 2016, 22, 31. [Google Scholar]
- Scatigno, C.; Prieto-Taboada, N.; Martinez, M.P.; Conte, A.; Madariaga, J. A non-invasive spectroscopic study to evaluate both technological features and conservation state of two types of ancient Roman coloured bricks. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Taboada, N.; De Vallejuelo, S.F.-O.; Veneranda, M.; Marcaida, I.; Morillas, H.; Maguregui, M.; Castro, K.; De Carolis, E.; Osanna, M.; Madariaga, J.M. Study of the soluble salts formation in a recently restored house of Pompeii by in-situ Raman spectroscopy. Sci. Rep. 2018, 8, 1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, C.; Silva, A.S.; Veiga, R. Durability of ancient lime mortars in humid environment. Constr. Build. Mater. 2014, 66, 606–620. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, Y.; Duan, E. The Influence of Environment on the Settlement of Historic Buildings in China. KSCE J. Civ. Eng. 2021, 25, 1951–1963. [Google Scholar] [CrossRef]
- Germinario, L.; Oguchi, C.T. Underground salt weathering of heritage stone: Lithological and environmental constraints on the formation of sulfate efflorescences and crusts. J. Cult. Herit. 2021, in press. [Google Scholar] [CrossRef]
- Sudeshna, B.; Orr, S.A.; Aktas, Y.D. A geological perspective on climate change and building stone deterioration in London: Implications for urban stone-built heritage research and management. Atmosphere 2020, 11, 788. [Google Scholar]
- Yunxia, S.; Linnow, K.; Steiger, M. Crystallization behavior and damage potential of Na2SO4–NaCl mixtures in porous building materials. Cryst. Growth Des. 2020, 20, 5974–5985. [Google Scholar]
- Gentilini, C.; Franzoni, E.; Bandini, S.; Nobile, L. Effect of salt crystallisation on the shear behaviour of masonry walls: An experimental study. Constr. Build. Mater. 2012, 37, 181–189. [Google Scholar] [CrossRef]
- Rovella, N.; Aly, N.; Comite, V.; Ruffolo, S.A.; Ricca, M.; Fermo, P.; De Buergo, M.A.; La Russa, M.F. A methodological approach to define the state of conservation of the stone materials used in the Cairo historical heritage (Egypt). Archaeol. Anthr. Sci. 2020, 12, 178. [Google Scholar] [CrossRef]
- Jean-Marc, V.; Gosselin, C.; Bromblet, P.; Rolland, O.; Vergès-Belmin, V.; Kloppmann, W. Origin of salts in stone monument degradation using sulphur and oxygen isotopes: First results of the Bourges cathedral (France). J. Geochem. Explor. 2006, 88, 358–362. [Google Scholar]
- Ruffolo, S.A.; Rovella, N.; Arcudi, A.; Crupi, V.; Majolino, D.; Osanna, M.; Pace, R.; Pantuso, A.; Randazzo, L.; Ricca, M.; et al. New insights to assess the consolidation of stone materials used in built heritage: The case study of ancient graffiti (Tituli Picti) in the archaeological site of Pompeii. Herit. Sci. 2020, 8, 49. [Google Scholar] [CrossRef]
- Ludovico-Marques, M.; Chastre, C. Effect of salt crystallization ageing on the compressive behavior of sandstone blocks in historical buildings. Eng. Fail. Anal. 2012, 26, 247–257. [Google Scholar] [CrossRef]
- Fioretti, G.; Mazzoleni, P.; Acquafredda, P.; Andriani, G.F. On the technical properties of the Carovigno stone from Apulia (Italy): Physical characterization and decay effects by means of experimental ageing tests. Environ. Earth Sci. 2018, 77, 17. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Sert, M. The role of different salt solutions and their concentration ratios in salt crystallization test on the durability of the Döğer tuff (Afyonkarahisar, Turkey) used as building stones of cultural heritages. Bull. Int. Assoc. Eng. Geol. 2020, 79, 5553–5568. [Google Scholar] [CrossRef]
- Héctor, M.; de Filho, F.F.; Derluyn, H.; Maguregui, M.; Grégoire, D.; Madariaga, J.M. Decay processes in buildings close to the sea nduced by marine aerosol: Salt depositions inside construction materials. Sci. Total Environ. 2020, 721, 137687. [Google Scholar]
- Mahmoud, H.S.A. Multiscientific approach for the characterization and assessment of the degradation state of the historical Al-Shafi’i mosque walls (Jeddah, Kingdom of Saudi Arabia). Sci. Cult. 2021, 7, 1–19. [Google Scholar]
- Sujith, M.P.; Rajeswar, L.; Krishnan, G.S. Characterization of lime plaster of a Portuguese medieval monument in the Indian Ocean coast. Curr. Sci. 2021, 120, 538–546. [Google Scholar]
- Kumar, M.A. Nature and sources of ionic species in rainwater during monsoon periods in and around sixteenth–seventeenth century CE monuments in Yamuna River basin, India. Environ. Monit. Assess. 2021, 193, 86. [Google Scholar]
- Rocha, M.G.; Pinto, W.T.A.; Lima, E.E.P.; Andrade, C. Vertical distribution of marine aerosol salinity in a Brazilian coastal area–The influence of wind speed and the impact on chloride accumulation into concrete. Constr. Build. Mater. 2017, 135, 287–296. [Google Scholar]
- Nikolaos-Alexis, S.; Theoulakis, P.; Pilinis, C. Dry deposition effect of marine aerosol to the building stone of the medieval city of Rhodes, Greece. Build. Environ. 2009, 44, 260–270. [Google Scholar]
- Peřinková, M.; Dlábiková, I.; Pospíšil, P.; Bílek, V. Research into the influence of subsoil on sulphates, nitrates and chlorides accumulated in renovation plasters used for rehabilitation of monuments in the Czech Republic. J. Cult. Herit. 2021, in press. [Google Scholar] [CrossRef]
- Technical Committee CEN/TC 346. Conservation of Cultural Heritage. EN 16455/2014: Conservation of Cultural Heritage—Extraction and Determination of Soluble Salts in Natural Stone and Related Materials Used in and from Cultural Heritage. 2014. Available online: https://standards.iteh.ai/catalog/standards/cen/183d6740-886c-42fb-a619-87e47b0173e6/en-16455-2014 (accessed on 29 January 2017).
- Vittori, C.; Mazzini, I.; Salomon, F.; Goiran, J.-P.; Pannuzi, S.; Rosa, C.; Pellegrino, A. Palaeoenvironmental evolution of the ancient lagoon of Ostia Antica (Tiber delta, Italy). J. Archaeol. Sci. 2015, 54, 374–384. [Google Scholar] [CrossRef]
- Yaseen, I.A.B.; Al-Amoush, H.; Al-Farajat, M.; Mayyas, A. Petrography and mineralogy of Roman mortars from buildings of the ancient city of Jerash, Jordan. Constr. Build. Mater. 2013, 38, 465–471. [Google Scholar] [CrossRef]
- Aloise, P.; Ricca, M.; La Russa, M.F.; Ruffolo, S.A.; Belfiore, C.M.; Padeletti, G.; Crisci, G.M. Diagnostic analysis of stone materials from underwater excavations: The case study of the Roman archaeological site of Baia (Naples, Italy). Appl. Phys. A 2013, 114, 655–662. [Google Scholar] [CrossRef]
- Klisińska-Kopacz, A. Non-destructive characterization of 17th century painted silk banner by the combined use of Raman and XRF portable systems. J. Raman Spectrosc. 2015, 46, 317–321. [Google Scholar] [CrossRef]
- Prieto-Taboada, N.; Ibarrondo, I.; Gómez-Laserna, O.; Martinez-Arkarazo, I.; Olazabal, M.; Madariaga, J. Buildings as repositories of hazardous pollutants of anthropogenic origin. J. Hazard. Mater. 2013, 248–249, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.J.; Young, J.F.; Powell, R. Testing of Sydney dimension sandstone for use in the conservation of heritage buildings. Aust. J. Earth Sci. 2013, 61, 351–362. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, J.F.; Crouch, S.R.; Sabbatini, L. Chimica Analitica Strumentale; EdiSES: Napoli, Italy, 2009. [Google Scholar]
- De Buergo, M.A.; Lopez-Arce, P.; Fort, R. Ion Chromatography to Detect Salts in Stone Structures and to Assess Salt Removal Methods; EGU General Assembly: Brusselles, Belgium, 2012; Volume 14, p. 1757. [Google Scholar]
- Jungbauer, A. Preparative chromatography of biomolecules. J. Chromatogr. A 1993, 639, 3–16. [Google Scholar] [CrossRef]
- Haddad, P.R.; Jackson, P.E. Ion Chromatography: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Fabio, S.; Lisci, C.; Mirão, J. Accelerate ageing on building stone materials by simulating daily, seasonal thermo-hygrometric conditions and solar radiation of CSA Mediterranean climate. Constr. Build. Mater. 2021, 266, 121009. [Google Scholar]
- Brai, M.; Casaletto, M.P.; Gennaro, G.; Marrale, M.; Schillaci, T.; Tranchina, L. Degradation of stone materials in the archaeological context of the Greek–Roman Theatre in Taormina (Sicily, Italy). Appl. Phys. A 2010, 100, 945–951. [Google Scholar] [CrossRef]
- Gómez-Laserna, O.; Olazabal, M.Á.; Morillas, H.; Prieto-Taboada, N.; Martinez-Arkarazo, I.; Arana, G.; Madariaga, J.M. In-situ spectroscopic assessment of the conservation state of building materials from a Palace house affected by infiltration water. J. Raman Spectrosc. 2013, 44, 1277–1284. [Google Scholar] [CrossRef]
- Pei, C.; Ou, Q.; Pui, D.Y. Effects of temperature and relative humidity on laboratory air filter loading test by hygroscopic salts. Sep. Purif. Technol. 2021, 255, 117679. [Google Scholar] [CrossRef]
- Steiger, M. Crystal growth in porous materials—I: The crystallization pressure of large crystals. J. Cryst. Growth 2005, 282, 455–469. [Google Scholar] [CrossRef]
- Heinrichs, K.; Azzam, R. Quantitative Analysis of Salt Crystallization–Dissolution Processes on Rock-Cut Monuments in Petra/Jordan. In Anonymous Engineering Geology for Society and Territory-Volume 8; Springer: Berlin/Heidelberg, Germany, 2015; pp. 507–510. [Google Scholar]
- Nicolai, A. Modeling and Numerical Simulation of Salt Transport and Phase Transitions in Unsaturated Porous Building Materials; ProQuest: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Espinosa-Marzal, R.M.; Scherer, G.W. Advances in Understanding Damage by Salt Crystallization. Accounts Chem. Res. 2010, 43, 897–905. [Google Scholar] [CrossRef]
- Espinosa, R.; Franke, L.; Deckelmann, G. Model for the mechanical stress due to the salt crystallization in porous materials. Constr. Build. Mater. 2008, 22, 1350–1367. [Google Scholar] [CrossRef]
- Godts, S.; de Clercq, H.; Hayen, R.; de Roy, J. Risk assessment and conservation strategy of a salt laden limestone mausoleum and the surrounding funeral chapel in Boussu, Belgium. In Proceedings of the 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, NY, USA, 21–25 October 2012. [Google Scholar]
- Aramendia, J.; Gómez-Nubla, L.; Castro, K.; Madariaga, J.M. Spectroscopic speciation and thermodynamic modeling to explain the degradation of weathering steel surfaces in SO2 rich urban atmospheres. Microchem. J. 2014, 115, 138–145. [Google Scholar] [CrossRef]
- Maguregui, M.; Sarmiento, A.; Martínez-Arkarazo, I.; Angulo, M.; Castro, K.; Arana, G.; Etxebarria, N.; Madariaga, J. Analytical diagnosis methodology to evaluate nitrate impact on historical building materials. Anal. Bioanal. Chem. 2008, 391, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Rorig-Dalgaard, I. Direct Measurements of the RHeq in Salt Mixtures including the Contribution from Metastable Phases; Department of Civil Engineering, Technical University of Denmark: Lyngby, Denmark, 2021. [Google Scholar]
- Pintér, F. The Combined Use of Ion Chromatography and Scanning Electron Microscopy to Assess Salt-affected Mineral Materials in Cultural Heritage. J. Am. Inst. Conserv. 2021, 1–15. [Google Scholar] [CrossRef]
- Godts, S.; Orr, S.A.; Desarnaud, J.; Steiger, M.; Wilhelm, K.; de Clercq, H.; Cnudde, V.; de Kock, T. NaCl-Related Weathering of Stone: The Importance of Kinetics and Salt Mixtures in Environmental Risk Assessment. Herit. Sci. 2020, 9, 44. [Google Scholar] [CrossRef]
- Stelzner, J.; Eggert, G. Calcium Carbonate on Bronze Finds. Stud. Conserv. 2008, 53, 264–272. [Google Scholar] [CrossRef]
- Kubiak, J.J.; Khankhane, P.J.; Kleingeld, P.J.; Lima, A.T. An attempt to electrically enhance phytoremediation of arsenic contaminated water. Chemosphere 2012, 87, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Cutnell, J.D.; Johnson, K.W. Physics, 4th ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Larsen, P.K. The salt decay of medieval bricks at a vault in Brarup Church, Denmark. Environ. Geol. 2007, 52, 375–383. [Google Scholar] [CrossRef]
- Godts, S.; Hayen, R.; de Clercq, H. Common salt mixtures database: A tool to identify research needs. In Proceedings of the 3rd International Conference on Salt Weathering of Buildings and Stone Sculptures, Brussels, Belgium, 14–16 October 2014; pp. 185–198. [Google Scholar]
- Scatigno, C.; Gaudenzi, S.; Sammartino, M.; Visco, G. A microclimate study on hypogea environments of ancient roman building. Sci. Total Environ. 2016, 566–567, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Cardarelli, E.; De Donno, G.; Uliveti, I.; Scatigno, C. Three-dimensional reconstruction of a masonry building through electrical and seismic tomography validated by biological analyses. Near Surf. Geophys. 2017, 16, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Cardarelli, E.; De Donno, G.; Scatigno, C.; Oliveti, I.; Martinez, M.P.; Prieto-Taboada, N. Geophysical and geochemical techniques to assess the origin of rising damp of a Roman building (Ostia Antica archaeological site). Microchem. J. 2016, 129, 49–57. [Google Scholar] [CrossRef]
- Scatigno, C.; Moricca, C.; Tortolini, C.; Favero, G. The influence of environmental parameters in the biocolonization of the Mithraeum in the roman masonry of casa di Diana (Ostia Antica, Italy). Environ. Sci. Pollut. Res. 2016, 23, 13403–13412. [Google Scholar] [CrossRef] [PubMed]
- Scatigno, C.; Prieto-Taboada, N.; García-Florentino, C.; De Vallejuelo, S.F.-O.; Maguregui, M.; Madariaga, J.M. Combination of in situ spectroscopy and chemometric techniques to discriminate different types of Roman bricks and the influence of microclimate environment. Environ. Sci. Pollut. Res. 2017, 25, 6285–6299. [Google Scholar] [CrossRef]
- Merello, P.; García-Diego, F.-J.; Beltrán, P.; Scatigno, C. High Frequency Data Acquisition System for Modelling the Impact of Visitors on the Thermo-Hygrometric Conditions of Archaeological Sites: A Casa di Diana (Ostia Antica, Italy) Case Study. Sensors 2018, 18, 348. [Google Scholar] [CrossRef] [Green Version]
- Cardarelli, E.; de Donno, G.; Oliveti, I.; Scatigno, C. Assessing the state of conservation of a masonry building through the combined use of electrical and seismic tomography. In Proceedings of the Near Surface Geoscience 2016—22nd European Meeting of Environmental and Engineering Geophysics, Barcelona, Spain, 4–8 September 2016; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2016; Volume 2016, p. cp-495. [Google Scholar]
- Goiran, J.; Salomon, F.; Mazzini, I.; Bravard, J.; Pleuger, E.; Vittori, C.; Boetto, G.; Christiansen, J.; Arnaud, P.; Pellegrino, A.; et al. Geoarchaeology confirms location of the ancient harbour basin of Ostia (Italy). J. Archaeol. Sci. 2014, 41, 389–398. [Google Scholar] [CrossRef]
- Diego, G.; Juan, F.; Scatigno, C.; Merello, P.; Bustamante, E. Preliminary data of CFD modeling to assess the ventilation in an Archaeological building. In Proceedings of the 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation, Valencia, Spain, 5–7 September 2016; Editorial Universitat Politècnica de València: Valencia, Spain, 2016; pp. 504–507. [Google Scholar]
- Scatigno, C.; Sammartino, M.P.; Gaudenzi, S. Non-Invasive Analysis of Soluble Salts. Preliminary Results on the Case Study of Casa di Diana Mithraeum (Archaeological Site of Ostia Antica-Italy). In Proceedings of the CMA4CH 2014, Mediterraneum Meeting Employ the Multivariate Analysis and Chemometrics in Cultural Heritage and Environment Fields, Rome, Italy, 14–17 December 2014. [Google Scholar]
- Prieto-Taboada, N.; Gómez-Laserna, O.; Martinez-Arkarazo, I.; Olazabal, M.A.; Madariaga, J.M. Optimization of two methods based on ultrasound energy as alternative to European standards for soluble salts extraction from building materials. Ultrason. Sonochem. 2012, 19, 1260–1265. [Google Scholar] [CrossRef]
- Bionda, D.; Storemyr, P. Modelling the behavior of salt mixtures in walls: A case study from Tenaille von Fersen. In The Study of Salt Deterioration Mechanisms. Decay of Brick Walls Influenced by Interior Climate Changes; Suomenlinnan Hoitokunta: Helsinki, Finland, 2002; pp. 95–101. [Google Scholar]
- Price, C.A. An Expert Chemical Model for Determining the Environmental Conditions Needed to Prevent Salt Damage in Porous Materials; European Commission Research Report 11; Protection and Conserv: Brussels, Belgium, 2000. [Google Scholar]
- Price, C.A. Predicting environmental conditions to minimise salt damage at the Tower of London: A comparison of two approaches. Environ. Geol. 2007, 52, 369–374. [Google Scholar] [CrossRef]
- Veneranda, M.; Irazola, M.; Diez, M.; Iturregui, A.; Aramendia, J.; Castro, K.; Madariaga, J.M. Raman spectroscopic study of the degradation of a middle age mural painting: The role of agricultural activities. J. Raman Spectrosc. 2014, 45, 1110–1118. [Google Scholar] [CrossRef]
- Capelli, G.; Mazza, R.; Papiccio, C. Intrusione salina nel Delta del Fiume Tevere. Geologia, idrologia e idrogeologia del settore romano della piana costiera. G. Geol. Appl. 2007, 5, 13–28. [Google Scholar]
- Chebotarev, I. Metamorphism of natural waters in the crust of weathering—1. Geochim. Cosmochim. Acta 1955, 8, 22–48. [Google Scholar] [CrossRef]
- Chico, B.; Otero, E.; Mariaca, L.; Morcillo, M. La corrosión en atmósferas marinas. Efecto de la distancia a la costa. Rev. Metal. 1998, 34, 71–74. [Google Scholar] [CrossRef]
- Petros, P.; Bala’awi, F. Salt weathering in the coastal environment: A thermodynamic approach. In Proceedings of the 11th International Congress on Deterioration and Conservation of Stone, Torun, Poland, 15–20 September 2008; pp. 233–241. [Google Scholar]
- E. UNI, 13779. Ventilazione Degli Edifici non Residenziali-Requisiti di Prestazione per i Sistemi di Ventilazione e di Climatizzazione; Ente Nazionale Italiano di Unificazione: Milano, Italy, 2008. [Google Scholar]
- Tans, P. NOAA Earth System Research Laboratory, Global Monitoring Division. In Recent Global Monthly Mean CO2; 2008; p. 74. Available online: https://www.esrl.noaa.gov/ (accessed on 29 January 2017).
- E. UNI, 15251. Criteri per la Progettazione Dell’ambiente Interno e per la Valutazione della Prestazione Energetica Degli Edifici. In Relazione alla Qualità Dell’aria interna, All’ambiente Termico, All’illuminazione e All’acustica; Ente Nazionale Italiano di Unificazione: Milano, Italy, 2008. [Google Scholar]
- Heinzow, B.; Sagunski, H. Evaluation of Indoor Air Contamination by Means of Reference and Guide Values: The German Approach. In Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation; Wiley Online Library: Hoboken, NJ, USA, 2009; Volume 9, pp. 189–211. [Google Scholar]
- Kalamees, T.; Kurnitski, J.; Jokisalo, J.; Eskola, L.; Jokiranta, K.; Vinha, J. Measured and simulated air pressure conditions in Finnish residential buildings. Build. Serv. Eng. Res. Technol. 2010, 31, 177–190. [Google Scholar] [CrossRef]
- Snow, F.J. American Society of Heating, Refrigeration, And Air Conditioning Engineers (ASH RAE) Thermographic Standard 101 P. In Thermal Infrared Sensing Applied to Energy Conservation in Building Envelopes; International Society for Optics and Photonics: Bellingham, WA, USA, 1982; pp. 94–98. [Google Scholar]
- Carapezza, M.L.; Barberi, F.; Ranaldi, M.; Tarchini, L.; Pagliuca, N.M. Faulting and Gas Discharge in the Rome Area (Central Italy) and Associated Hazards. Tectonics 2019, 38, 941–959. [Google Scholar] [CrossRef]
SID | Room | Orientation |
---|---|---|
15R | pre-Mithraeum | South |
15Y | ||
16R | Mithraeum | West |
16Y | ||
17R | pre-Mithraeum | West |
17Y | ||
18R | pre-Mithraeum | West |
18R2 | West | |
19R | Mithraeum | East |
19Y | ||
20R | Mithraeum | North |
20Y | ||
21R | pre-Mithraeum | East |
21Y | ||
22R | Triclinium | East |
22Y | ||
24S1 | Mithraeum | West |
24S2 | pre-Mithraeum | East |
Ww | Latrinium | East |
T1 | Tank | - |
SID | Na+ | K+ | Mg2+ | Ca2+ | F− | ClO2− | Cl− | NO2− | NO3− | PO43− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|
15R | 13.1 | 20.8 | 18.6 | 201.4 | 7.8 | 0.053 | 9.0 | 1.7 | 5.6 | 8.1 | 7.4 | 410.6 |
15Y | 41.5 | 20.7 | 38.7 | 227.8 | 7.5 | 0.045 | 66.5 | 1.2 | 87.6 | 14.9 | 8.9 | 370.0 |
16R | 24.9 | 27.5 | 20.3 | 230.6 | 10.5 | 0.053 | 2.0 | 1.8 | 10.4 | 5.1 | 37.5 | 439.3 |
16Y | 31.8 | 30.3 | 24.6 | 273.9 | 29.1 | 0.050 | 3.9 | 2.7 | 3.7 | 6.5 | 62.2 | 475.5 |
17R | 79.6 | 32.1 | 32.0 | 444.2 | 27.8 | 0.048 | 13.3 | 1.0 | 17.9 | 26.1 | 342.3 | 241.2 |
17Y | 42.3 | 19.7 | 26.4 | 246.1 | 3.7 | 0.046 | 71.6 | 1.8 | 35.8 | 17.5 | 45.2 | 351.1 |
18R | 33.0 | 28.7 | 19.7 | 238.0 | 27.1 | 0.042 | 4.9 | 3.8 | 6.5 | 9.7 | 43.0 | 419.8 |
18R2 | 84.6 | 27.4 | 42.6 | 384.1 | 35.3 | 0.053 | 29.5 | 1.7 | 38.1 | 23.8 | 249.7 | 200.0 |
19R | 15.0 | 25.2 | 11.2 | 223.6 | 13.2 | 0.038 | 1.0 | 1.3 | <LOD | <LOD | 39.6 | 414.8 |
19Y | 35.0 | 23.2 | 34.8 | 431.0 | 41.1 | 0.042 | 68.0 | 1.2 | 21.0 | 30.3 | 244.7 | 278.3 |
20R | 24.9 | 22.3 | 20.5 | 230.7 | 7.5 | 0.057 | 32.9 | 2.2 | 18.9 | 27.4 | 39.0 | 328.0 |
20Y | 13.0 | 24.3 | 12.1 | 242.9 | 18.0 | 0.042 | 12.7 | 1.1 | 10.5 | 14.9 | 13.8 | 432.6 |
21R | 34.2 | 26.3 | 14.6 | 229.9 | 10.7 | 0.050 | 14.9 | 1.3 | 4.2 | 6.6 | 19.5 | 459.6 |
21Y | 19.8 | 26.5 | 14.2 | 194.2 | 7.6 | 0.064 | 3.9 | 1.7 | <LOQ | <LOQ | 2.7 | 445.5 |
22R | 88.9 | 66.8 | 38.2 | 253.5 | 12.0 | 0.042 | 16.4 | 0.74 | 9.3 | 12.6 | 131.6 | 399.6 |
22Y | 31.3 | 18.2 | 15.1 | 284.3 | 5.1 | 0.042 | 3.0 | 1.3 | 4.9 | 5.8 | 125.3 | 365.7 |
24S1 | 19.4 | 14.9 | 15.1 | 2831.5 | <LOQ | 0.327 | 16.9 | <LOD | <LOD | <LOQ | 3254.7 | -◊ |
24S2 | 55.4 | 19.4 | 26.8 | 1194.9 | <LOQ | 0.090 | 7.6b | <LOD | <LOD | <LOQ | 924.5 | 661.4 |
Ww | 2.7 | 1.1 | 0.76 | 1.1 | 0.034 | n.d. | 2.8 | n.d. | 0.20 | 0.40 | 0.33 | 2.5 |
* T1 | 2.5 | 1.0 | 0.58 | 0.74 | 0.022 | n.d. | 2.1 | n.d. | n.d. | n.d. | 0.23 | 3.5 |
Na+ | K+ | Mg2+ | Ca2+ | F− | ClO2− | Cl− | NO2− | NO3− | PO43− | SO42− | HCO3− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | 1 | |||||||||||
K+ | 0.63 | 1 | ||||||||||
Mg2+ | 0.78 | 0.35 | 1 | |||||||||
Ca2+ | 0.55 | 0.02 | 0.59 | 1 | ||||||||
F− | 0.36 | 0.11 | 0.44 | 0.75 | 1 | |||||||
ClO2− | −0.09 | −0.13 | −0.09 | −0.22 | −0.18 | 1 | ||||||
Cl− | 0.16 | −0.24 | 0.58 | 0.30 | 0.07 | −0.17 | 1 | |||||
NO2− | −0.27 | −0.21 | −0.18 | −0.21 | 0.17 | 0.16 | −0.17 | 1 | ||||
NO3− | 0.27 | −0.22 | 0.66 | 0.18 | −0.03 | −0.11 | 0.77 | −0.15 | 1 | |||
PO43− | 0.54 | −0.06 | 0.69 | 0.71 | 0.54 | 0.03 | 0.51 | −0.06 | 0.47 | 1 | ||
SO42− | 0.70 | 0.20 | 0.61 | 0.96 | 0.66 | −0.18 | 0.18 | −0.27 | 0.10 | 0.67 | 1 | |
HCO3− | −0.42 | 0.16 | −0.41 | −0.58 | −0.02 | 0.10 | −0.38 | 0.39 | −0.36 | −0.51 | −0.66 | 1 |
SID | Cl− | NO3− | SO42− | Total * |
---|---|---|---|---|
15R | 0.03% | 0.03% | 0.07% | 1.2% |
15Y | 0.2% | 0.5% | 0.09% | 2.2% |
16R | 0.007% | 0.06% | 0.4% | 1.7% |
16Y | 0.01% | 0.02% | 0.6% | 2.1% |
17R | 0.05% | 0.1% | 3.3% | 5.9% |
17Y | 0.3% | 0.2% | 0.4% | 2.3% |
18R | 0.02% | 0.04% | 0.4% | 1.8% |
18R2 | 0.1% | 0.2% | 2.4% | 5.3% |
19R | 0.004% | <LOD | 0.4% | 1.5% |
19Y | 0.2% | 0.1% | 2.4% | 5.1% |
20R | 0.1% | 0.1% | 0.4% | 2% |
20Y | 0.05% | 0.07% | 0.1% | 1.6% |
21R | 0.05% | 0.03% | 0.2% | 1.5% |
21Y | 0.01% | <LOQ | 0.03% | 1% |
22R | 0.06% | 0.06% | 1.3% | 3.1% |
22Y | 0.01% | 0.03% | 1.2% | 2.6% |
Risk | [Cl−] | [NO3−] | [SO42−] | Total |
---|---|---|---|---|
Low | <0.3% | <0.1 | <0.8% | <1.2% |
Middle | 0.3–0.8% | 0.1–0.5% | 0.8–1.6% | 1.2–2.9% |
High | >0.8% | >0.5% | >1.6% | >2.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scatigno, C.; Prieto-Taboada, N.; Festa, G.; Madariaga, J.M. Soluble Salts Quantitative Characterization and Thermodynamic Modeling on Roman Bricks to Assess the Origin of Their Formation. Molecules 2021, 26, 2866. https://doi.org/10.3390/molecules26102866
Scatigno C, Prieto-Taboada N, Festa G, Madariaga JM. Soluble Salts Quantitative Characterization and Thermodynamic Modeling on Roman Bricks to Assess the Origin of Their Formation. Molecules. 2021; 26(10):2866. https://doi.org/10.3390/molecules26102866
Chicago/Turabian StyleScatigno, Claudia, Nagore Prieto-Taboada, Giulia Festa, and Juan Manuel Madariaga. 2021. "Soluble Salts Quantitative Characterization and Thermodynamic Modeling on Roman Bricks to Assess the Origin of Their Formation" Molecules 26, no. 10: 2866. https://doi.org/10.3390/molecules26102866
APA StyleScatigno, C., Prieto-Taboada, N., Festa, G., & Madariaga, J. M. (2021). Soluble Salts Quantitative Characterization and Thermodynamic Modeling on Roman Bricks to Assess the Origin of Their Formation. Molecules, 26(10), 2866. https://doi.org/10.3390/molecules26102866