Wet-Chemically Prepared Porphyrin Layers on Rutile TiO2(110)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of the TiO2(110) Crystals
2.2. Porphyrin Deposition
2.3. Porphyrin Metalation
3. Experimental Details
3.1. Wet-Chemically Prepared Crystals
3.2. Ultrahigh-Vacuum-Prepared Crystals
3.3. Chemicals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fleischer, E.B. Structure of Porphyrins and Metalloporphyrins. Acc. Chem. Res. 1970, 3, 105–112. [Google Scholar] [CrossRef]
- Milgrom, L.R. The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Battersby, A.R. Tetrapyrroles: The pigments of life. Nat. Prod. Rep. 2000, 17, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Kadish, K.; Smith, K.M.; Guilard, R. Biochemistry and Binding: Activation of Small Molecules; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kadish, K.; Smith, K.M.; Guilard, R. Chlorophylls and Bilins: Biosynthesis, Synthesis and Degradation; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Hodgkin, D.C.; Kamper, J.; Mackay, M.; Pickworth, J.; Trueblood, K.N.; White, J.G. Structure of vitamin B12. Nature 1956, 178, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Guilard, R.; Kadish, K.M. Some aspects of organometallic chemistry in metalloporphyrin chemistry: Synthesis, chemical reactivity, and electrochemical behavior of porphyrins with metal-carbon bonds. Chem. Rev. 1988, 88, 1121–1146. [Google Scholar] [CrossRef]
- Smith, P.D.; James, B.R.; Dolphin, D.H. Structural aspects and coordination chemistry of metal porphyrin complexes with emphasis on axial ligand binding to carbon donors and mono- and diatomic nitrogen and oxygen donors. Coord. Chem. Rev. 1981, 39, 31–75. [Google Scholar] [CrossRef]
- Vicente, M.D.; Smith, K.M. Syntheses and Functionalizations of Porphyrin Macrocycles. Curr. Org. Synth. 2014, 11, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Mochida, I.; Suetsugu, K.; Fujitsu, H.; Takeshita, K.; Tsuji, K.; Sagara, Y.; Ohyoshi, A.A. Kinetic-Study on Reduction of Nitric-Oxide over Cobalt Tetraphenylporphyrin Supported on Titanium-Dioxide. J. Catal. 1982, 77, 519–526. [Google Scholar] [CrossRef]
- Paddock, R.L.; Hiyama, Y.; McKay, J.M.; Nguyen, S.T. Co(III) porphyrin/DMAP: An efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett. 2004, 45, 2023–2026. [Google Scholar] [CrossRef]
- Berg, K.; Selbo, P.K.; Weyergang, A.; Dietze, A.; Prasmickaite, L.; Bonsted, A.; Engesaeter, B.O.; Angell-Petersen, E.; Warloe, T.; Frandsen, N.; et al. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J. Microsc. 2005, 218, 133–147. [Google Scholar] [CrossRef]
- Sharman, W.M.; Allen, C.M.; van Lier, J.E. Photodynamic therapeutics: Basic principles and clinical applications. Drug Discov. Today 1999, 4, 507–517. [Google Scholar] [CrossRef]
- Filippini, D.; Alimelli, A.; Di Natale, C.; Paolesse, R.; D’Amico, A.; Lundstrom, I. Chemical sensing with familiar devices. Angew. Chem. Int. Ed. 2006, 45, 3800–3803. [Google Scholar] [CrossRef]
- Rakow, N.A.; Suslick, K.S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Vilmercati, P.; Cudia, C.C.; Larciprete, R.; Cepek, C.; Zampieri, G.; Sangaletti, L.; Pagliara, S.; Verdini, A.; Cossaro, A.; Floreano, L.; et al. Molecular Orientations, Electronic Properties and Charge Transfer Timescale in a Zn-Porphyrin/C70 Donor–Acceptor Complex for Solar Cells. Surf. Sci. 2006, 600, 4018–4023. [Google Scholar] [CrossRef]
- Campbell, W.M.; Burrell, A.K.; Officer, D.L.; Jolley, K.W. Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord. Chem. Rev. 2004, 248, 1363–1379. [Google Scholar] [CrossRef]
- Auwärter, W.; Seufert, K.; Klappenberger, F.; Reichert, J.; Weber-Bargioni, A.; Verdini, A.; Cvetko, D.; Dell’Angela, M.; Floreano, L.; Cossaro, A.; et al. Site-Specific Electronic and Geometric Interface Structure of Co-Tetraphenyl-Porphyrin Layers on Ag(111). Phys. Rev. B 2010, 81, 245403/1–245403/14. [Google Scholar] [CrossRef]
- Beggan, J.P.; Krasnikov, S.A.; Sergeeva, N.N.; Senge, M.O.; Cafolla, A.A. Control of the axial coordination of a surface-confined manganese (III) porphyrin complex. Nanotechnology 2012, 23, 235606/1–235606/10. [Google Scholar] [CrossRef] [PubMed]
- Gottfried, J.M.; Flechtner, K.; Kretschmann, A.; Lukasczyk, T.; Steinrück, H.-P. Direct synthesis of a metalloporphyrin complex on a surface. J. Am. Chem. Soc. 2006, 128, 5644–5645. [Google Scholar] [CrossRef]
- Bürker, C.; Franco-Cañellas, A.; Broch, K.; Lee, T.L.; Gerlach, A.; Schreiber, F. Self-Metalation of 2H-Tetraphenylporphyrin on Cu(111) Studied with XSW: Influence of the Central Metal Atom on the Adsorption Distance. J. Phys. Chem. C 2014, 118, 13659–13666. [Google Scholar] [CrossRef]
- Röckert, M.; Franke, M.; Tariq, Q.; Ditze, S.; Stark, M.; Uffinger, P.; Wechsler, D.; Singh, U.; Xiao, J.; Marbach, H.; et al. Coverage- and temperature-dependent metalation and dehydrogenation of tetraphenylporphyrin on Cu(111). Chem. Eur. J. 2014, 20, 8948–8953. [Google Scholar] [CrossRef] [Green Version]
- Lovat, G.; Forrer, D.; Abadia, M.; Dominguez, M.; Casarin, M.; Rogero, C.; Vittadini, A.; Floreano, L. Hydrogen capture by porphyrins at the TiO2(110) surface. Phys. Chem. Chem. Phys. 2015, 17, 30119–30124. [Google Scholar] [CrossRef]
- Werner, K.; Mohr, S.; Schwarz, M.; Xu, T.; Amende, M.; Döpper, T.; Görling, A.; Libuda, J. Functionalized Porphyrins on an Atomically Defined Oxide Surface: Anchoring and Coverage-Dependent Reorientation of MCTPP on Co3O4(111). J. Phys. Chem. Lett. 2016, 7, 555–560. [Google Scholar] [CrossRef]
- Olszowski, P.; Zajac, L.; Godlewski, S.; Such, B.; Pawlak, R.; Hinaut, A.; Jöhr, R.; Glatzel, T.; Meyer, E.; Szymonski, M. Ordering of Zn-centered Porphyrin and Phthalocyanine on TiO2(011): STM Studies. Beilstein J. Nanotechnol. 2017, 8, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Afzal, S.; Daoud, W.A.; Langford, S.J. Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Appl. Mater. Interfaces 2013, 5, 4753–4759. [Google Scholar] [CrossRef]
- Tu, W.; Dong, Y.; Lei, J.; Ju, H. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal. Chem. 2010, 82, 8711–8716. [Google Scholar] [CrossRef]
- Wechsler, D.; Fernández, C.C.; Steinrück, H.-P.; Lytken, O.; Williams, F.J. Covalent Anchoring and Interfacial Reactions of Adsorbed Porphyrins on Rutile TiO2(110). J. Phys. Chem. C 2018, 122, 4480–4487. [Google Scholar] [CrossRef]
- Franke, M.; Marchini, F.; Jux, N.; Steinrück, H.-P.; Lytken, O.; Williams, F.J. Zinc Porphyrin Metal-Center Exchange at the Solid-Liquid Interface. Chem. Eur. J. 2016, 22, 8520–8524. [Google Scholar] [CrossRef] [PubMed]
- Franke, M.; Marchini, F.; Steinrück, H.-P.; Lytken, O.; Williams, F.J. Surface Porphyrins Metalate with Zn Ions from Solution. J. Phys. Chem. Lett. 2015, 6, 4845–4849. [Google Scholar] [CrossRef] [PubMed]
- Balajka, J.; Hines, M.A.; DeBenedetti, W.J.I.; Komora, M.; Pavelec, J.; Schmid, M.; Diebold, U. High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science 2018, 361, 786–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnadt, J.; O’Shea, J.N.; Patthey, L.; Schiessling, J.; Krempaský, J.; Shi, M.; Mårtensson, N.; Brühwiler, P.A. Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO2(110) II: XPS. Surf. Sci. 2003, 544, 74–86. [Google Scholar] [CrossRef]
- Galoppini, E. Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord. Chem. Rev. 2004, 248, 1283–1297. [Google Scholar] [CrossRef]
- Brennan, B.J.; Llansola Portoles, M.J.; Liddell, P.A.; Moore, T.A.; Moore, A.L.; Gust, D. Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 2013, 15, 16605–16614. [Google Scholar] [CrossRef]
- Dulub, O.; Valentin, C.D.; Selloni, A.; Diebold, U. Structure, defects, and impurities at the rutile TiO2(011)-(2 × 1) surface: A scanning tunneling microscopy study. Surf. Sci. 2006, 600, 4407–4417. [Google Scholar] [CrossRef]
- Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Sanz, M.; Walczak, M.; Oujja, M.; Cuesta, A.; Castillejo, M. Nanosecond pulsed laser deposition of TiO2: Nanostructure and morphology of deposits and plasma diagnosis. Thin Solid Films 2009, 517, 6546–6552. [Google Scholar] [CrossRef]
- Mostéfa-Sba, H.; Domenichini, B.; Bourgeois, S. Iron deposition on TiO2(110): Effect of the surface stoichiometry and roughness. Surf. Sci. 1999, 437, 107–115. [Google Scholar] [CrossRef]
- Xue, S.; Sasahara, A.; Onishi, H. Atomic-scale topography of rutile TiO2(110) in aqueous solutions: A study involving frequency-modulation atomic force microscopy. J. Chem. Phys. 2020, 152, 054703/1–054703/7. [Google Scholar] [CrossRef] [PubMed]
- Köbl, J.; Wang, T.; Wang, C.; Drost, M.; Tu, F.; Xu, Q.; Ju, H.; Wechsler, D.; Franke, M.; Pan, H. Hungry Porphyrins: Protonation and Self-Metalation of Tetraphenylporphyrin on TiO2(110)-1 × 1. ChemistrySelect 2016, 1, 6103–6105. [Google Scholar] [CrossRef]
- Lavallee, D.K. Complexation and Demetalation Reactions of Porphyrins. Comments Inorg. Chem. 1986, 5, 155–174. [Google Scholar] [CrossRef]
- Lavallee, D.K.; White, A.; Diaz, A.; Battioni, J.-P.; Mansuy, D. Efficient metalloporphyrin synthesis under mild conditions using N-benzylporphyrins. Tetrahedron Lett. 1986, 27, 3521–3524. [Google Scholar] [CrossRef]
- Singh, R.; Geetanjali, K. Novel synthetic methodology for metalloporphyrins in ionic liquid. J. Braz. Chem. Soc. 2005, 16, 666–668. [Google Scholar] [CrossRef] [Green Version]
- Diller, K.; Klappenberger, F.; Marschall, M.; Hermann, K.; Nefedov, A.; Woll, C.; Barth, J.V. Self-metalation of 2H-tetraphenylporphyrin on Cu(111): An x-ray spectroscopy study. J. Chem. Phys. 2012, 136, 014705/1–014705/13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechsler, D.; Franke, M.; Tariq, Q.; Zhang, L.; Lee, T.-L.; Thakur, P.K.; Tsud, N.; Bercha, S.; Prince, K.C.; Steinrück, H.-P. Adsorption Structure of Cobalt Tetraphenylporphyrin on Ag(100). J. Phys. Chem. C 2017, 121, 5667–5674. [Google Scholar] [CrossRef]
- Gottfried, J.M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. [Google Scholar] [CrossRef]
- Fernández, C.C.; Spedalieri, C.; Murgida, D.H.; Williams, F.J. Surface Influence on the Metalation of Porphyrins at the Solid–Liquid Interface. J. Phys. Chem. C 2017, 121, 21324–21332. [Google Scholar] [CrossRef]
- Wechsler, D.; Vensaus, P.; Tsud, N.; Steinrück, H.-P.; Lytken, O.; Williams, F.J. Surface Reactions and Electronic Structure of Carboxylic Acid Porphyrins Adsorbed on TiO2(110). J. Phys. Chem. C 2021, 125, 6708–6715. [Google Scholar] [CrossRef]
- Larson, P.E.; Kelly, M.A. Surface charge neutralization of insulating samples in x-ray photoemission spectroscopy. J. Vac. Sci. Technol. A 1998, 16, 3483–3489. [Google Scholar] [CrossRef]
- Müllner, M.; Balajka, J.; Schmid, M.; Diebold, U.; Mertens, S.F.L. Self-Limiting Adsorption of WO3 Oligomers on Oxide Substrates in Solution. J. Phys. Chem. C 2017, 121, 19743–19750. [Google Scholar] [CrossRef] [Green Version]
- Kern, W.; Puotinen, D.A. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 1970, 31, 187–206. [Google Scholar]
TiO2(110) | MCTPP + TiO2(110) | |||
---|---|---|---|---|
Before Cleaning | Wet-Chemically Cleaned | 1.3 ML MCTPP | 1.0 ML MCTPP | |
Wet-Chemically Prepared | UHV Prepared | |||
Ti | 16.04% | 24.72% | 14.16% | 17.05% |
O | 55.88% | 55.21% | 36.90% | 39.25% |
C | 23.85% | 19.66% | 44.64% | 37.89% |
N | 1.20% | 0.17% | 3.98% | 4.06% |
Zn | 0.12% | <0.03% | <0.05% | <0.02% |
Cu | 0.82% | <0.02% | <0.04% | <0.02% |
Ca | 0.58% | <0.01% | <0.20% | <0.40% |
S | 0.33% | <0.05% | <0.01% | <0.20% |
P | 0.57% | <0.06% | <0.01% | <0.30% |
Si | 0.61% | <0.08% | <0.01% | <0.80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wechsler, D.; Fernández, C.C.; Köbl, J.; Augustin, L.-M.; Stumm, C.; Jux, N.; Steinrück, H.-P.; Williams, F.J.; Lytken, O. Wet-Chemically Prepared Porphyrin Layers on Rutile TiO2(110). Molecules 2021, 26, 2871. https://doi.org/10.3390/molecules26102871
Wechsler D, Fernández CC, Köbl J, Augustin L-M, Stumm C, Jux N, Steinrück H-P, Williams FJ, Lytken O. Wet-Chemically Prepared Porphyrin Layers on Rutile TiO2(110). Molecules. 2021; 26(10):2871. https://doi.org/10.3390/molecules26102871
Chicago/Turabian StyleWechsler, Daniel, Cynthia Carolina Fernández, Julia Köbl, Lisa-Marie Augustin, Corinna Stumm, Norbert Jux, Hans-Peter Steinrück, Federico José Williams, and Ole Lytken. 2021. "Wet-Chemically Prepared Porphyrin Layers on Rutile TiO2(110)" Molecules 26, no. 10: 2871. https://doi.org/10.3390/molecules26102871
APA StyleWechsler, D., Fernández, C. C., Köbl, J., Augustin, L.-M., Stumm, C., Jux, N., Steinrück, H.-P., Williams, F. J., & Lytken, O. (2021). Wet-Chemically Prepared Porphyrin Layers on Rutile TiO2(110). Molecules, 26(10), 2871. https://doi.org/10.3390/molecules26102871