Phosphine Sulfide-Based Bipolar Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Synthese
2.2. Thermal Stability
2.3. Photophysical Properties
2.4. Electrochemical Properties
2.5. Theoretical Investigations
2.6. Device Fabrication and Performance
3. Materials and Methods
3.1. General Methods
3.2. Material Syntheses
3.2.1. Synthesis of (4-(9H-Carbazol-9-yl)phenyl)diphenylphosphine Sulfide (CzPhPS)
3.2.2. Synthesis of Bis(4-(9H-carbazol-9-yl)phenyl)(phenyl)phosphine Sulfide (DCzPhPS)
3.2.3. Synthesis of Tris(4-(9H-carbazol-9-yl)phenyl)phosphine Sulfide (TCzPhPS)
3.3. Device Fabrication and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ma, Y.; Zhang, H.; Shen, J.; Che, C. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. Synth. Met. 1998, 94, 245–248. [Google Scholar] [CrossRef]
- Tang, X.; Cui, L.S.; Li, H.C.; Gillett, A.J.; Auras, F.; Qu, Y.K.; Zhong, C.; Jones, S.T.E.; Jiang, Z.Q.; Friend, R.H.; et al. Highly efficient luminescence from space-confined charge-transfer emitters. Nat. Mater. 2020, 19, 1332–1338. [Google Scholar] [CrossRef]
- Li, T.-Y.; Wu, J.; Wu, Z.-G.; Zheng, Y.-X.; Zuo, J.-L.; Pan, Y. Rational design of phosphorescent iridium(III) complexes for emission color tunability and their applications in OLEDs. Coord. Chem. Rev. 2018, 374, 55–92. [Google Scholar] [CrossRef]
- Yook, K.S.; Lee, J.Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 2014, 26, 4218–4233. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Li, X.; Chen, D.; Wang, Z.; Cai, X.; Chen, D.; Li, Y.; Liu, K.; Cao, Y.; Su, S.-J. Evaporation- and solution-process-feasible highly efficient thianthrene-9,9′,10,10′-tetraoxide-based thermally activated delayed fluorescence emitters with reduced efficiency roll-off. Adv. Mater. 2016, 28, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Tao, Y.; Jin, J.; Dai, Y.; Xian, L.; Wang, J.; Wang, S.; Chen, R.; Zheng, C.; Huang, W. Resonance-driven dynamically bipolar organic semiconductors for high-performance optoelectronic applications. Mater. Horiz. 2020, 7, 3298–3304. [Google Scholar] [CrossRef]
- Su, S.-J.; Sasabe, H.; Takeda, T.; Kido, J. Pyridine-containing bipolar host materials for highly efficient blue phosphorescent OLEDs. Chem. Mater. 2008, 20, 1691–1693. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.-Y.; Zhao, Y.-D.; Cao, Y.-C. Recent advancements of high efficient donor-acceptor type blue small molecule applied for OLEDs. Mater. Today 2017, 20, 258–266. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Hang, X.-C.; Xue, Q.; Xie, G.; Zhang, C.; Qin, T.; Sun, Z.; Chen, Z.-K.; Huang, W. Phenylquinoline fused cyclic derivatives as electron acceptors of exciplex forming hosts for solution-processable red phosphorescent OLEDs. J. Mater. Chem. C 2018, 6, 8035–8041. [Google Scholar] [CrossRef]
- Jang, H.J.; Braveenth, R.; Raagulan, K.; Choi, S.Y.; Park, Y.H.; Oh, S.B.; Bae, I.-J.; Kim, B.M.; Wu, Q.; Kim, M.; et al. Dibenzothiophene dioxide-benzofuro carbazole based bipolar host material for yellow and red phosphorescent OLEDs. Dyes Pigm. 2020, 182, 108697. [Google Scholar] [CrossRef]
- Tian, Q.S.; Yuan, S.; Shen, W.S.; Zhang, Y.L.; Wang, X.Q.; Kong, F.C.; Liao, L.S. Multichannel effect of triplet excitons for highly efficient green and red phosphorescent OLEDs. Adv. Opt. Mater. 2020, 8, 2000556. [Google Scholar] [CrossRef]
- Su, S.-J.; Cai, C.; Kido, J. Three-carbazole-armed host materials with various cores for RGB phosphorescent organic light-emitting diodes. J. Mater. Chem. 2012, 22, 3447–3456. [Google Scholar] [CrossRef]
- Wang, Y.; Yun, J.H.; Wang, L.; Lee, J.Y. High triplet energy hosts for blue organic light-emitting diodes. Adv. Funct. Mater. 2020, 31, 2008332. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Zhi, Y.; Wang, J.; Tang, L.; Tao, Y.; Xie, G.; Zheng, C.; Huang, W.; Chen, R. Multiple σ-π conjugated molecules with selectively enhanced electrical performance for efficient solution-processed blue electrophosphorescence. Adv. Opt. Mater. 2019, 7, 1901124. [Google Scholar] [CrossRef]
- Jin, J.; Tao, Y.; Jiang, H.; Chen, R.; Xie, G.; Xue, Q.; Tao, C.; Jin, L.; Zheng, C.; Huang, W. Star-shaped boron-containing asymmetric host materials for solution-processable phosphorescent organic light-emitting diodes. Adv. Sci. 2018, 5, 1800292. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Li, X.; Xie, G.; Chen, D.; Wang, Y.-F.; Lo, C.-C.; Lien, A.; Peng, J.; Cao, Y.; et al. Highly efficient spiro[fluorene-9,9′-thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes. Chem. Mater. 2015, 27, 1100–1109. [Google Scholar] [CrossRef]
- Xie, G.; Chen, D.; Li, X.; Cai, X.; Li, Y.; Chen, D.; Liu, K.; Zhang, Q.; Cao, Y.; Su, S.-J. Polarity-tunable host materials and their applications in thermally activated delayed fluorescence organic light-emitting diodes. ACS Appl. Mater. Interfaces 2016, 8, 27920–27930. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, G.; Chang, Q.; Liu, X.; Liu, Y.; Wang, L.; Liu, Z.; Bian, Z.; Liu, W.; Huang, C. Carbazolylphosphines and carbazolylphosphine oxides: Facilely synthesized host materials with tunable mobilities and high triplet energy levels for blue phosphorescent OLEDs. J. Mater. Chem. C 2017, 5, 7344–7351. [Google Scholar] [CrossRef]
- Han, C.; Zhu, L.; Li, J.; Zhao, F.; Zhang, Z.; Xu, H.; Deng, Z.; Ma, D.; Yan, P. Highly efficient multifluorenyl host materials with unsymmetrical molecular configurations and localized triplet states for green and red phosphorescent devices. Adv. Mater. 2014, 26, 7070–7077. [Google Scholar] [CrossRef]
- Tao, Y.; Xiao, J.; Zheng, C.; Zhang, Z.; Yan, M.; Chen, R.; Zhou, X.; Li, H.; An, Z.; Wang, Z.; et al. Dynamically adaptive characteristics of resonance variation for selectively enhancing electrical performance of organic semiconductors. Angew. Chem. Int. Ed. 2013, 52, 10491–10495. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhang, Z.; Xu, H.; Li, J.; Xie, G.; Chen, R.; Zhao, Y.; Huang, W. Controllably tuning excited-state energy in ternary hosts for ultralow-voltage-driven blue electrophosphorescence. Angew. Chem. Int. Ed. 2012, 51, 10104–10108. [Google Scholar] [CrossRef]
- Han, C.; Zhang, J.; Ma, P.; Yang, W.; Xu, H. Host engineering based on multiple phosphorylation for efficient blue and white TADF organic light-emitting diodes. Chem. Eng. J. 2021, 405, 126986. [Google Scholar] [CrossRef]
- Song, X.; Xu, H. Pure-organic phosphine oxide luminescent materials. J. Inf. Disp. 2020, 21, 149–172. [Google Scholar] [CrossRef]
- Wada, A.; Yasuda, T.; Zhang, Q.; Yang, Y.S.; Takasu, I.; Enomoto, S.; Adachi, C. A host material consisting of a phosphinic amide directly linked donor-acceptor structure for efficient blue phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2013, 1, 2404–2407. [Google Scholar] [CrossRef]
- Tao, Y.; Xu, L.; Zhang, Z.; Chen, R.; Li, H.; Xu, H.; Zheng, C.; Huang, W. Achieving optimal self-adaptivity for dynamic tuning of organic semiconductors through resonance engineering. J. Am. Chem. Soc. 2016, 138, 9655–9662. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tao, Y.; Zhi, Y.; Chen, R.; Li, H.; Xing, G.; Xu, S.; Huang, W. Evoking non-bonding S-π interaction by aryl phosphine sulfide for selectively enhanced electronic property of organic semiconductors. Chem. Eng. J. 2020, 380, 122562. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, R.; Li, H.; Yuan, J.; Wan, Y.; Jiang, H.; Chen, C.; Si, Y.; Zheng, C.; Yang, B.; et al. Resonance-activated spin-flipping for efficient organic ultralong room-temperature phosphorescence. Adv. Mater. 2018, 30, 1803856. [Google Scholar] [CrossRef]
- Yook, K.S.; Lee, J.Y. Organic materials for deep blue phosphorescent organic light-emitting diodes. Adv. Mater. 2012, 24, 3169–3190. [Google Scholar] [CrossRef]
- Cardona, C.M.; Li, W.; Kaifer, A.E.; Stockdale, D.; Bazan, G.C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 2011, 23, 2367–2371. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jin, J.; Xiang, Y.; Zhang, Y.; Tao, Y.; Li, M.; Xue, Q.; Xie, G.; Huang, W.; Chen, R. Resonance hosts for high efficiency solution-processed blue and white electrophosphorescent devices. Sci. China Chem. 2020, 63, 1645–1651. [Google Scholar] [CrossRef]
- Li, X.L.; Xie, G.; Liu, M.; Chen, D.; Cai, X.; Peng, J.; Cao, Y.; Su, S.-J. High-efficiency WOLEDs with high color-rendering index based on a chromaticity-adjustable yellow thermally activated delayed fluorescence emitter. Adv. Mater. 2016, 28, 4614–4619. [Google Scholar] [CrossRef]
- Chaskar, A.; Chen, H.-F.; Wong, K.-T. Bipolar host materials: A chemical approach for highly efficient electrophosphorescent devices. Adv. Mater. 2011, 23, 3876–3895. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Ma, Z.; Ding, J.; Wang, L.; Jing, X.; Wang, F. Solution-processible 2,2′-dimethyl-biphenyl cored carbazole dendrimers as universal hosts for efficient blue, green, and red phosphorescent OLEDs. Adv. Funct. Mater. 2014, 24, 3413–3421. [Google Scholar] [CrossRef]
- Liu, D.; Wang, F.; Yao, R. Molecular evolution of host materials by regular tuning N/P ratio for high-performance phosphorescence organic light-emitting. J. Mater. Chem. C 2018, 6, 7839–7846. [Google Scholar] [CrossRef]
- Oner, S.; Aydemir, M.; Yesil, F.; Sahin, C.; Varlikli, C. Synthesis, photophysical and electrochemical properties of novel carbazole-triazine based high triplet energy, solution-processable materials. Dyes Pigm. 2018, 159, 92–99. [Google Scholar] [CrossRef]
Comp. | Td [a]/Tm [b] (°C) | λabs [c] (nm) | λem [c] (nm) | PLQY [d] (%) | Lifetime [d] (ns) | HOMO (eV) Meas. [e]/ Calcd [f] | LUMO (eV) Meas. [g]/ Calcd [f] | Eg (eV) Meas. [h]/ Calcd [f] | ET (eV) Meas. [i]/ Calcd [f] |
---|---|---|---|---|---|---|---|---|---|
CzPhPS | 366/209 | 298, 332, 343 | 378 | 24 | 2.11 | −5.71/−5.49 | −2.29/−1.12 | 3.43/4.37 | 3.00/2.98 |
DCzPhPS | 447/264 | 298, 335, 343 | 381 | 20 | 1.99 | −5.70/−5.52 | −2.28/−1.23 | 3.42/4.29 | 3.01/2.98 |
TCzPhPS | 479/377 | 298, 335, 344 | 380 | 22 | 2.06 | −5.74/−5.56 | −2.34/−1.29 | 3.38/4.27 | 3.01/2.99 |
Device | Host | Von [a] (°C) | λ [b] (nm) | Luminance [c] (cd m−2) | CE [d] (cd A−1) | PE [e] (lm W−1) | EQE [f] (%) |
---|---|---|---|---|---|---|---|
A | CzPhPS | 3.1 | 472 | 17,223 | 36.7 | 37.5 | 17.5 |
B | DCzPhPS | 3.4 | 472 | 17,176 | 32.3 | 29.8 | 16.1 |
C | TCzPhPS | 3.4 | 476 | 12,500 | 15.4 | 14.2 | 7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, G.; Wang, J.; Cao, Y.; Xue, X.; Zhang, X.; Liu, C.; Li, H.; Tao, Y.; Chen, R. Phosphine Sulfide-Based Bipolar Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes. Molecules 2021, 26, 4079. https://doi.org/10.3390/molecules26134079
Xie G, Wang J, Cao Y, Xue X, Zhang X, Liu C, Li H, Tao Y, Chen R. Phosphine Sulfide-Based Bipolar Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes. Molecules. 2021; 26(13):4079. https://doi.org/10.3390/molecules26134079
Chicago/Turabian StyleXie, Gaozhan, Jiangchao Wang, Yang Cao, Xudong Xue, Xiao Zhang, Chang Liu, Huanhuan Li, Ye Tao, and Runfeng Chen. 2021. "Phosphine Sulfide-Based Bipolar Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes" Molecules 26, no. 13: 4079. https://doi.org/10.3390/molecules26134079
APA StyleXie, G., Wang, J., Cao, Y., Xue, X., Zhang, X., Liu, C., Li, H., Tao, Y., & Chen, R. (2021). Phosphine Sulfide-Based Bipolar Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes. Molecules, 26(13), 4079. https://doi.org/10.3390/molecules26134079