Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Solubility of TRV and Literature Comparison
2.2. Determination of Hansen Solubility Parameters (HSPs)
2.3. Computational/Theoretical Models
2.4. Dissolution Properties
2.5. Enthalpy–Entropy Compensation Evaluation
3. Materials and Methods
3.1. Materials
3.2. Preparation of PG + Water Solvent Mixtures
3.3. Measurement of TRV Solubility
3.4. Determination of HSPs
3.5. Computational/Theoretical Models
3.6. Dissolution Properties
3.7. Enthalpy–Entropy Compensation Evaluation
3.8. Statistical Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sun, X.; Shao, Y.; Yan, W. Measurement and correlation of solubilities of trans-resveratrol in ethanol + water and acetone + water mixed solvents at different temperatures. J. Chem. Eng. Data 2008, 53, 2562–2566. [Google Scholar] [CrossRef]
- Ha, E.S.; Park, H.; Lee, S.K.; Sim, W.Y.; Jiong, J.S.; Kim, M.S. Equilibrium solubility and modeling of trans-resveratrol in dichloromethane and primary alcohol solvent mixtures at different temperatures. J. Mol. Liq. 2020, 311, 113363. [Google Scholar] [CrossRef]
- Babu, S.K.; Kumar, K.V.; Subbaraju, G.V. Estimation of trans-resveratrol in herbal extracts and dosage forms by high-performance thin-layer chromatography. Chem. Pharm. Bull. 2005, 53, 691–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.W.; Bode, A.M.; Dong, Z. Molecular targets of phytochemicals for cancer prevention. Nat. Rev. Cancer 2011, 11, 211–218. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant properties of resveratrol: A structure-activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Mou, S.F.; Chen, X.Q.; Gong, L.L.; Ge, W.S. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF-kB in animal models of acute pharyngitis. Mol. Med. Rep. 2018, 7, 1269–1274. [Google Scholar]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer chemopreventive activity of resveratrol a natural product derived from grapes. Science 1997, 275, 218–220. [Google Scholar]
- Park, C.S.; Lee, Y.C.; Kim, J.D.; Kim, C.H. Inhibitory effects of Polygonum cuspidatum water extract (PCWE) and its component resveratrol [correction of rasveratrol] on acyl-coenzyme A-cholesterol acyltransferase activity for cholesteryl ester synthesis in HepG2 cells. Vasc. Pharmacol. 2004, 40, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Cote, B.; Carlson, L.J.; Rao, D.A.; Alani, A.W.G. Combination of resveratrol and quercetin polymeric micelles mitigates doxorubicin induced cardiotoxicity in vitro and in vivo. J. Control. Release 2015, 213, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.L.; Ganaraja, B.; Joy, T.; Pai, M.M.; Ullal, S.D.; Murlimanju, B.V. Neuroprotective effects of resveratrol in Alzheimer’s disease. Front. Biosci. 2020, 12, 130–149. [Google Scholar]
- Ramírez-Garza, S.L.; Laveriano-Santos, E.P.; Marhuenda-Muñoz, M.; Storniolo, C.E.; Tresserra-Rimbau, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Health effects of resveratrol: Results from human intervention trials. Nutrients 2018, 10, 1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marier, J.F.; Vachon, P.; Gritsas, A.; Zhang, J.; Moreau, J.P.; Ducharme, M.P. Metabolism and disposition of resveratrol in rats: Extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 2002, 302, 369–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, L.; Sorrenti, M.; Bonferoni, M.C.; Hunt, L.; Caira, M.R. Inclusion of the phytoalexin trans-resveratrol in cyclodextrins: A thermal, spectroscopic, and X-ray structural study. Molecules 2020, 25, 998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gartziandia, O.; Lasa, A.; Pedraz, J.L.; Miranda, J.; Portillo, M.P.; Igartua, M.; Hernández, R.M. Preparation and characterization of resveratrol loaded pectin/alginate blend gastro-resistant microparticles. Molecules 2018, 23, 1886. [Google Scholar] [CrossRef] [Green Version]
- Zu, Y.; Zhang, Y.; Wang, W.; Zhao, X.; Han, X.; Wang, K.; Ge, Y. Preparation and in vitro/ in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles. Drug Deliv. 2016, 23, 981–991. [Google Scholar] [CrossRef]
- Ha, E.S.; Sim, W.Y.; Lee, S.K.; Jeong, J.S.; Kim, J.S.; Baek, I.; Choi, D.H.; Park, H.; Hwang, S.J.; Kim, M.S. Preparation and evaluation of resveratrol-loaded composite nanoparticles using a supercritical fluid technology for enhanced oral and skin delivery. Antioxidants 2019, 8, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhakar, N.K.; Matencio, A.; Caldera, F.; Argenziano, M.; Cavalli, R.; Dianzani, C.; Zanetti, M.; López-Nicolás, J.M.; Trotta, F. Comparative evaluation of solubility, cytotoxicity and photostability studies of resveratrol and oxyresveratrol loaded nanosponges. Pharmaceutics 2019, 11, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimojo, A.A.M.; Fernandes, A.R.V.; Ferreira, N.R.E.; Sanchez-Lopez, E.; Santana, M.H.A.; Souto, E.B. Evaluation of the influence of process parameters on the properties of resveratrol-loaded NLC using 22 full factorial design. Antioxidants 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadhav, P.; Bothiraja, C.; Pawar, A. Resveratrol-piperine loadedmixed micelles: Formulation, characterization, bioavailability, safety and in vitro anticancer activity. RSC Adv. 2016, 6, 112795–112805. [Google Scholar] [CrossRef]
- Mamadou, G.; Charrueau, C.; Dairou, J.; Nzouzi, N.L.; Eto, B.; Ponchel, G. Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems. Int. J. Pharm. 2017, 521, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Balata, G.F.; Essa, E.A.; Shamardi, H.A.; Zaidan, S.H.; Abourehab, M.A.S. Self-emulsifying drug delivery system as a tool to improve solubility and bioavailability of resveratrol. Drug Des. Dev. Ther. 2016, 10, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Xiang, S.; Li, X.; Zhou, J.; Kuang, C. Preparation and in vitro performance evaluation of resveratrol for oral self-microemulsion. PLoS ONE 2019, 14, e0214544. [Google Scholar] [CrossRef]
- Kuk, D.H.; Ha, E.S.; Ha, D.H.; Sim, W.Y.; Lee, S.K.; Jeong, J.S.; Kim, J.S.; Baek, I.; Park, H.; Choi, D.H.; et al. Development of a resveratrol nanosuspension using the antisolvent precipitation method without solvent removal, based on a quality by design (QbD) approach. Pharmaceutics 2019, 11, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqarni, M.H.; Haq, N.; Alam, P.; Abdel-Kader, M.S.; Foudah, A.I.; Shakeel, F. Solubility data, Hansen solubility parameters and thermodynamic behavior of pterostilbene in some pure solvents and different (PEG-400 + water) cosolvent compositions. J. Mol. Liq. 2021, 331, 115700. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alanazi, F.K.; Alanazi, S.A.; Alsarra, I.A. Solubility of sinapic acid in various (carbitol + water) systems: Computational modeling and solution thermodynamics. J. Therm. Anal. Calorim. 2020, 142, 1437–1446. [Google Scholar] [CrossRef]
- Sun, X.; Peng, B.; Yan, W. Measurement and correlation of solubility of trans-resveratrol in 11 solvents at T = (278.2, 288.2. 298.2, 308.2, and 318.2) K. J. Chem. Thermodyn. 2008, 40, 735–738. [Google Scholar] [CrossRef]
- Ha, E.S.; Kuk, D.H.; Kim, J.S.; Kim, M.S. Solubility of trans-resveratrol in Transcutol HP + water mixtures at different temperatures and its application to fabrication of nanosuspensions. J. Mol. Liq. 2019, 281, 344–351. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Siddiqui, N.A.; Alanazi, F.K.; Alsarra, I.A. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol + water cosolvent mixtures at different temperatures. Food Chem. 2015, 188, 57–61. [Google Scholar] [CrossRef]
- Jouyban-Gharamaleki, V.; Rahimpour, E.; Hemmati, S.; Martinez, F.; Jouyban, A. Mesalazine solubility in propylene glycol and water mixtures at various temperatures using a laser monitoring technique. J. Mol. Liq. 2020, 299, 112136. [Google Scholar] [CrossRef]
- Osorio, I.M.; Martinez, F.; Delgado, D.R.; Jouyban, A.; Acree, W.E., Jr. Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation and solute volumetric contribution at saturation. J. Mol. Liq. 2020, 297, 111889. [Google Scholar] [CrossRef]
- Kao, Y.T.; Guo, X.; Yang, Y.; Liu, Z.; Hassanali, A.; Song, Q.H.; Wang, L.; Zhong, D. Ultrafast dynamics of nonequilibrium electron transfer in photoinduced redox cycle: Solvent mediation and conformation flexibility. J. Phys. Chem. B 2012, 116, 9130–9140. [Google Scholar] [CrossRef] [Green Version]
- Van Krevelen, D.W.; Te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands; Tokyo, Japan, 2009; p. 189. [Google Scholar]
- Mohammad, M.A.; Alhalaweh, M.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm. 2011, 407, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Kitak, T.; Dumicic, A.; Planinsek, O.; Sibanc, R.; Srcic, S. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules 2015, 20, 21549–21568. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as indictors of miscibility in solid dispersions. J. Pharm. Sci. 1999, 88, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.; Alshehri, S.; Altamimi, M.; Shakeel, F. Solubility determination and three dimensional Hansen solubility parameters of gefitinib in different organic solvents: Experimental and computational approaches. J. Mol. Liq. 2020, 299, 112211. [Google Scholar] [CrossRef]
- Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic and p-toluic acid and magnesium-DL-aspartate in water from T = (278–348) K. J. Chem. Thermodyn. 1999, 31, 85–91. [Google Scholar] [CrossRef]
- Manzurola, E.; Apelblat, A. Solubilities of L-glutamic acid, 3-nitrobenzoic acid, acetylsalicylic, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 2002, 34, 1127–1136. [Google Scholar] [CrossRef]
- Ksiazczak, A.; Moorthi, K.; Nagata, I. Solid_solid transition and solubility of even n-alkanes. Fluid Phase Equilibria 1994, 95, 15–29. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Z.; Yang, E.; Pan, B.; Jiang, J.; Dang, P.; Wei, H. Determination and correlation of solubility and solution thermodynamics of ethenzamide in different pure solvents. Fluid Phase Equilibria 2016, 427, 549–556. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Roseman, T.J. Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs; Yalkowsky, S.H., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1981; pp. 91–134. [Google Scholar]
- Jouyban, A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J. Pharm. Pharm. Sci. 2008, 11, 32–58. [Google Scholar] [CrossRef] [PubMed]
- Sardari, F.; Jouyban, A. Solubility of nifedipine in ethanol + water and propylene glycol + water mixtures at 293.2 to 313.2 K. Ind. Eng. Chem. Res. 2013, 52, 14353–14358. [Google Scholar] [CrossRef]
- Sotomayor, R.G.; Holguín, A.R.; Romdhani, A.; Martínez, F.; Jouyban, A. Solution thermodynamics of piroxicam in some ethanol + water mixtures and correlation with the Jouyban–Acree Model. J. Sol. Chem. 2013, 42, 358–371. [Google Scholar] [CrossRef]
- Ryde, U. A fundamental view of enthalpy-entropy compensation. MedChemComm 2014, 5, 1324–1336. [Google Scholar] [CrossRef] [Green Version]
- Sharp, K. Enthalpy-entropy compensation: Fact or artifact. Protein Sci. 2001, 10, 661–667. [Google Scholar] [CrossRef]
- Pan, A.; Biswas, T.; Rakshit, A.K.; Moulik, S.P. Enthalpy-entropy compensation (EEC) effect: A revisit. J. Phys. Chem. B 2015, 119, 15876–15884. [Google Scholar] [CrossRef]
- Alshehri, S.; Shakeel, F. Solubility determination, various solubility parameters and solution thermodynamics of sunitinib malate in some cosolvents, water and various (Transcutol + water) mixtures. J. Mol. Liq. 2020, 307, 112970. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alsarra, I.A.; Alshehri, S. Solubility, Hansen solubility parameters and thermodynamic behavior of emtricitabine in various (polyethylene glycol-400 + water) mixtures: Computational modeling and thermodynamics. Molecules 2020, 25, 1559. [Google Scholar] [CrossRef] [Green Version]
- Bellissent-Funel, M.C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A.E. Water determines the structure and dynamics of proteins. Chem. Rev. 2016, 116, 7673–7697. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase-solubility techniques. Adv. Anal. Chem. Instrum. 1965, 4, 117–122. [Google Scholar]
- Singh, G.; Pai, R.S. A rapid reversed-phase HPLC method for analysis of trans-resveratrol in PLGA nanoparticulate formulation. ISRN Chromatogr. 2014, 2014, 248635. [Google Scholar] [CrossRef]
- Wan, Y.; He, H.; Huang, Z.; Zhang, P.; Sha, J.; Li, T.; Ren, B. Solubility, thermodynamic modeling and Hansen solubility parameter of 5-norbornene-2,3-dicarboximide in three binary solvents (methanol, ethanol, ethyl acetate + DMF) from 278.15 K to 323.15 K. J. Mol. Liq. 2020, 300, 112097. [Google Scholar] [CrossRef]
- Zhu, Q.N.; Wang, Q.; Hu, Y.B.; Abliz, X. Practical determination of the solubility parameters of 1-alkyl-3-methylimidazolium bromide ([CnC1im]Br, n = 5, 6, 7, 8) ionic liquids by inverse gas chromatography and the Hansen solubility parameter. Molecules 2019, 24, 1346. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, M.; Haq, N.; Alshehri, S.; Qamar, W.; Shakeel, F. Enhanced skin permeation of hydrocortisone using nanoemulsion as potential vehicle. ChemistrySelect 2019, 4, 10084–10091. [Google Scholar] [CrossRef]
- Babaei, M.; Shayanfar, A.; Rahimpour, E.; Barzegar-Jalali, M.; Martínez, F.; Jouyban, A. Solubility of bosentan in {propylene glycol + water} mixtures at various temperatures: Experimental data and mathematical modeling. Phys. Chem. Liq. 2019, 57, 338–348. [Google Scholar] [CrossRef]
- Jouyban, A.; Chan, H.K.; Chew, N.Y.; Khoubnasabiafari, N.; Acree, W.E., Jr. Solubility prediction of paracetamol in binary and ternary solvent mixtures using Jouyban-Acree model. Chem. Pharm. Bull. 2006, 54, 428–431. [Google Scholar] [CrossRef] [Green Version]
- Jouyban, A.; Acree, W.E., Jr. In silico prediction of drug solubility in water-ethanol mixtures using Jouyban-Acree model. J. Pharm. Pharm. Sci. 2006, 9, 262–269. [Google Scholar]
- Ruidiaz, M.A.; Delgado, D.R.; Martínez, F.; Marcus, Y. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilibria 2010, 299, 259–265. [Google Scholar] [CrossRef]
- Krug, R.R.; Hunter, W.G.; Grieger, R.S. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistic effect. J. Phys. Chem. 1976, 80, 2341–2351. [Google Scholar] [CrossRef]
- Holguín, A.R.; Rodríguez, G.A.; Cristancho, D.M.; Delgado, D.R.; Martínez, F. Solution thermodynamics of indomethacin in propylene glycol + water mixtures. Fluid Phase Equilibria 2012, 314, 134–139. [Google Scholar] [CrossRef]
Components | xe | ||||
---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | |
Water | 3.12 × 10−6 | 4.00 × 10−6 | 5.30 × 10−6 | 6.35 × 10−6 | 7.58 × 10−6 |
Methanol | 1.35 × 10−2 | 1.46 × 10−2 | 1.57 × 10−2 | 1.68 × 10−2 | 1.77 × 10−2 |
Ethanol | 1.66 × 10−2 | 1.78 × 10−2 | 1.95 × 10−2 | 2.11 × 10−2 | 2.30 × 10−2 |
n-Propanol | 1.11 × 10−2 | 1.24 × 10−2 | 1.32 × 10−2 | 1.42 × 10−2 | 1.55 × 10−2 |
n-Butanol | 8.37 × 10−3 | 9.64 × 10−3 | 1.06 × 10−2 | 1.18 × 10−2 | 1.28 × 10−2 |
PG | 1.73 × 10−2 | 1.92 × 10−2 | 2.08 × 10−2 | 2.34 × 10−2 | 2.62 × 10−2 |
m | xe | ||||
---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | |
0.1 | 7.35 × 10−6 | 9.40 × 10−6 | 1.25 × 10−5 | 1.50 × 10−5 | 1.79 × 10−5 |
0.2 | 1.77 × 10−5 | 2.24 × 10−5 | 2.81 × 10−5 | 3.32 × 10−5 | 3.91 × 10−5 |
0.3 | 4.20 × 10−5 | 5.12 × 10−5 | 6.43 × 10−5 | 7.50 × 10−5 | 8.80 × 10−5 |
0.4 | 9.88 × 10−5 | 1.23 × 10−4 | 1.48 × 10−4 | 1.77 × 10−4 | 2.04 × 10−4 |
0.5 | 2.40 × 10−4 | 2.81 × 10−4 | 3.410 × 10−4 | 3.96 × 10−4 | 4.54 × 10−4 |
0.6 | 5.56 × 10−4 | 6.55 × 10−4 | 7.65 × 10−4 | 8.87 × 10−4 | 1.03 × 10−3 |
0.7 | 1.35 × 10−3 | 1.54 × 10−3 | 1.79 × 10−3 | 2.03 × 10−3 | 2.33 × 10−3 |
0.8 | 3.13 × 10−3 | 3.57 × 10−3 | 4.04 × 10−3 | 4.58 × 10−3 | 5.20 × 10−3 |
0.9 | 7.41 × 10−3 | 8.30 × 10−3 | 9.19 × 10−3 | 1.05 × 10−2 | 1.20 × 10−2 |
Components | Hansen Solubility Parameters | Ra*/MPa1/2 | /MPa1/2 | ∆δ */MPa1/2 | |||
---|---|---|---|---|---|---|---|
δd/MPa1/2 | δp/MPa1/2 | δh/MPa1/2 | δ/MPa1/2 | ||||
TRV | 20.60 | 7.30 | 15.90 | 27.10 | - | - | - |
Water | 15.50 | 16.00 | 42.30 | 47.80 | 29.60 | 28.26 | 20.70 |
Methanol | 17.40 | 10.60 | 22.40 | 30.30 | 9.70 | 7.96 | 3.20 |
Ethanol | 16.20 | 8.40 | 17.60 | 25.40 | 9.02 | 4.84 | 1.70 |
n-Propanol | 16.00 | 7.00 | 14.70 | 22.90 | 9.28 | 4.76 | 4.20 |
n-Butanol | 15.90 | 6.30 | 15.20 | 22.90 | 9.47 | 4.85 | 4.20 |
PG | 17.40 | 9.10 | 21.70 | 29.20 | 8.82 | 6.86 | 2.10 |
Components | A | B | C | R2 | RMSD (%) | Overall RMSD (%) |
---|---|---|---|---|---|---|
Water | 762.67 | −39195 | −113.01 | 0.9969 | 1.71 | |
Methanol | 152.42 | −8288.9 | −22.620 | 0.9999 | 0.41 | |
Ethanol | −186.16 | 7036.6 | 27.810 | 0.9989 | 0.51 | 0.89 |
n-Propanol | 79.710 | −5141.1 | −11.750 | 0.9935 | 0.93 | |
n-Butanol | 412.24 | −20850 | −60.920 | 0.9990 | 0.91 | |
PG | −287.67 | 11366 | 43.080 | 0.9974 | 0.87 |
m | A | B | C | R2 | RMSD (%) | Overall RMSD (%) |
---|---|---|---|---|---|---|
0.1 | 718.95 | −37178 | −106.37 | 0.9971 | 1.87 | |
0.2 | 629.72 | −32599 | −93.250 | 0.9986 | 1.11 | |
0.3 | 409.21 | −22250.4 | −60.490 | 0.9977 | 1.36 | |
0.4 | 488.56 | −25784 | −72.190 | 0.9999 | 0.87 | |
0.5 | 166.97 | −10657 | −24.490 | 0.9981 | 1.02 | 0.93 |
0.6 | 45.190 | −4886.7 | −6.3700 | 0.9999 | 0.25 | |
0.7 | −122.25 | 3109.0 | 18.460 | 0.9993 | 0.61 | |
0.8 | −82.530 | 1488.6 | 12.590 | 0.9998 | 0.47 | |
0.9 | −368.28 | 14764 | 55.080 | 0.9989 | 0.87 |
Components | a | b | R2 | RMSD (%) | Overall RMSD (%) |
---|---|---|---|---|---|
Water | 1.6000 | −4252.1 | 0.9928 | 2.67 | |
Methanol | 0.03000 | −1290.8 | 0.9980 | 0.52 | |
Ethanol | 1.1000 | −1553.8 | 0.9969 | 1.04 | 1.35 |
n-Propanol | 0.55000 | −1503.3 | 0.9931 | 1.20 | |
n-Butanol | 1.9800 | −2014.7 | 0.9933 | 1.47 | |
PG | 2.4500 | −1943.0 | 0.9940 | 1.23 |
m | a | b | R2 | RMSD (%) | Overall RMSD (%) |
---|---|---|---|---|---|
0.1 | 2.5700 | −4286.5 | 0.9935 | 2.65 | |
0.2 | 1.7000 | −3764.3 | 0.9950 | 1.98 | |
0.3 | 1.8000 | −3541.2 | 0.9961 | 1.76 | |
0.4 | 2.3900 | −3460.7 | 0.9973 | 1.67 | |
0.5 | 1.9700 | −3075.0 | 0.9979 | 1.28 | 1.41 |
0.6 | 2.2500 | −2907.0 | 1.0000 | 0.59 | |
0.7 | 2.0700 | −2589.4 | 0.9990 | 0.53 | |
0.8 | 2.2600 | −2396.0 | 0.9996 | 0.71 | |
0.9 | 2.6300 | −2252.4 | 0.9949 | 1.54 |
m | λ | h | RMSD (%) | Overall RMSD (%) |
---|---|---|---|---|
Water | 5.2900 | 802.97 | 3.14 | |
Methanol | 1.3600 | 946.05 | 1.71 | |
Ethanol | 0.77000 | 1979.1 | 2.12 | 2.37 |
n-Propanol | 1.2300 | 1217.9 | 2.24 | |
n-Butanol | 0.75000 | 2673.7 | 2.58 | |
PG | 0.15000 | 12666 | 2.47 |
Samples | λ | h | RMSD (%) | Overall RMSD (%) |
---|---|---|---|---|
0.1 | 4.3800 | 976.58 | 3.84 | |
0.2 | 4.2800 | 877.56 | 3.12 | |
0.3 | 3.7700 | 939.26 | 2.82 | |
0.4 | 3.0200 | 1142.4 | 2.74 | |
0.5 | 2.7300 | 1124.4 | 2.42 | 2.22 |
0.6 | 2.1400 | 1356.0 | 1.04 | |
0.7 | 1.7300 | 1491.5 | 0.74 | |
0.8 | 1.1800 | 2025.0 | 0.95 | |
0.9 | 0.54000 | 4126.0 | 2.34 |
m | Log xYal | RMSD (%) | Overall RMSD (%) | ||||
---|---|---|---|---|---|---|---|
298.15 | 303.15 | 308.15 | 313.15 | 318.15 | |||
0.1 | −5.13 | −5.02 | −4.91 | −4.84 | −4.76 | 3.06 | |
0.2 | −4.75 | −4.66 | −4.55 | −4.48 | −4.41 | 1.55 | |
0.3 | −4.38 | −4.29 | −4.19 | −4.12 | −4.05 | 0.90 | |
0.4 | −4.00 | −3.92 | −3.83 | −3.77 | −3.70 | 2.80 | |
0.5 | −3.63 | −3.55 | −3.47 | −3.41 | −3.35 | 2.21 | 1.86 |
0.6 | −3.25 | −3.18 | −3.11 | −3.05 | −2.99 | 1.20 | |
0.7 | −2.88 | −2.81 | −2.75 | −2.70 | −2.64 | 2.29 | |
0.8 | −2.50 | −2.45 | −2.39 | −2.34 | −2.28 | 1.10 | |
0.9 | −2.13 | −2.08 | −2.03 | −1.98 | −1.93 | 1.69 |
System | Jouyban–Acree | Jouyban–Acree-Van’t Hoff |
---|---|---|
A1 2.45 | ||
PG + water | Ji 83.20 | B1 −1943.00 |
A2 1.60 | ||
B2 −4252.10 | ||
RMSD (%) | Ji 78.65 | |
0.82 | 0.96 |
Components | ΔsolH0/kJ mol−1 | ΔsolG0/kJ mol−1 | ΔsolS0/J mol−1 K−1 | R2 |
---|---|---|---|---|
Water | 35.39 | 31.24 | 13.47 | 0.9927 |
Methanol | 10.74 | 10.64 | 0.32 | 0.9939 |
Ethanol | 12.93 | 10.07 | 9.27 | 0.9970 |
n-Propanol | 12.51 | 11.06 | 4.69 | 0.9930 |
n-Butanol | 16.77 | 11.65 | 16.60 | 0.9931 |
PG | 16.17 | 9.86 | 20.49 | 0.9941 |
Parameters | m = 0.1 | m = 0.2 | m = 0.3 | m = 0.4 | m = 0.5 | m = 0.6 | m = 0.7 | m = 0.8 | m = 0.9 |
---|---|---|---|---|---|---|---|---|---|
ΔsolH0/kJ mol−1 | 35.68 | 31.33 | 29.48 | 28.81 | 25.60 | 24.20 | 21.55 | 19.94 | 18.75 |
ΔsolG0/kJ mol−1 | 29.04 | 26.93 | 24.81 | 22.62 | 20.50 | 18.39 | 16.21 | 14.11 | 11.97 |
ΔsolS0/J mol−1 K−1 | 21.53 | 14.29 | 15.15 | 20.07 | 16.55 | 18.86 | 17.33 | 18.94 | 22.02 |
R2 | 0.9934 | 0.9948 | 0.9960 | 0.9972 | 0.9979 | 0.9999 | 0.9991 | 0.9997 | 0.9951 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazwani, M.; Alam, P.; Alqarni, M.H.; Yusufoglu, H.S.; Shakeel, F. Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures. Molecules 2021, 26, 3091. https://doi.org/10.3390/molecules26113091
Ghazwani M, Alam P, Alqarni MH, Yusufoglu HS, Shakeel F. Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures. Molecules. 2021; 26(11):3091. https://doi.org/10.3390/molecules26113091
Chicago/Turabian StyleGhazwani, Mohammed, Prawez Alam, Mohammed H. Alqarni, Hasan S. Yusufoglu, and Faiyaz Shakeel. 2021. "Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures" Molecules 26, no. 11: 3091. https://doi.org/10.3390/molecules26113091
APA StyleGhazwani, M., Alam, P., Alqarni, M. H., Yusufoglu, H. S., & Shakeel, F. (2021). Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures. Molecules, 26(11), 3091. https://doi.org/10.3390/molecules26113091