Redox State and Lysosomal Activity in Women with Ovarian Cancer with Tumor Recurrence and Multiorgan Metastasis
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Subjects
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vallée, A.; Lecarpentier, Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical wNT/β-Catenin Pathway in chronic inflammation and oxidative stress during carcinogenesis. Front. Immunol. 2018, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.S.; Brugge, J.S. Cancer: The enemy of my enemy is my friend. Nature 2015, 527, 170–171. [Google Scholar] [CrossRef]
- Lee, B.W.L.; Ghodea, P.; Onga, D.S.T. Redox regulation of cell state and fate. Redox Biol. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Mila-Kierzenkowska, C.; Woźniak, A.; Szpinda, M.; Boraczyński, T.; Woźniak, B.; Rajewski, P.; Sutkowy, P. Effects of thermal stress on the activity of selected lysosomal enzymes in blood of experienced and novice winter swimmers. Scand. J. Clin. Lab. Investig. 2012, 72, 635–641. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Beers Jr, R.F.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef]
- Sergent, O.; Morel, I.; Cogrel, P.; Chevanne, M.; Pasdeloup, N.; Brissot, P.; Lescoat, G.; Cillard, P.; Cillard, J. Simultaneous measurements of conjugated dienes and free malondialdehyde, used as a micromethod for the evaluation of lipid peroxidation in rat hepatocyte cultures. Chem. Phys. Lipids. 1993, 65, 133–139. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [PubMed]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Meth. Enzymol. 1990, 186, 407–421. [Google Scholar]
- Krawczyński, J. Enzymatic diagnostics in practical medicine. In Methods of Investigation; PZWL: Warsaw, Poland, 1972. [Google Scholar]
- Błeszyński, W.; Działoszyński, L.M. Purification of soluble arylsulphatases from ox brain. Biochem. J. 1965, 97, 360–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colowick, S.C.; Kaplan, N.C. Methods in Enzymology, 2nd ed.; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Eriksson, S. Studies in alpha 1-antitrypsin deficiency. Acta Med. Scand. 1965, 432, 1–85. [Google Scholar]
- Valko, M.; Jomova, K.; Rhodes, C.J.; Kuca, K.; Musílek, K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 2016, 90, 1–37. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.N.; Amstad, P.; Cerutti, P.; Baeuerle, P.A. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem. Biol. 1995, 2, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Fabbrini, E.; Serafini, M.; Colic Baric, I.; Hazen, S.L.; Klein, S. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes 2014, 63, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Reuter, S.; Gupta, C.C.; Chaturvedi, M.M.; Aqqurwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.; Kasinathan, C.; Buyske, S.; Manowitz, P. Ethanol decreases rat hepatic arylsulphatase A activity levels. Alcohol Clin. Exp. Res. 2006, 30, 1950–1955. [Google Scholar]
- Johansson, A.C.; Appelqvist, H.; Nilsson, C.; Kågedal, K.; Roberg, K.; Ollinger, K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 2010, 15, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Muniyan, S.; Chaturvedi, N.K.; Dwyer, J.G.; LaGrange, C.A.; Chanez, W.G.; Lin, M.-F. Human prostatic acid phosphatase: Structure, function and regulation. Int. J. Mol. Sci. 2013, 14, 10438–10464. [Google Scholar] [CrossRef] [Green Version]
- Kaija, H. Tartrate Resistant acid Phosphatase: Three Dimensional Structure and Structure Based Functional Studies; Oulu University Press: Oulu, Finland, 2002; pp. 1–61. ISBN 951-42-6775-3. [Google Scholar]
- Sielski, Ł.; Sutkowy, P.; Pawlak-Osińska, K.; Woźniak, A.; Skopowska, A.; Woźniak, B.; Czuczejko, J. The impact of modern therapeutic methods on the oxidant-antioxidant equilibrium and activities of selected lysosomal enzymes and serine protease inhibitor in amateur athletes. Oxid. Med. Cell. Longev. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tsukuba, T.; Okamoto, K.; Yasuda, Y.; Morikawa, W.; Nakanishi, H.; Yamamoto, K. New functional aspects of cathepsin D and cathepsin E. Mol. Cells. 2000, 10, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Boya, P.; Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 2008, 27, 6434–6451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zsila, F. Inhibition of heat-and chemical-induced of various proteins reveals chaperone-like activity of the acute phase component and serine protease inhibitor human α1-antitrypsin. Biochem. Biophys. Res. Commun. 2010, 393, 242–247. [Google Scholar] [CrossRef]
- Feng, Y.-L.; Yin, Y.-X.; Ding, J.; Yuan, H.; Yang, L.; Xu, J.-J.; Hu, L.-Q. Alpha-1-antitrypsin suppresses oxidative stress in preeclampsia by inhibiting the p38MAPK signaling pathway: An in vivo and in vitro study. PLoS ONE 2017, 12, e0173711. [Google Scholar] [CrossRef] [PubMed]
- Marzatico, F.; Gaetani, P.; Tartara, F.; Bertorelli, L.; Feletti, F.; Adinolfi, D.; Tancioni, F.; Rodriguez y Baena, R. Antioxidant status and alpha1-antiproteinase activity in subarachnoid hemorrhage women. Life Sci. 1998, 63, 821–826. [Google Scholar] [CrossRef]
Women with Ovarian Cancer | Healthy Controls | |
---|---|---|
Number of subjects | 15 | 9 |
Age [years] | 59.9 ± 7.8 | 56.3 ± 4.3 |
Body weight [kg] | 76.9 ± 15.6 | 62.3 ± 10.0 |
Body height [cm] | 163.3 ± 7.3 | 161.8 ± 3.4 |
Body mass index [kg/m2] | 28.9 ± 6.1 | 23.8 ± 3.7 |
Women with Cancer (N = 15) | Healthy Controls (N = 9) | |
---|---|---|
Antioxidants and TAC | ||
SOD [10 U/g Hb] | 83.0 ± 17.9 | 78.9 ± 8.6 |
GPx [10–1 U/g Hb] | 61.2 ± 21.4 | 81.6 ± 21.7 |
CAT [IU/g Hb] | 66.0 ± 11.3 | 65.4 ± 10.4 |
Vitamin A [10−2 μg/L] | 98.6 ± 32.9 | 122.7 ± 14.7 |
Vitamin E [μg/L] | 66.9 ± 20.3 | 95.5 ± 20.2 * |
TAC [10−2 mM UAE] | 67.0 ± 16.0 | 57.4 ± 12.9 |
Oxidative stress products | ||
CDpl [10−2 Abs/mL] | 10.6 ± 3.3 | 9.4 ± 2.8 |
CDer [10−2 Abs/g Hb] | 10.1 ± 3.1 | 12.6 ± 3.9 |
TBARSpl [10−2 nmol MDA/mL] | 55.2 ± 12.5 | 49.7 ± 3.4 |
TBARSer [nmol MDA/g Hb] | 27.5 ± 8.7 | 21.5 ± 6.9 |
HNE adducts [10−1 μg/mL] | 6.2 ± 1.9 | 7.6 ± 1.9 |
8-iso-PGF2α [pg/mL] | 62.2 ± 21.5 | 86.0 ± 1.8 * |
Protein carbonyls [10−1 nmol/mg] | 53.5 ± 14.5 | 48.6 ± 13.8 |
Lysosomal enzymes and AAT | ||
AcP [10−4 nmol 4-NP/mg/min] | 9.8 ± 3.1 | 12.0 ± 2.3 |
ASA [10−4 nmol 4-NC/mg/min] | 6.6 ± 1.6 | 9.3 ± 1.9 * |
CTS D [10−2 nmol TYR/mg/min] | 10.6 ± 2.7 | 8.3 ± 2.2 * |
AAT [10−1 mg TR/mL] | 11.4 ± 3.6 | 9.2 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutkowy, P.; Czuczejko, J.; Małkowski, B.; Szewczyk-Golec, K.; Łopatto, R.; Maruszak, M.; Woźniak, A. Redox State and Lysosomal Activity in Women with Ovarian Cancer with Tumor Recurrence and Multiorgan Metastasis. Molecules 2021, 26, 4039. https://doi.org/10.3390/molecules26134039
Sutkowy P, Czuczejko J, Małkowski B, Szewczyk-Golec K, Łopatto R, Maruszak M, Woźniak A. Redox State and Lysosomal Activity in Women with Ovarian Cancer with Tumor Recurrence and Multiorgan Metastasis. Molecules. 2021; 26(13):4039. https://doi.org/10.3390/molecules26134039
Chicago/Turabian StyleSutkowy, Paweł, Jolanta Czuczejko, Bogdan Małkowski, Karolina Szewczyk-Golec, Rita Łopatto, Marta Maruszak, and Alina Woźniak. 2021. "Redox State and Lysosomal Activity in Women with Ovarian Cancer with Tumor Recurrence and Multiorgan Metastasis" Molecules 26, no. 13: 4039. https://doi.org/10.3390/molecules26134039
APA StyleSutkowy, P., Czuczejko, J., Małkowski, B., Szewczyk-Golec, K., Łopatto, R., Maruszak, M., & Woźniak, A. (2021). Redox State and Lysosomal Activity in Women with Ovarian Cancer with Tumor Recurrence and Multiorgan Metastasis. Molecules, 26(13), 4039. https://doi.org/10.3390/molecules26134039