Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations
Abstract
:1. Introduction
2. Results
2.1. Literature Analysis
2.2. Capillary Zone Electrophoresis
2.2.1. Separation in CZE
2.2.2. Detection Sensitivity
2.2.3. Sample Pretreatment Techniques in CZE
2.2.4. Time of Analysis
2.2.5. CE or HPLC?
2.2.6. Interactions between Analytes and Additives to the BGE
2.2.7. Field of Application
Sample | Analytes | BGE | Detection | LOQ (µg mL−1) | Remarks | Ref. |
---|---|---|---|---|---|---|
“samgiumgagambang” (SGMX) | 5–hydroxymethyl-furaldehyde, geniposidic acid, chlorogenic acid, paeoniflorin, 20–hydroxyecdysone, coptisine, berberine, luteolin and glycyrrhizic acid | 70 mM borate buffer containing 10% methanol (pH 9.5) | UV (230 nm) | 5.0–100.0 | no significant difference between HPLC and CE results | [10] |
12 herbal preparations used for the treatment of diabetes | metformin, chlorpropamide, glibenclamide and gliclazide | sodium acetate 20 mM L−1 (pH 10.0) | CM | 3.21, 2.01, 4.46 and 5.77 | determination of hypoglycemics as adulterants | [7] |
26 herbal formulations | furosemide, hydrochlorothiazide, chlorthalidone, amiloride, phenolphthalein, amfepramone, fluoxetine and paroxetine | phosphate buffer (pH 9.2) | CM | 5.14–11.01 mg/kg | determination of adulterants in herbal formulations for weight loss | [9] |
7 Aloe plant species, 10 Aloe pharmaceutical preparations | aloin A and B | 20.0 mM borate buffer with 50 mM SDS and 10 mM β–CD (pH 9.3) | LIF | 0.025 | microchip capillary electrophoresis (MCE) | [22] |
Abelia triflora extract | scutellarein and caffeic acid | 40 mM borax buffer (pH 9.2) | UV (200 nm) | 2.5 | [45] | |
Aconite radix | aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine and benzoylhypaconine | 200 mM Tris, 150 mM perchloric acid and 40% 1,4–dioxane (pH 7.8) | UV (214 nm) | 0.14, 0.13, 0.14, 0.14, 0.13 and 0.15 | LOD/LOQ ng mL−1 | [24] |
Aconitum carmichaeli (Aconiti radix: Chinese name: chuanwu) | aconitine, mesaconitine and hypaconitine | 25 mM borax– 20 mM 1–ethyl–3–methylimidazo–lium tetrafluoroborate (pH 9.15) | ECL | 5.62 × 10−8, 2.78 × 10−8, 3.50 × 10−9 mol L−1 0.036, 0.018 and 0.002 | LOD/LOQ ng mL−1 | [46] |
Aesculus hippocastanum (dry, hydro-alcoholic and hydroglycolic extracts) | β–escin | 25 mmol L−1 bicarbonate–carbonate buffer (pH 10.3) | UV (226 nm) | 38760 | [47] | |
Aesculus hippocastanum L., Cichorium intybus L., Melilotus officinalis L. and Juniperus communis L. “Pendula” | aesculin, aesculetin, umbelliferone, dihydrocoumarin | 20 mM borax in 5% methanol (pH 10.1) | UV (194 and 206 nm) | 0.4–2.5 ppm | [48] | |
Areca nut | arecoline (methyl–1,2,5,6–tetrahydro–1–methylnicotinate) | 20 mmol L−1 phosphate with 10 mmol L−1 BMImBF4 buffer (pH 7.50) | ECL | 0.00077 | LOD/LOQ pg mL−1 | [23] |
Belamcandae rhizoma | tectoridin and irigenin | borate buffer (pH 9.8) | AM | nd, LOD: 0.111 and 0.076 | detection electrode based on the composite of carbon nanotubes and polylactic acid | [27] |
Bergeniae rhizoma | arbutin and bergenin | 50 mM borate buffer (pH 9.2) | AM | 0.057 and 0.076 | carbon nanotube–epoxy composite electrode | [28] |
Cacumen platycladi | rutin, quercitrin, kaempferol and quercetin | 50 mM sodium borate buffer (pH 9.2) | AM | 0.110, 0.085, 0.063, 0.070 | a fabricated graphene/poly(ethylene–co–vinyl acetate) composite electrode | [29] |
Camptotheca acuminata (Camptotheca bark and fruit) | camptothecin alkaloids (CPT, 9–ACPT 9–MCPT HCPT, 7–EHCPT) | 25 mM borate buffer containing 20 mM Sulfobutylether–β–CD and 20 mM ionic liquid [EMIM] [L–Lac] (pH 9.0) | UV (254 nm) | 0.00020–0.00078 | Large-volume sample stacking | [49] |
Cassia tora (Cassiae semen and Cassia seed tea) | physcion, aloe–emodin, chrysophanol, emodin, aurantio–obtusin, rhein | 10 mM Na2HPO4 and 6 mM Na3PO4 15% methanol (v/v) (pH 11.8) | UV (254 nm) | 1.11–4.67 | an accelerated solvent extraction procedure | [50] |
Catha edulis | cathinone, cathine, and phenylpropanolamine | 25 mM TRIS phosphate buffer (pH 2.5) | UV (210 nm) | 0.4 | [51] | |
Chamomile and linden flower extracts | apigetrin, naringin, naringenin, catechin, galangin, apigenin, luteolin, quercetin, myricetin, kaempferol and kaempferide | 40 mM borate buffer (pH 8.9) | UV (210 nm) | 0.252–2.142 | [52] | |
Chelidonium majus L | protopine, chelidonine, coptisine, sanguinarine, allocryptopine, chelerythrine, and stylopine | 20 mM phosphate buffer (pH 3.1) | UV–LEDIF | 0.06–5.5 | [53] | |
Chuanxiong rhizoma (Ligusticum wallichii) | vanillin, ferulic acid, vanillic acid, caffeic acid and protocatechuic acid | 50 mM borate buffer (pH 9.2) | AM | nd | carbon nanotube (CNT)–polydimethylsiloxane (PDMS) composite electrode | [54] |
Combretum aculeatum extracts | punicalagin | 25 mM, phosphate buffer (pH 7.4) | UV (280 nm) | 60 ppm | [55] | |
Connarus perrottetii var. angustifolius (aqueous infusions, ethanolic extracts and butanolic extracts) | catechin and rutin | 20 mM borate buffer containing 15% methanol (v/v), (pH 9.2) | UV (230 nm) | 0.97 and 2.46 | [56] | |
Coptidis rhizoma and berberine hydrochloride tablets | berberine | 10 mM L−1 PBS (pH 7.81) | ECL | 0.005 | LOD/LOQ ng mL−1 | [34] |
Coreopsis tinctoria Nutt. | taxifolin–7–O–glucoside, flavanomarein, quercetagetin–7–O–glucoside, okanin 4′–O–glucoside, okanin and chlorogenic acid | 50 mM borate buffer containing 15% acetonitrile (pH 9.0) | UV (280) | 2.34–12.94 | [57] | |
Daturae flos | atropine, scopolamine, and anisodamine | 40 mM phosphate buffer containing 20% v/v methanol and 30% v/v acetonitrile (pH 7.0) | UV (196 nm) | 0.50 (LOD) | capillary coated by graphene oxide | [58] |
Duyiwei capsule and dried crude drug of Lamiophlomis rotata | 8–O–acetylshanzhiside methylester and 8–deoxyshanzhiside, apigenin, quercetin and luteolin | 10 mM sodium tetraborate–20 mM NaH2PO4–15% (v/v)methanol (pH 8.5) | UV (238 nm) | nd, nd, LOD: 2.6–9.2 | [59] | |
Echium vulgare L. and Echium russicum L. radix | shikonin and rosmarinic acid | 50 mM borate buffer (pH 9.5) | UV (218 and 202 nm) | nd, LOD: 0.603 and 0.270 ppm | [60] | |
Ephedra sinica herba | ephedrine and pseudoephedrine | 80 mM of NaH2PO4, 15 mM of β–CD and 0.3% of hydroxypropyl methyl–cellulose (pH 3.0) | UV (214 nm) | nd, LOD: 0.7 and 0.6 | Field-Amplified Sample Injection | [31] |
Epilobium parviflorum extracts | caffeic acid, cinnamic acid, p–coumaric acid, ferulic acid, protocatechuic acid, syringic acid and vanilic acid | 200 mM borate buffer with 37.5% methanol, 0.001% hexadimethrine bromide, and 15 mM 2–hydroxypropyl–β–CD (pH 9.2) | UV (214 nm) | 0.032–0.094 | On-line transient isotachophoretic preconcentration | [20] |
Epimedii herba (Yin–Yang–Huo) | epimedin C, icariin, diphylloside A, epimedoside A and icarisoside A | 30 mM borate buffer containing 40% methanol (pH 9.5) | UV (270 nm) | 3.0, 2.0, 4.0, 2.0 and 3.0 | coupled with SPE | [61] |
Fengshi Maqian tablets and Yaotongning capsules | strychnine and brucine | 75 mM phosphate buffer with 30% methanol (v/v) (pH 2.5) | UV (203 nm) | 0.01 | sample preconcentration method by two-step stacking | [62] |
Forsythia suspensa | galacturonic acid and glucuronic acid | 130 mM sodium hydroxide, 36 mM disodium hydrogen phosphate dihydrate and 0.5 mM cetyltrimethylammonium bromide (pH 12.28) | UV (270 nm) | 10.68 and 12.64 | reversed electroosmotic flow (EOF) to improve separation of neutral sugars | [63] |
Forsythia suspensa fructus and commercial extracts | phillyrin, phillygenin, epipinoresinol–4–O–β–glucoside, pinoresinol–4–O–β–glucoside, lariciresinol, pinoresinol, isolariciresinol and vladinol D | 40 mM borate buffer containing 2 mM β–CD and 5% methanol (v/v) (pH 10.30) | UV (234 nm) | 3.00–4.38 | [21] | |
Forsythiae suspensae fructus | oleanolic acid, ursolic acid and betulinic acid | 50.0 mM L−1 borax and 0.5 mM L−1 β–cyclodextrin (β–CD) (pH 9.5) | UV (200 nm) | 4.8, 4.6 and 5.9 | [30] | |
Fritillariae Thunbergii bulbus (chloroform extracts) | peimine and peiminine | 66% MeOH–ACN (1:1, v/v), 34% aqueous buffer containing 15 mM NaH2PO4, 2.5 mM NED, 4 mM H3PO4 (pH 3.0) | UV (214 nm) | nd., LOD: 3.9 and 4.1 | NED as the UV absorbing probe | [64] |
Garcinia cambogia (fruit rinds) and Hibiscus sabdariffa (calyx) | sodium salts of (1S,2R)–hydroxycitric and (1S,2S)–hydroxycitric acids | 50 mM sodium phosphate buffer (pH 7.0) | UV (193 nm) | 32.89–68.52 | [65] | |
Geranii herba | rutin, hyperin, kaempferol, corilagin, geraniin, gallic acid, and protocatechuic acid | 50 mM borate buffer (pH 9.2) | AM | nd, LOD: 30.9–682.8 | graphene/poly(methyl methacrylate) composite electrode as a sensitive amperometric detector | [66] |
Ginkgo biloba extract and rutin tablet, | epicatechin, rutin, and quercetin | 10.0 mM borate and 0.5 mM luminol (pH 8.5) | CL | 6 × 10−7, 5 × 10−7 and 1 × 10−6 | ultrasensitive determination | [67] |
Glycyrrhiza uralensis Fisch radix | glycyrrhetinic acid and glycyrrhizic acid | 10 mM borate buffer (pH 8.8) | UV (268 nm) | 6.2 and 6.9 | On-line extraction coupled with flow injection and CE | [68] |
Guan–Xin–Ning (GXN) injection | caffeic acid, danshensu, ferulic acid, isoferulic acid, salvianolic acid A, salvianolic acid B, tertamethylpyrazine | 35 mM SDS and 45 mM borate solution (pH 9.3) | UV (212 nm) | 1.5–4.90 | [44] | |
Hippophae rhamnoides extract and Cerutin® tablets | quercetin and rutin | 40 mM L−1 borax (pH 9.2) | EC | 0.475 and 0.726 | hot platinum microelectrodes, flow injection analysis | [33] |
Houttuyniae herba | rutin, isoquercitrin, quercitrin, and chlorogenic | 50 mM borate buffer (pH 9.2) | AM | 41.4, 31.8, 38.2 and 65.6 | graphene/polystyrene composite electrode for amperometric detection | [69] |
Hypericum perforatum and Hypericum annulatum | chlorogenic acid, epicatechin, hyperoside, rutin, quercitrin and quercetin | 40 mM borate buffer, 50 mM SDS and 12% acetonitrile | UV (348, 208, 370, 370 and 318) | 4.960–9.458 ppm | Non-significant differences between CE and HPLC | [35] |
Isatidis radix | benzoic acid, salicylic acid and ortho–aminobenzoic acid | 20 mM borate and 30 mM sodium dodecyl sulfate buffer containing 2 mMb–CD and 4%methanol (v/v), (pH 9.8) | UV (250 nm) | nd, LOD–800 | [70] | |
Komplex Kurkumin® (curcumin 375 mg, demethoxycurcumin 100 mg and bisdemethoxycurcumin 25 mg) | curcumin, demethoxycurcumin and bisdemethoxycurcumin | 50 mM/ L CAPS, 100 mg mL−1 of HP–β–CD and2 gL−1 of HEC | UV–VIS (480 nm) | 5.30, 4.57 and 6.20 | unconventional hydrodynamically closed CE systems | [71] |
Lam– iophlomis rotate and Cistanche | homovanillyl alcohol, hydroxytyrosol, 3,4–dimethoxycinnamic acid, and caffeic acid | 50 mM borate–100 mM phosphate buffer in addition to 5.0 mM L−1 β–CD (pH 9.48) | UV (290 nm) | nd, LOD: 0.0051–0.029 | [72] | |
Lycoridis radiatae bulbus | galanthamine | 18 mmol L−1 phosphate buffer (pH 9.0) | ECL | nd, LOD: 0.00025 | [73] | |
Lycoris radiata | galanthamine, homolycorine, lycorenine and tazetteine | 10.0 mmol L−1 PBS (pH 8.0) | ECL | nd, LOD: 0.014, 0.011, 0.0018 and 0.0031 | Ultrasonic-assisted extraction | [74] |
Lysium chinensis folium | mannitol, sucrose, glucose, and fructose | 50 mM NaOH | AM | 0.120, 0.394, 0.126 and 0.155 | Far-infrared-assisted extraction | [75] |
Macleaya cordata and Chelidonium majus extracts | chelerythrine and sanguinarine | 40 mM ammonium acetate–acetic acid–water buffer containing 50% (v/v) formamide (pH 2.90) | LIF | nd, LOD: 5.0 and 0.002 | microchip electrophoresis | [76] |
Magnolia officinalis and Huoxiang Zhengqi Liquid. | honokiol and magnolol | 16 mmol L−1 sodium tetraborate, 11% methanol (pH 10.0) | UV (210 nm) | 1670 and 830 | [77] | |
Origanum vulgare and Romanian propolis | resveratrol, pinostrobin, acacetin, chrysin, rutin, naringenin, isoquercitrin, umbelliferone, cinnamic acid, chlorogenic acid, galangin, sinapic acid, syringic acid, ferulic acid, kaempferol, luteolin, coumaric acid, quercetin, rosmarinic acid and caffeic acid | 45 mM borate buffer with 0.9 mM sodium dodecyl sulfate (pH = 9.35) | UV (280 nm) | 0.07–5.77 | [78] | |
Orthosiphon stamineus Benth. | rutin, carnosolic acid, caffeic acid, rosmarinic acid, quercetin, luteolin, apigenin and cinnamnic acid | 50 mM borate buffer (pH 9.0) | UV (200 nm) | 0.053, 0.053, 0.046, 0.040, 0.040, 0.030, 0.023 and 0.020 | large volume sample stacking with polarity switching | [32] |
Peganum harmala semen infusions | harmine, harmaline, harmol, harmalol, harmane, and norharmane | 50 mM tris–HCl (pH 7.8) with 20% (v/v) of methanol | UV (254 nm) | 0.1–8.3 | [79] | |
Penicillium glaucum, P. tenuifolium, P. dubium and P. fugax fruits | morphine, codeine and thebaine | 100 mM sodium phosphate buffer, containing 5 mM α–CD (pH 3.0) | UV (214) | 2.0 | Ultrasound-assisted extraction | [80] |
Phellodendri chinensis cortex | berberine, palmatine and jatrorrhizine | 20 mM phosphate buffer with methanol 10% (v/v), (pH 7.0) | UV | 0.3 | imprinted solid-phase microextraction | [81] |
Pholia magra (Cordia ecalyculata vell, 500 mg/capsule), Persea americana and Cyperus rotundus | NH4+, K+, Ca2+,Na+, Mg2+, Mn2+, Tl3+, Cr3+, Pb2+, Cd2+, Zn2+,Cu2+, Co2+, and Ni2+ | 30 mM 2–N–MES /histidine, 1.5 mM 18–crown–6 ether, and 1 mM citric acid (pH 6.0) | C4D | 0.093, 0.182, 0.405, 0.475, 0.077, 0.170, 1.478, 0.988, 2.008, 1.749, 0.454, 1.193, 0.817 and 0.632 | [82] | |
Phyllanthus urinaria | rutin, quercetin, ferulic acid, caffeic acid, and gallic acid | 10 mM borate buffer (pH 9.0) | AM | nd, LOD–3.36, 0.45, 0.097, 0.072 and 1.00 | [83] | |
Plumula nelumbinis | neferine, liensinine, isoliensinine, rutin and hyperoside | 50 mM borate buffer (pH 9.2) | AM | 0.42, 0.31, 0.38, 0.35 and 0.39 | far infrared-assisted solvent removal | [84] |
Portulaca oleracea L., Crataegus pinnatifida and Aloe vera L. | linolenic acid, lauric acid, p–coumaric acid, ascorbic acid, benzoic acid, caffeic acid, succinic acid, and fumaric acid | 40 mM H3BO3–40 mM Na2B4O7 (pH 8.70) | UV (200 nm) | nd, LOD: 0.02–3.44 | field enhancement sample stacking for | [85] |
propolis | pinocembrine; ferulic acid; p–coumaric acid; quercetin; and caffeic acid | 100 mM borate buffer (pH = 8.7) | EC | nd, LOD: 0.1–0.5 | [13] | |
Puerariae radix | 3′-methoxypuerarin, puerarin, 3′-hydroxypuerarin, ononin, daidzin, daid–zein and genistin | 35 mM sodium tetraborate, 9.0 mM sulfobutylether-β-CD α-cyclodextrin (pH9.34) | UV (254 nm) | 2.5–9.5 | [86] | |
Reduning injection | caffeic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, chlorogenic acid, neochlorogenic acid and cryptochlorogenic acid | 20 mM NaH2PO4, 10 mM β–CD and 5% ACN (pH 4.2) | UV (325 nm) | 0.8–1.5 | DPPH–CE–DAD | [87] |
Rhodiola | salidroside and tyrosol | 50 mM borate buffer (pH 9.8) | AM | LOD: 0.72 and 0.39 | a novel graphene/poly(urea– formaldehyde) composite modified electrode as a sensitive amperometric detector | [88] |
Rourea minor stems | bergenin derivatives and catechins (new natural products) | 30 mM borax solution with (pH 10.5) | UV (205 nm) | 6.2–18.8 | [89] | |
Salvia miltiorrhiza, S. przewalskii, S. castanea and Danshen | protocatechuic aldehyde, salvianolic acid C, rosmarinic acid, salvianolic acid A, danshensu, salvianolic acid B and protocatechuic acid | 20 mM sodium tetraborate (pH 9.0) | UV (280 nm) | 0.47–1.19 | [90] | |
Sappan Lignum (the dried heartwood of Caesalpinia sappan L,methanolic extract) | brazilin and protosappanin B | 20 mM borate buffer containing 6% v/v of methanol (pH 9.2) | UV (254 nm) | 0.28 and 0.15 | online concentration with acid barrage stacking | [91] |
Scutellariae barbata extract | baicalein, baicalin, and quercetin | 0.1 M borate buffer (pH 9.0) | EC | < 0.22 | [92] | |
Shuxuening Injection | clitorin, rutin, isoquercitrin, quercetin–3–O–d–glucosyl]–(1–2)–l–rhamnoside, kaempferol–3–O–rutinoside, kaempferol–7–O–β–d–glucopyranoside, apigenin–7–O–Glucoside, quercetin–3–O–[2–O–(6–O–p–hydroxyl–E–coumaroyl)–d–glucosyl]–(1–2)–l–rhamnoside, 3–O–{2–O–[6–O–(p–hydroxyl–E–coumaroyl)–glucosyl]}–(1–2) rhamnosyl kaempfero | 20 mM phosphate 5 mM β–cyclodextrin (β–CD), 40 mM sodium dodecyl sulfate and 7.5% ACN (pH 7.0) | UV–VIS (360 and 405 nm) | 0.04–0.09 | On-line 2,2′–Azinobis–(3–ethylbenzthiazoline–6–sulphonate)–ccapillary electrophoresis–diode array detector | [93] |
Sophora flavescens | cytisine, sophocarpine, matrine, sophoridine, and oxymatrine | 110 mM monosodium phosphate isopropanol (85:15, v/v) (pH 3.0) | UV (214 nm) | nd, LOD: 0.0004–0.0013 | subcritical water extraction and field amplified sample stacking | [94] |
Sophora flavescens (extract from the dried root) | matrine, oxymatrine, and sophoridine | 50 mM sodium tetraborate solution, 500 mM boric acid and 1.2 mM citric acid (pH 7.98) | UV (210 nm) | 60–100 | [36] | |
Swertia mussotii Franch and preparations (herbs, granular, capsules) | oleanolic acid, ursolic acid, quercetin, and apigenin | 50 mM borate–phosphate buffer with 5.0 × 10−3 mol L−1 β–cyclodextrin (pH 9.5) | UV (250 nm) | 0.6829, 0.4007, 0.0124 and 0.5076 | [95] | |
thyme and parsley extracts | luteolin and apigenin | 20 mM borate buffer and methanol (90: 10, v/v), (pH 10.0) | UV (210 nm) | 2.98 and 1.41 | [96] | |
traditional Chinese medicines, Hippophae rhamnoides, Hypericum perforatum, and Cacumen platycladi | rutin, quercetrin, quercetin, kaempferol, kaempferide, catechin, apigenin and luteolin | 18 mM borate buffer (pH 10.2) | AM | 0.28, 0.22, 0.26, 0.24, 0.24, 0.22, 0.15 and 0.17 | [97] | |
Trichilia catigua | epicatechin and procyanidin B2 | 80 mM borate buffer with 2–hydroxypropyl–β–cyclodextrin 10 mmol L−1, (pH 8.80) | UV (214 nm) | 17.16 and 15.26 | CE method faster, more efficient, less expensive, less polluting than previously developed HPLC method | [98] |
Trifolium alexandrinum seed | soyasaponin I, azukisaponin V, bersimoside I and bersimoside | 80 mM borate buffer containing 24 mM β–CD (pH 10) | UV (195 nm) | 23.33, 21.64, 23.30 and 22.94 | diastereomeric separation in | [99] |
Urceola rosea leaf extracts | five phenolic compounds | 25 mM sodium tetraborate decahydrate solution with (pH 8.5) | UV (254 nm) | 10.9–20.8 | CE method was well comparable to HPLC | [100] |
Valeriana officinalis extracts | acacetin, diosmetin, chlorogenic acid, kaempferol, apienin, luteolin, p–hydrox–benzoic acid and caffeic acid | 60 mM borate buffer (pH 9.2) | AM | 0.033–0.4 | [101] | |
Yansuan Xiaobojian Pian (berberine tablets), and plant samples: Goldthread, Amor Cork Tree, Goldenseal, Plantain, Tree Tumeric, Yellow Root, Bupleurum and Oregon Grape | berberine | 20 mM acetic acid, 35 mM 2–HP–β–CD, and 20% methanol (pH 5.0) | LIF | nd, LOD: 0.016 | [102] | |
Yinqiaojiedu tablet | liquiritin, chlorogenic acid, and glycyrrhizic acid | 103.1 mM boric acid, 51.6 mM sodium borate, 9.8 mM disodium hydrogen phosphate, and 15.6 mM sodium dihydrogen phosphate (pH 7.86) | UV (254 nm) | 0.41, 0.79 and 0.68 | [103] |
2.3. Micellar Electrokinetic Chromatography (MEKC)
Sample | Analytes | BGE | Detection | LOQ (μg mL−1) | Remarks | Ref. |
---|---|---|---|---|---|---|
Calendula officinalis, Hypericum perforatum, Galium verum and Origanum vulgare extracts | (+)–catechin, (–)–epigallocatechin, (–)–epigallocatechin gallate, (–)–epicatechin gallate and (–)–epicatechin | 10 mM KH2PO4 and 8.3 mM sodium tetraborate buffer with 66.7 mM SDS, (pH 7.0) | UV (210 nm) | 0.010–0/047 | LOD/LOQ ng mL−1 | [109] |
clove oil, litsea cubeba oil, and citronella oil | citronellal, citral (Z; E), a–pinene, limonene, linalool, and eugenol | 20 m borate buffer, 50 mMSDS, 20% (v:v), (pH 9.5) | UV (210 nm) | 0.8–5.9 | [110] | |
Costus speciosus flos extract | rutin, quercitrin, and quercetin | 10 mM phosphate, 10 mM borate, 50 mM SDS (pH 8.5) | UV (370 nm) | 2.30, 1.57 and 1.07 | surfactant–assisted pressurized liquid extraction | [107] |
Curcuma wenyujin origin’s Chinese herbal medicines | curdine, curcumenol, germacrone, furanodiene, and β–elemene | 1.3% SDS, 5.0% 1–butanol, 0.5% ethyl acetate and 10% acetonitrile in 10 mM borate buffer (pH 9.0) | UV (215 nm) | 16.0–78.0 | MSPD extraction coupled with MEEKC | [111] |
Danshentong capsule (Salvia miltiorrhiza) | tanshinone IIB, dihydrotanshinone I, tanshinone I, cryptotanshinone, 1,2–dihydrotanshinone I, miltirone, and tanshinone IIA | 10 mM borate buffer (pH 9.3) containing 30 mM SDS, 10% v/v 2–propanol and 6 µg mL−1 graphene | UV (260 nm) | 8.73–19.10 | [105] | |
Hemidesmus indicus radix | 2–hydroxy–4–methoxybenzaldehyde, 2–hydroxy–4–methoxybenzoic acid, and 3–hydroxy–4–methoxybenzaldehyde | 50 mM phosphate buffer with 65 mM of sodium taurodeoxycholate (pH 2.5) | UV (254 nm) | 0.40, 2.5, and 0.7 | MEKC results confirmed by HPLC–MS | [112] |
Heracleum sphondylium herb and Aesculus hippocastanum cortex | coumarin, scoparone, isoscopoletin, esculin, esculetin, umbelliferone, xanthotoxin, byakangelicin, isopimpinellin, bergapten, phellopterin, xanthotoxol | 50 mM sodium tetraborate, 45 mM SC, and 20% of methanol (v/v) (pH 9.00) | UV (214 nm) | 1.70–4.772 | [113] | |
He–Shou–Wu | hypohorine, THSG, epicatechin, proanthocyanidin B2, proantocyanidin B1, catechin and gallic acid | 50 mM phosphate buffer containing 90 mM SDS and 2% (m/v) HP–β–CD (pH 2.5) | UV (210 nm) | <5.5 | pressurized liquid extraction and short–end injection MEKC | [114] |
Larrea divaricata Cav. extracts | nordihydroguaiaretic acid | 20 mM phosphate buffer 10 mM SDS and 10% acetonitrile, (pH 7.5), | UV (283 nm) | 1.06 | [115] | |
Lianqiao Baidu pill | genistein, caffeic acid, glycyrrhizic acid ammonium salt, wogonoside | 30 mmol L−1 SB, 95 mmol L−1 SDS, and 100 mmol L−1 boric acid (pH 9.30) | UV (214 nm) | 0.77–1.85 | [116] | |
Ligaria cuneifolia extracts | catechin, epicatechin, procyanidin B2, rutin, quercetin–3–O–glucoside, quercetin–3–O–xyloside, quercetin–3–O–rhamnoside, quercetin–3–O–arabinofuranoside, quercetin–3–O–arabinopyranoside and quercetin | 20 mM borate buffer, 50 mM SDS mM β–CD and 2% w/v S–β–CD and 10% v/v methanol (pH 8.3) | UV (255 and 280 nm) | 0.26– 1.33 | [117] | |
Lippia alba leaves | genoposidic acid, 8–epi–loganin, mussaenoside, chrysoeriol–7–O–diglucuronide, triclin–7–O–diglucuronide, acetoside | 50 mM borax buffer containing 75 mM SDS and 5% isopropanol | 38.0–119.0 | no statistically singificant differences beetween CE and HPLC | [118] | |
Nicotiana tabacum L. leaves | salicylic acid | TB buffer containing 100 mM SDS and 15% (v/v) acetonitrile (pH 10.0) | UV (205 nm) | nd, LOD: 0.0005 | magnetic iron oxide nanoparticle–based solid–phase extraction procedure followed by an online concentration technique | [108] |
Petroselinum crispum, Rosmarinus officinalis, Thymus vulgaris L., Origanum vulgare, Origanum majorana L., Salvia officinalis L.,and Levisticum officinale | apigenin | 30 mmol L−1 sodium borate 10% acetonitrile, and 10 mmol L−1 sodium dodecyl sulfate (pH 10.2) | UV (390 nm) | 0.28 | [119] | |
Plantago lanceolata, Plantago major,and Plantago asiatica leaf extracts and biotechnological product, plant tissue cultures (calli) of P. lanceolata. | aucubin, catalpol, verbascoside and plantamajoside | 15 mM sodium tetraborate, 20 mM TAPS and 250 mM DOC (pH 8.50) | UV (200 and 350 nm) | 1360, 1630, 2350 and 2720 | [120] | |
Qishenyiqi dropping pills | calycosin–7–O–β–d–glucoside, formononetin, dihydroquercetin, rosmarinic acid, danshensu, salvianolic acid B, protocatechuic acid, ginsenoside Rg1, ginsenoside Rb1 | 10 mM borate buffer (pH 9.0) containing 100 mM SDS, 6% propanol and 4 μg mL−1 ILs–MWNTs | UV (200 nm) | nd, LOD: 1.01–76.32 | ionic liquids coated multi–walled carbon nanotubes as pseudo– stationary phase | [106] |
Salvia chionantha and Salvia kronenburgii acetone extracts | horminone and 7–O–acetylhorminone | 50 mM SDS, 25% metanol (pH:11.5) | UV (230 nm) | nd, LOD: 3.269 and 4.518 | [121] | |
Salvia miltiorrhiza, S. przewalskii, and S. castanea | dihydrotanshinone I, cryptotanshinone, protocatechuic aldehyde, tanshinone I, tanshinone IIa, salvianolic acid C, rosmarinic acid, 9′–methyl lithospermate b, danshensu, salvianolic acid B and protocatechuic acid | 15 mM sodium tetraborate with 10 mM SDS, 5 mM β–CD, 10 mM [bmim]BF4 and 15% ACN (v/v), (pH 9.8) | UV (254 nm) | 0.90–4.63 | [122] | |
Schisandra chinensis | schizandrin, schisandrol B, schisantherin B, schisantherin A, schisanhenol, deoxyschizandrin, schisandrin B | 35 mM phosphate with 10 mM β–cyclodextrin (β–CD), 30 mM sodium dodecyl sulfate (SDS) and 10% ACN (pH 8.0) | UV (222 nm) | 0.02–0.12 | 2,2–azinobis–(3–ethylbenzothiazoline–6–sulfonic acid)–sweeping micellar electrokinetic chromatography–diode array detector | [123] |
2.4. Non-Aqueous Capillary Electrophoresis
Sample | Analytes | BGE | Detection | LOQ (µg mL−1) | Remarks | Ref. |
---|---|---|---|---|---|---|
Coptidis rhizoma | coptisin, berberine, epiberberine, palmatine, jatrorrizine | 20 mM sodium acetate in methanol–acetonitrile (80:20, v/v), 20% acetonitrile and 6 µg mL−1 SC–MWNTs | UV (254 nm) | 0.31–0.34 | [125] | |
Daturae flos extract | atropine, anisodamine, and scopolamine | acetonitrile and 2–propanol containing 1 M acetic acid, 20 mM sodium acetate and 2.5 mM tetrabutylammonium perchlorate | ECL and EC dual detection | 0.5–50.0 | [126] | |
Hypericum perforatum and Hypericum annulatum | hypericin and hyperfolin | methanol, dimethylsulfoxide, N–methyl formamide (3:2:1 v/v/v) with 50 mM ammonium acetate, 150 mM sodium acetate and 0.02% (w/v) of cationic polymer hexadimethrine bromide | UV (294 and 594) | 2.191–2.948 ppm | [35] | |
Turmeric milk (Curcuma longa) and herbal products | curcumin, desmethoxycurcumin and bisdesmethoxycurcumin, vanillin, vanillic acid, ferulic acid, and 4–hydroxybenzaldehyde | a mixture of sodium tetraborate, sodium hydroxide, methanol and 1–propanol | UV–VIS (300 and 498 nm) | 10.1–26.5 | a novel ultrasonication–assisted phase separation method (US–PS) was used for extraction and subsequently the extract was directly injected into the capillary | [12] |
2.5. Capillary Electrochromatography (CEC)
Sample | Analytes | BGE | Detection | LOQ (µg mL−1) | Remarks | Ref. |
---|---|---|---|---|---|---|
Angelica dahurica extract | byakangelicin, oxypeucedanin hydrate, xanthotoxol, 5–hydroxy–8–methoxypsoralen and bergapten | 30:70 v/v ACN–buffer containing 20 mM sodium dihydrogen phosphate (NaH2PO4) and 0.25 mM SDC (pH 2.51) | UV (210 nm) | <0.30 | methacrylate ester–based monolithic column | [133] |
Cnidii fructus extracts | isopimpinelline, bergapten, imperatorin and osthole | 50% ACN and 50% of a 10 mM sodium dihydrogen phosphate (pH 4.95) | UV (210 nm) | 1.0–2.8 | poly(butyl methacrylate–co–ethylene dimethacrylate–co–[2–(metha-cryloyloxy)ethyl] trimethylammonium chloride) monolithic column | [134] |
2.6. Capillary Electrophoresis–Mass Spectrometry (CE-MS)
Sample | Analytes | BGE | Method | LOQ (µg mL−1) | Remarks | Ref. |
---|---|---|---|---|---|---|
Catharanthus roseus | vinblastine, vindoline, and catharanthine | 20 mM ammonium acetate and 1.5% acetic acid | CE–MS | nd, LOD: 0.1–0.8 | [135] | |
Evodiae fructus | limonin, evodiamine, and rutaecarpine | 30% acetonitrile (ACN) in 1% ammonia aqueous solution | CEC–MS | 3.1, 0.63 and 0.15 | provided 4–16 folds improvement of LODs when compared with CEC–UV method | [136] |
Fritillariae Thunbergii bulbus | peimine, peiminine, and peimisine | 20 mM ammonium acetate with MS–grade water | CE–Q–TOF–MS | 0.004–0.005 | solid acids assisted matrix solid-phase dispersion micro-extraction | [137] |
Lycoris radiata roots | lycorine, lycoramine, lycoremine, lycobetaine, and dihydrolycorine | ACN and methanol (1:2, v/v), which 40 mM ammonium acetate and 0.5% acetic acid | NACE ESI–IT–MS | 0.04–0.24 | [138] | |
Psoralae fructus and pharmaceutical preparations | bavachin and isobavachalcone | 20 mM aqueous solution of ammonium acetate (pH 10.0) | CE–ESI–MS | nd, LOD: 0.06 | [139] | |
Banisteriopsis caapi, Datura stramonium, Mimosa tenuiflora, Peganum harmala, Voacanga africana, Ayahuasca | harmaline, harmine, harmalol, norharmane, harmane, harmol, tetrahydroharmine, and tryptamine | 58 mmol L−1 ammonium formate and 1.01 mol L−1 acetic acid in acetonitrile | NACE–MS | 0.01, 0.01, 0.015, 0.012, 0.018, 0.019, 0.022 and 0.024 | [140] | |
Rheum (Rhubarb, Dahuang) extracts | physcion, chrysophanol, and aloe–emodin | 80% methanol and 20% acetonitrile with 20 mM ammonium acetate | NACE–ESI–MS/MS | nd, LOD:84, 180 and 210 ppb | [141] | |
Stephaniae tetrandrae radix and Menispermum dauricum rhizoma | tetrandrine, fangchinoline, and sinomenine | 80 mM solution of ammonium acetate with mixture of 70% methanol, 20% ACN, and 10% water, which also contained 1% acetic acid | NACE–IT–MS | nd, LOD: 0.05, 0.08, and 0.15 | [142] | |
Tinosporae radix | palmatine, cepharanthine, menisperine, magnoflorine, columbin and 20–hydroxy-ecdysone | methanol and acetonitrile (4:1; v/v), which contained 40 or 50 mM ammonium acetate and 0.5% acetic acid | NACE–ESI–MS | 0.06–4.0 | [2] |
3. Materials and Methods
- “capillary electrophoresis” AND
- “pharmaceutical analysis” OR “determination” OR “quantification” AND
- “herbal drugs” OR “medicinal plants” OR “plant extracts” OR “plant metabolites”.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. Herbal Medicine, 3rd ed.; Pharmaceutical Press: London, UK, 2007. [Google Scholar]
- Liu, Y.; Zhou, W.; Mao, Z.; Liao, X.; Chen, Z. Analysis of six active components in Radix tinosporae by nonaqueous capillary electrophoresis with mass spectrometry. J. Sep. Sci. 2017, 40, 4628–4635. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Weng, J. Demystifying traditional herbal medicine with. Nat. Publ. Gr. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Folashade, O.; Omoregie, H.; Ochogu, P. Standardization of herbal medicines-A review. Int. J. Biodivers. Conserv. 2012, 4, 101–112. [Google Scholar] [CrossRef]
- European Medicines Agency. The EU regulatory system for medicines. A consistent approach to medicines regulation across the European Union; EMA: London, UK, 2016; pp. 1–6.
- The FDA’s Drug Review Process: Ensuring Drugs Are Safe and Effective. Available online: https://www.fda.gov/drugs/information-consumers-and-patients-drugs/fdas-drug-review-process-ensuring-drugs-are-safe-and-effective (accessed on 19 March 2021).
- Viana, C.; Ferreira, M.; Romero, C.S.; Bortoluzzi, M.R.; Lima, F.O.; Rolim, C.M.B.; De Carvalho, L.M. A capillary zone electrophoretic method for the determination of hypoglycemics as adulterants in herbal formulations used for the treatment of diabetes. Anal. Methods 2013, 5, 2126–2133. [Google Scholar] [CrossRef]
- Johnson, R.T.; Lunte, C.E. A capillary electrophoresis electrospray ionization-mass spectrometry method using a borate background electrolyte for the fingerprinting analysis of flavonoids in Ginkgo biloba herbal supplements. Anal. Methods 2016, 8, 3325–3332. [Google Scholar] [CrossRef]
- Moreira, A.P.L.; Motta, M.J.; Dal Molin, T.R.; Viana, C.; de Carvalho, L.M. Determination of diuretics and laxatives as adulterants in herbal formulations for weight loss. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2013, 30, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, H.; Chu, V.M.; Jang, Y.S.; Son, J.Y.; Kim, Y.H.; Son, C.G.; Seol, I.C.; Kang, J.S. Quality control of a herbal medicinal preparation using high-performance liquid chromatographic and capillary electrophoretic methods. J. Pharm. Biomed. Anal. 2011, 55, 206–210. [Google Scholar] [CrossRef]
- Feng, A.; Tian, B.; Hu, J.; Zhou, P. Recent Applications of Capillary Electrophoresis in the Analysis of Traditional Chinese Medicines. Comb. Chem. High. Throughput Screen. 2010, 13, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Anubala, S.; Sekar, R.; Nagaiah, K. Determination of Curcuminoids and Their Degradation Products in Turmeric (Curcuma longa) Rhizome Herbal Products by Non-aqueous Capillary Electrophoresis with Photodiode Array Detection. Food Anal. Methods 2016, 9, 2567–2578. [Google Scholar] [CrossRef]
- Peng, Y.Y. Study on capillary electrophoresis-amperometric detection profiles from propolis and its medicinal preparations. Adv. Mater. Res. 2013, 750–752, 1617–1620. [Google Scholar] [CrossRef]
- Tubaon, R.M.S.; Rabanes, H.; Haddad, P.R.; Quirino, J.P. Capillary electrophoresis of natural products: 2011–2012. Electrophoresis 2014, 35, 190–204. [Google Scholar] [CrossRef]
- Zalewska, M.; Wilk, K.; Milnerowicz, H. Review capillary electrophoresis application in the analysis of the anti-cancer drugs impurities. Acta Pol. Pharm. Drug Res. Drug Res. 2013, 70, 171–180. [Google Scholar]
- Jorgenson, J.W.; DeArman Lukacs, K. Zone electrophoresis in open-tubular glass capillaries: Preliminary data on performance. J. High. Resolut. Chromatogr. 1981, 4, 230–231. [Google Scholar] [CrossRef]
- Hurtado-Fernández, E.; Gómez-Romero, M.; Carrasco-Pancorbo, A.; Fernández-Gutiérrez Alberto, A. Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. J. Pharm. Biomed. Anal. 2010, 53, 1130–1160. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.Y. Chapter 1 Introduction. In Capillary Electrophoresis—Principles, Practice and Applications; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Tokyo, Japan, 1992; pp. 1–30. [Google Scholar]
- Altria, K.D. Capillary Electrophoresis Guidebook; Humana Press: Totowa, NJ, USA, 1995; Volume 52, ISBN 0-89603-315-5. [Google Scholar]
- Honegr, J.; Pospíšilová, M. Determination of phenolic acids in plant extracts using CZE with on-line transient isotachophoretic preconcentration. J. Sep. Sci. 2013, 36, 729–735. [Google Scholar] [CrossRef]
- Liang, J.; Gong, F.Q.; Sun, H.M. Simultaneous separation of eight lignans in Forsythia suspensa by β-cyclodextrin-modified capillary zone electrophoresis. Molecules 2018, 23, 514. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.W.; Bai, X.L.; Liu, Y.M.; Yang, L.; Hu, Y.D.; Liao, X. Rapid quantification of aloin A and B in aloe plants and aloe-containing beverages, and pharmaceutical preparations by microchip capillary electrophoresis with laser induced fluorescence detection. J. Sep. Sci. 2018, 41, 3772–3781. [Google Scholar] [CrossRef]
- Xiang, Q.; Gao, Y.; Han, B.; Li, J.; Xu, Y.; Yin, J. Determination of arecoline in areca nut based on field amplification in capillary electrophoresis coupled with electrochemiluminescence detection. Luminescence 2013, 28, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Z.; Han, Q.B.; Qiao, C.F.; But, P.P.H.; Xu, H.X. Development and validation of a rapid capillary zone electrophoresis method for the determination of aconite alkaloids in aconite roots. Phytochem. Anal. 2010, 21, 137–143. [Google Scholar] [CrossRef]
- de Jong, G. Detection in Capillary Electrophoresis-An Introduction. In Capillary Electrophoresis-Mass Spectrometry (CE-MS): Principles and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 1–5. [Google Scholar]
- Jarvas, G.; Guttman, A.; Miękus, N.; Bączek, T.; Jeong, S.; Chung, D.S.; Pätoprstý, V.; Masár, M.; Hutta, M.; Datinská, V.; et al. Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices. TrAC-Trends Anal. Chem. 2020, 122, 115702. [Google Scholar] [CrossRef]
- Mao, H.; Ye, X.; Chen, W.; Geng, W.; Chen, G. Fabrication of carbon nanotube-polylactic acid composite electrode by melt compounding for capillary electrophoretic determination of tectoridin and irigenin in Belamcandae Rhizoma. J. Pharm. Biomed. Anal. 2019, 175, 112769. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Chen, G. Determination of arbutin and bergenin in Bergeniae Rhizoma by capillary electrophoresis with a carbon nanotube-epoxy composite electrode. J. Pharm. Biomed. Anal. 2015, 115, 323–329. [Google Scholar] [CrossRef]
- Sheng, S.; Liu, S.; Zhang, L.; Chen, G. Graphene/poly(ethylene-co-vinyl acetate) composite electrode fabricated by melt compounding for capillary electrophoretic determination of flavones in Cacumen platycladi. J. Sep. Sci. 2013, 36, 721–728. [Google Scholar] [CrossRef]
- Ren, T.; Xu, Z. Study of isomeric pentacyclic triterpene acids in traditional Chinese medicine of Forsythiae Fructus and their binding constants with β-cyclodextrin by capillary electrophoresis. Electrophoresis 2018, 39, 1006–1013. [Google Scholar] [CrossRef]
- Deng, D.; Deng, H.; Zhang, L.; Su, Y. Determination of ephedrine and pseudoephedrine by field-amplified sample injection capillary electrophoresis. J. Chromatogr. Sci. 2014, 52, 357–362. [Google Scholar] [CrossRef]
- Honegr, J.; Šafra, J.; Polášek, M.; Pospíšilová, M. Large-volume sample stacking with polarity switching in CE for determination of natural polyphenols in plant extracts. Chromatographia 2010, 72, 885–891. [Google Scholar] [CrossRef]
- Magnuszewska, J.; Krogulec, T. Application of hot platinum microelectrodes for determination of flavonoids in flow injection analysis and capillary electrophoresis. Anal. Chim. Acta 2013, 786, 39–46. [Google Scholar] [CrossRef]
- Du, J.-X.; Wang, M. Capillary Electrophoresis Determination of Berberine in Pharmaceuticals with End-Column Electrochemiluminescence Detection. J. Chin. Chem. Soc. 2010, 57, 696–700. [Google Scholar] [CrossRef]
- Dresler, S.; Kováčik, J.; Strzemski, M.; Sowa, I.; Wójciak-Kosior, M. Methodological aspects of biologically active compounds quantification in the genus Hypericum. J. Pharm. Biomed. Anal. 2018, 155, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Sun, G.; Guo, Y.; Yang, F.; Gong, D. Capillary Electrophoresis Fingerprints Combined with Linear Quantitative Profiling Method to Monitor the Quality Consistency and Predict the Antioxidant Activity of Alkaloids of Sophora flavescens; Elsevier Ltd.: Amsterdam, The Netherland, 2019; Volume 1133, ISBN 8602423986286. [Google Scholar]
- Olabi, M.; Stein, M.; Wätzig, H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods 2018, 146, 76–92. [Google Scholar] [CrossRef]
- He, X.; Ding, Y.; Li, D.; Lin, B. Recent advances in the study of biomolecular interactions by capillary electrophoresis. Electrophoresis 2004, 25, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Wehr, T. Capillary Zone Electrophoresis. In Encyclopedia of Physical Science and Technology; Elsevier: Amsterdam, The Netherland, 2003; pp. 355–368. [Google Scholar]
- Steiner, F.; Hassel, M. Nonaqueous capillary electrophoresis: A versatile completion of electrophoretic separation techniques. Electrophoresis 2000, 21, 3994–4016. [Google Scholar] [CrossRef]
- Huie, C.W. Effects of organic solvents on sample pretreatment and separation performances in capillary electrophoresis. Electrophoresis 2003, 24, 1508–1529. [Google Scholar] [CrossRef]
- Beckers, J.L.; Ackermans, M.T.; Boček, P. Capillary zone electrophoresis in methanol: Migration behavior and background electrolytes. Electrophoresis 2003, 24, 1544–1552. [Google Scholar] [CrossRef]
- Gao, Z.; Zhong, W. Recent (2018–2020) development in capillary electrophoresis. Anal. Bioanal. Chem. 2021. [Google Scholar] [CrossRef]
- Xu, L.; Chang, R.; Chen, M.; Li, L.; Huang, Y.; Zhang, H.; Chen, A. Quality evaluation of Guan-Xin-Ning injection based on fingerprint analysis and simultaneous separation and determination of seven bioactive constituents by capillary electrophoresis. Electrophoresis 2017, 38, 3168–3176. [Google Scholar] [CrossRef] [PubMed]
- Alzoman, N.Z.; Maher, H.M.; Al-Showiman, H.; Fawzy, G.A.; Al-Taweel, A.M.; Perveen, S.; Tareen, R.B.; Al-Sabbagh, R.M. CE-DAD determination of scutellarein and caffeic acid in Abelia triflora crude extract. J. Chromatogr. Sci. 2018, 56, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Yang, F.; Yang, X. CE-electrochemiluminescence with ionic liquid for the facile separation and determination of diester-diterpenoid aconitum alkaloids in traditional Chinese herbal medicine. Electrophoresis 2011, 32, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Dutra, L.S.; Leite, M.N.; Brandão, M.A.F.; De Almeida, P.A.; Vaz, F.A.S.; De Oliveira, M.A.L. A rapid method for total β-escin analysis in dry, hydroalcoholic and hydroglycolic extracts of Aesculus hippocastanum L. by capillary zone electrophoresis. Phytochem. Anal. 2013, 24, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Kubrak, T.; Dresler, S.; Szymczak, G.; Bogucka-Kocka, A. Rapid Determination of Coumarins in Plants by Capillary Electrophoresis. Anal. Lett. 2015, 48, 2819–2832. [Google Scholar] [CrossRef]
- Chen, M.; Huang, Y.; Xu, L.; Zhang, H.; Zhang, G.; Chen, A. Simultaneous separation and analysis of camptothecin alkaloids in real samples by large-volume sample stacking in capillary electrophoresis. Biomed. Chromatogr. 2018, 32. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Su, M.; Liang, S.; Sun, H. Investigation of six bioactive anthraquinones in slimming tea by accelerated solvent extraction and high performance capillary electrophoresis with diode-array detection. Food Chem. 2016, 199, 1–7. [Google Scholar] [CrossRef]
- Roda, G.; Liberti, V.; Arnoldi, S.; Argo, A.; Rusconi, C.; Suardi, S.; Gambaro, V. Capillary electrophoretic and extraction conditions for the analysis of Catha edulis FORKS active principles. Forensic Sci. Int. 2013, 228, 154–159. [Google Scholar] [CrossRef]
- Şanli, S.; Lunte, C. Determination of eleven flavonoids in chamomile and linden extracts by capillary electrophoresis. Anal. Methods 2014, 6, 3858–3864. [Google Scholar] [CrossRef]
- Kulp, M.; Bragina, O.; Kogerman, P.; Kaljurand, M. Capillary electrophoresis with led-induced native fluorescence detection for determination of isoquinoline alkaloids and their cytotoxicity in extracts of Chelidonium majus L. J. Chromatogr. A 2011, 1218, 5298–5304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, W.; Chen, W.; Chen, G. Simultaneous determination of five bioactive constituents in Rhizoma Chuanxiong by capillary electrophoresis with a carbon nanotube-polydimethylsiloxane composite electrode. J. Pharm. Biomed. Anal. 2016, 131, 107–112. [Google Scholar] [CrossRef]
- Diop, E.H.A.; Jacquat, J.; Drouin, N.; Queiroz, E.F.; Wolfender, J.L.; Diop, T.; Schappler, J.; Rudaz, S. Quantitative CE analysis of punicalagin in Combretum aculeatum extracts traditionally used in Senegal for the treatment of tuberculosis. Electrophoresis 2019, 40, 2820–2827. [Google Scholar] [CrossRef]
- Müller, L.S.; Da Silveira, G.D.; Dal Prá, V.; Lameira, O.; Viana, C.; De Carvalho, L.M. Investigation of phenolic antioxidants as chemical markers in extracts of Connarus perrottetii var. Angustifolius radlk by capillary zone electrophoresis. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 13–20. [Google Scholar] [CrossRef]
- Deng, Y.; Lam, S.C.; Zhao, J.; Li, S.P. Quantitative analysis of flavonoids and phenolic acid in Coreopsis tinctoria Nutt. by capillary zone electrophoresis. Electrophoresis 2017, 38, 2654–2661. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Li, J.; Gao, C.; Xie, Y. Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide. J. Sep. Sci. 2013, 36, 2698–2702. [Google Scholar] [CrossRef]
- Lü, W.; Li, M.; Chen, Y.; Chen, H.; Chen, X. Simultaneous determination of iridoid glycosides and flavanoids in Lamionphlomis rotate and its herbal preparation by a simple and rapid capillary zone electrophoresis method. Drug Test. Anal. 2012, 4, 123–128. [Google Scholar] [CrossRef]
- Dresler, S.; Kubrak, T.; Bogucka-Kocka, A.; Szymczak, G. Determination of shikonin and rosmarinic acid in Echium vulgare L. and Echium russicum J.F. Gmel. by capillary electrophoresis. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 698–701. [Google Scholar] [CrossRef]
- Xie, J.P.; Xiang, J.M.; Zhu, Z.L. Determination of Five Major 8-Prenylflavones in Leaves of Epimedium by Solid-Phase Extraction Coupled with Capillary Electrophoresis. J. Chromatogr. Sci. 2016, 54, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, S.; Wang, J.; Wang, C.; Wang, Z. On-line two-step stacking in capillary zone electrophoresis for the preconcentration of strychnine and brucine. Anal. Chim. Acta 2014, 814, 63–68. [Google Scholar] [CrossRef]
- Xia, Y.G.; Liang, J.; Yang, B.Y.; Wang, Q.H.; Kuang, H.X. A new method for quantitative determination of two uronic acids by CZE with direct UV detection. Biomed. Chromatogr. 2011, 25, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; You, W.; Zheng, L.; Chen, F.; Jia, Z. Determination of peimine and peiminine in Bulbus Fritillariae Thunbergii by capillary electrophoresis by indirect UV detection using N-(1-naphthyl)ethylenediamine dihydrochloride as probe. Electrophoresis 2012, 33, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, B.L.; Mohan, M.; Joseph, D.; Haleema, S.; Aboul-Enein, H.Y.; Ibnusaud, I. Capillary zone electrophorsis for the analysis of naturally occurring 2-hydroxycitric acids and their lactones. J. Sep. Sci. 2017, 40, 3351–3357. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Qu, W.; Chen, G. Fabrication of graphene/poly(methyl methacrylate) composite electrode for capillary electrophoretic determination of bioactive constituents in Herba geranii. J. Chromatogr. A 2011, 1218, 5542–5548. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Han, S. Ultrasensitive determination of epicatechin, rutin, and quercetin by capillary electrophoresis chemiluminescence. Acta Chromatogr. 2012, 24, 679–688. [Google Scholar] [CrossRef]
- Chen, H.; Ding, X.; Wang, M.; Chen, X. An automated method of on-line extraction coupled with flow injection and capillary electrophoresis for phytochemical analysis. J. Chromatogr. Sci. 2010, 48, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, X.; Chen, D.; Chen, G. Polystyrene/graphene composite electrode fabricated by in situ polymerization for capillary electrophoretic determination of bioactive constituents in Herba houttuyniae. Electrophoresis 2011, 32, 1906–1912. [Google Scholar] [CrossRef]
- Gao, S.Y.; Li, H.; Wang, L.; Yang, L.N. Simultaneous separation and determination of benzoic acid compounds in the plant medicine by high performance capillary electrophoresis. J. Chin. Chem. Soc. 2010, 57, 1374–1380. [Google Scholar] [CrossRef]
- Maráková, K.; Mikuš, P.; Piešťanský, J.; Havránek, E. Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection. Chem. Pap. 2011, 65, 398–405. [Google Scholar] [CrossRef]
- Dong, S.; Gao, R.; Yang, Y.; Guo, M.; Ni, J.; Zhao, L. Simultaneous determination of phenylethanoid glycosides and aglycones by capillary zone electrophoresis with running buffer modifier. Anal. Biochem. 2014, 449, 158–163. [Google Scholar] [CrossRef]
- Deng, B.; Xie, F.; Li, L.; Shi, A.; Liu, Y.; Yin, H. Determination of galanthamine in Bulbus Lycoridis Radiatae by coupling capillary electrophoresis with end-column electrochemiluminescence detection. J. Sep. Sci. 2010, 33, 2356–2360. [Google Scholar] [CrossRef]
- Sun, S.; Wei, Y.; Cao, Y.; Deng, B. Simultaneous electrochemiluminescence determination of galanthamine, homolycorine, lycorenine, and tazettine in Lycoris radiata by capillary electrophoresis with ultrasonic-assisted extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1055–1056, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, L.; Chen, G. Determination of carbohydrates in Folium Lysium Chinensis using capillary electrophoresis combined with far-infrared light irradiation-assisted extraction. J. Sep. Sci. 2011, 34, 3272–3278. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, Y.; Zeng, J.; Lu, Q.; Li, P.C.H. Microchip electrophoretic separation and fluorescence detection of chelerythrine and sanguinarine in medicinal plants. Talanta 2015, 142, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Luan, F.; Yan, X.; Gao, Y.; Liu, H. Separation and determination of honokiol and magnolol in Chinese traditional medicines by capillary electrophoresis with the application of response surface methodology and radial basis function neural network. J. Chromatogr. Sci. 2012, 50, 71–75. [Google Scholar] [CrossRef]
- Gatea, F.; Teodor, E.D.; Matei, A.O.; Badea, G.I.; Radu, G.L. Capillary Electrophoresis Method for 20 Polyphenols Separation in Propolis and Plant Extracts. Food Anal. Methods 2015, 8, 1197–1206. [Google Scholar] [CrossRef]
- Tascón, M.; Benavente, F.; Vizioli, N.M.; Gagliardi, L.G. A rapid and simple method for the determination of psychoactive alkaloids by CE-UV: Application to Peganum Harmala seed infusions. Drug Test. Anal. 2017, 9, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Fakhari, A.R.; Nojavan, S.; Ebrahimi, S.N.; Evenhuis, C.J. Optimized ultrasound-assisted extraction procedure for the analysis of opium alkaloids in Papaver plants by cyclodextrin-modified capillary electrophoresis. J. Sep. Sci. 2010, 33, 2153–2159. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Chen, Z. Selective and sensitive determination of protoberberines by capillary electrophoresis coupled with molecularly imprinted microextraction. J. Sep. Sci. 2015, 38, 3969–3975. [Google Scholar] [CrossRef]
- de Carvalho, L.M.; Raabe, A.; Martini, M.; Sant’anna, C.S.; da Silveira, G.D.; do Nascimento, P.C.; Bohrer, D. Contactless Conductivity detection of 14 inorganic cations in mineral and phytotherapeutic formulations after capillary electrophoretic separation. Electroanalysis 2011, 23, 2574–2581. [Google Scholar] [CrossRef]
- Deng, G.H.; Chen, S.; Wang, H.; Gao, J.; Luo, X.; Huang, H. Determination of active ingredients of Phyllanthus urinaria by capillary electrophoresis with amperometric detection. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2370–2380. [Google Scholar] [CrossRef]
- Wan, D.; Han, Y.; Li, F.; Mao, H.; Chen, G. Far infrared-assisted removal of extraction solvent for capillary electrophoretic determination of the bioactive constituents in Plumula nelumbinis. Electrophoresis 2019, 40, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xu, X.; Huang, Y.; Xu, L.; Chen, G. Field enhancement sample stacking for analysis of organic acids in traditional Chinese medicine by capillary electrophoresis. J. Chromatogr. A 2012, 1246, 35–39. [Google Scholar] [CrossRef]
- Guo, J.; Wang, M.; Guo, H.; Chang, R.; Yu, H.; Zhang, G.; Chen, A. Simultaneous separation and determination of seven isoflavones in Radix puerariae by capillary electrophoresis with a dual cyclodextrin system. Biomed. Chromatogr. 2019, 33. [Google Scholar] [CrossRef]
- Chang, Y.X.; Liu, J.; Bai, Y.; Li, J.; Liu, E.W.; He, J.; Jiao, X.C.; Wang, Z.Z.; Gao, X.M.; Zhang, B.L.; et al. The activity-integrated method for quality assessment of Reduning injection by on-line DPPH-CE-DAD. PLoS ONE 2014, 9, e106254. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, L.; Chen, G. Determination of salidroside and tyrosol in Rhodiola by capillary electrophoresis with graphene/poly(urea-formaldehyde) composite modified electrode. Electrophoresis 2011, 32, 870–876. [Google Scholar] [CrossRef]
- Ngoc, H.N.; Löffler, S.; Nghiem, D.T.; Pham, T.L.G.; Stuppner, H.; Ganzera, M. Phytochemical study of Rourea minor stems and the analysis of therein contained Bergenin and Catechin derivatives by capillary electrophoresis. Microchem. J. 2019, 149, 104063. [Google Scholar] [CrossRef]
- Cao, J.; We, J.; Tian, K.; Su, H.; Wan, J.; Li, P. Simultaneous determination of seven phenolic acids in three Salvia species by capillary zone electrophoresis with β-cyclodextrin as modifier. J. Sep. Sci. 2014, 37, 3738–3744. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Bai, H.; Kong, C.; Zhong, H.; Breadmore, M.C. Analysis of brazilin and protosappanin B in sappan lignum by capillary zone electrophoresis with acid barrage stacking. Electrophoresis 2013, 34, 3326–3332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, Z.; Zhang, J.; Wang, X. Electrochemical determination of baicalein, baicalin and quercetin in Scutellaria barbata. Int. J. Electrochem. Sci. 2016, 11, 8323–8331. [Google Scholar] [CrossRef]
- Ma, H.; Li, J.; An, M.; Gao, X.M.; Chang, Y.X. A powerful on line ABTS+-CE-DAD method to screen and quantify major antioxidants for quality control of Shuxuening Injection. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, Y.; Chen, J.; Li, J.; Liu, S. Subcritical water extraction of alkaloids in Sophora flavescens Ait. and determination by capillary electrophoresis with field-amplified sample stacking. J. Pharm. Biomed. Anal. 2012, 58, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Wang, L.; Yang, Y.; Ni, J.; Zhao, L.; Dong, S.; Guo, M. Simultaneous determination of oleanolic acid, ursolic acid, quercetin and apigenin in Swertia mussotii Franch by capillary zone electrophoresis with running buffer modifier. Biomed. Chromatogr. 2015, 29, 402–409. [Google Scholar] [CrossRef]
- Maher, H.M.; Al-Zoman, N.Z.; Al-Shehri, M.M.; Al-Showiman, H.; Al-Taweel, A.M.; Fawzy, G.A.; Perveen, S. Determination of Luteolin and Apigenin in Herbs by Capillary Electrophoresis with Diode Array Detection. Instrum. Sci. Technol. 2015, 43, 611–625. [Google Scholar] [CrossRef]
- Wang, W.; Lin, P.; Ma, L.; Xu, K.; Lin, X. Separation and determination of flavonoids in three traditional Chinese medicines by capillary electrophoresis with amperometric detection. J. Sep. Sci. 2016, 39, 1357–1362. [Google Scholar] [CrossRef]
- Sereia, A.L.; Longhini, R.; Lopes, G.C.; de Mello, J.C.P. Capillary Electrophoresis as Tool for Diastereomeric Separation in a Trichilia catigua Fraction. Phytochem. Anal. 2017, 28, 144–150. [Google Scholar] [CrossRef]
- Emara, S.; Masujima, T.; Zarad, W.; Mohamed, K.; Kamal, M.; Fouad, M.; EL-Bagary, R. Field-amplified sample stacking β-cyclodextrin modified capillary electrophoresis for quantitative determination of diastereomeric saponins. J. Chromatogr. Sci. 2014, 52, 1308–1316. [Google Scholar] [CrossRef]
- Gufler, V.; Ngoc, H.N.; Stuppner, H.; Ganzera, M. Capillary electrophoresis as a fast and efficient alternative for the analysis of Urceola rosea leaf extracts. Fitoterapia 2018, 125, 1–5. [Google Scholar] [CrossRef]
- Li, W.L.; Li, M.J.; Pan, Y.L.; Huang, B.K.; Chu, Q.C.; Ye, J.N. Study on electrochemical profiles of Valeriana medicinal plants by capillary electrophoresis. J. Anal. Chem. 2014, 69, 179–186. [Google Scholar] [CrossRef]
- Uzaşçi, S.; Erim, F.B. Enhancement of native fluorescence intensity of berberine by (2-hydroxypropyl)-β-cyclodextrin in capillary electrophoresis coupled by laser-induced fluorescence detection: Application to quality control of medicinal plants. J. Chromatogr. A 2014, 1338, 184–187. [Google Scholar] [CrossRef]
- Ma, D.; Yang, L.; Yan, B.; Sun, G. Capillary electrophoresis fingerprints combined with chemometric methods to evaluate the quality consistency and predict the antioxidant activity of Yinqiaojiedu tablet. J. Sep. Sci. 2017, 40, 1796–1804. [Google Scholar] [CrossRef]
- Hancu, G.; Simon, B.; Rusu, A.; Mircia, E.; Gyéresi, Á. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis. Adv. Pharm. Bull. 2013, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ding, Y.; Gao, W.; Qi, L.W.; Cao, J.; Li, P. Efficient separation of tanshinones by polyvinylpyrrolidone-stabilized graphene-modified micellar electrokinetic chromatography. Electrophoresis 2015, 36, 2874–2880. [Google Scholar] [CrossRef]
- Cao, J.; Li, P.; Yi, L. Ionic liquids coated multi-walled carbon nanotubes as a novel pseudostationary phase in electrokinetic chromatography. J. Chromatogr. A 2011, 1218, 9428–9434. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.Q.; Tan, S.N.; Yong, J.W.H.; Ge, L. Surfactant-assisted pressurized liquid extraction for determination of flavonoids from Costus speciosus by micellar electrokinetic chromatography. J. Sep. Sci. 2011, 34, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Huang, C.W.; Fu, S.F.; Wu, M.Y.; Wu, T.; Lin, Y.W. Determination of salicylic acid using a magnetic iron oxide nanoparticle-based solid-phase extraction procedure followed by an online concentration technique through micellar electrokinetic capillary chromatography. J. Chromatogr. A 2017, 1479, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Matei, A.O.; Gatea, F.; Teodor, E.D.; Radu, G.L. Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC. Chem. Pap. 2016, 70, 515–522. [Google Scholar] [CrossRef]
- Huang, X.; Yi, L.; Gao, Z.; Li, H. Determination of Seven Active Ingredients in Three Plant Essential Oils by Using Micellar Electrokinetic Chromatography. Anal. Lett. 2012, 45, 2014–2025. [Google Scholar] [CrossRef]
- Wei, M.; Chu, C.; Wang, S.; Yan, J. Quantitative analysis of sesquiterpenes and comparison of three Curcuma wenyujin herbal medicines by micro matrix solid phase dispersion coupled with MEEKC. Electrophoresis 2018, 39, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Fiori, J.; Leoni, A.; Fimognari, C.; Turrini, E.; Hrelia, P.; Mandrone, M.; Iannello, C.; Antognoni, F.; Poli, F.; Gotti, R. Determination of Phytomarkers in Pharmaceutical Preparations of Hemidesmus indicus Roots by Micellar Electrokinetic Chromatography and High-Performance Liquid Chromatography–Mass Spectrometry. Anal. Lett. 2014, 47, 2629–2642. [Google Scholar] [CrossRef]
- Dresler, S.; Bogucka-Kocka, A.; Kováčik, J.; Kubrak, T.; Strzemski, M.; Wójciak-Kosior, M.; Rysiak, A.; Sowa, I. Separation and determination of coumarins including furanocoumarins using micellar electrokinetic capillary chromatography. Talanta 2018, 187, 120–124. [Google Scholar] [CrossRef]
- Lao, K.M.; Han, D.Q.; Chen, X.J.; Zhao, J.; Wang, T.J.; Li, S. ping Simultaneous determination of seven hydrophilic bioactive compounds in water extract of Polygonum multiflorum using pressurized liquid extraction and short-end injection micellar electrokinetic chromatography. Chem. Cent. J. 2013, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stege, P.W.; Sombra, L.L.; Davicino, R.C.; Olsina, R.A. Analysis of nordihydroguaiaretic acid in Larrea divaricata Cav. extracts by micellar electrokinetic chromatography. Phytochem. Anal. 2011, 22, 74–79. [Google Scholar] [CrossRef]
- Chen, S.; Sun, G.; Yang, L.; Zhang, J. Micellar electrokinetic chromatography fingerprinting combined with chemometrics as an efficient strategy for evaluating the quality consistency and predicting the antioxidant activity of Lianqiao baidu pills. J. Sep. Sci. 2017, 40, 2838–2848. [Google Scholar] [CrossRef]
- Dobrecky, C.B.; Flor, S.A.; López, P.G.; Wagner, M.L.; Lucangioli, S.E. Development of a novel dual CD-MEKC system for the systematic flavonoid fingerprinting of Ligaria cuneifolia (R. et P.) Tiegh.—Loranthaceae—extracts. Electrophoresis 2017, 38, 1292–1300. [Google Scholar] [CrossRef]
- Gomes, A.F.; Ganzera, M.; Schwaiger, S.; Stuppner, H.; Halabalaki, M.; Almeida, M.P.; Leite, M.F.; Amaral, J.G.; David, J.M. Simultaneous determination of iridoids, phenylpropanoids and flavonoids in Lippia alba extracts by micellar electrokinetic capillary chromatography. Microchem. J. 2018, 138, 494–500. [Google Scholar] [CrossRef]
- Głowacki, R.; Furmaniak, P.; Kubalczyk, P.; Borowczyk, K. Determination of Total Apigenin in Herbs by Micellar Electrokinetic Chromatography with UV Detection. J. Anal. Methods Chem. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Gonda, S.; Nguyen, N.M.; Batta, G.; Gyémánt, G.; Máthé, C.; Vasas, G. Determination of phenylethanoid glycosides and iridoid glycosides from therapeutically used Plantago species by CE-MEKC. Electrophoresis 2013, 34, 2577–2584. [Google Scholar] [CrossRef] [PubMed]
- Öztekin, N.; Başkan, S.; Evrim Kepekçi, S.; Erim, F.B.; Topçu, G. Isolation and analysis of bioactive diterpenoids in Salvia species (Salvia chionantha and Salvia kronenburgiii) by micellar electrokinetic capillary chromatography. J. Pharm. Biomed. Anal. 2010, 51, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Hu, J.; Wei, J.; Li, B.; Zhang, M.; Xiang, C.; Li, P. Optimization of micellar electrokinetic chromatography method for the simultaneous determination of seven hydrophilic and four lipophilic bioactive components in three salvia species. Molecules 2015, 20, 15304–15318. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, T.; Li, J.; Ding, M.; Gao, X.M.; Chang, Y. xu The in-capillary- 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)-sweeping micellar electrokinetic chromatography-Diode array detector method for screening and quantifying trace natural antioxidants from Schisandra chinensis. J. Chromatogr. A 2019, 1593, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Riekkola, M.L.; Jussila, M.; Porras, S.P.; Valkó, I.E. Non-aqueous capillary electrophoresis. J. Chromatogr. A 2000, 892, 155–170. [Google Scholar] [CrossRef]
- Hou, J.; Li, G.; Wei, Y.; Lu, H.; Jiang, C.; Zhou, X.; Meng, F.; Cao, J.; Liu, J. Analysis of five alkaloids using surfactant-coated multi-walled carbon nanotubes as the pseudostationary phase in nonaqueous capillary electrophoresis. J. Chromatogr. A 2014, 1343, 174–181. [Google Scholar] [CrossRef]
- Yuan, B.; Zheng, C.; Teng, H.; You, T. Simultaneous determination of atropine, anisodamine, and scopolamine in plant extract by nonaqueous capillary electrophoresis coupled with electrochemiluminescence and electrochemistry dual detection. J. Chromatogr. A 2010, 1217, 171–174. [Google Scholar] [CrossRef]
- Mistry, K.; Krull, I.; Grinberg, N. Capillary electrochromatography: An alternative to HPLC and CE. J. Sep. Sci. 2002, 25, 935–958. [Google Scholar] [CrossRef]
- Svec, F. Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J. Sep. Sci. 2005, 28, 729–745. [Google Scholar] [CrossRef]
- de Jong, G. Milestones in the Development of Capillary Electromigration Techniques; Elsevier Inc.: Amsterdam, The Netherland, 2018; ISBN 9780128093757. [Google Scholar]
- Viberg, P.; Spégel, P.; Carlstedt, J.; Jörntén-Karlsson, M.; Petersson, P. Continuous full filling capillary electrochromatography: Chromatographic performance and reproducibility. J. Chromatogr. A 2007, 1154, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Ping, G.; Schmitt-Kopplin, P.; Zhang, Y.; Baba, Y. Capillary electrochromatography and on-line concentration. Methods Mol. Biol. 2008, 384, 751–769. [Google Scholar] [CrossRef]
- Yan, C.; Xue, Y.; Wang, Y. Capillary Electrochromatography; Elsevier Inc.: Amsterdam, The Netherland, 2018; ISBN 9780128093757. [Google Scholar]
- Chen, Z.; Wang, J.; Chen, D.; Fan, G.; Wu, Y. Sodium desoxycholate-assisted capillary electrochromatography with methacrylate ester-based monolithic column on fast separation and determination of coumarin analogs in Angelica dahurica extract. Electrophoresis 2012, 33, 2884–2891. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D.; Chen, Z.; Fan, G.; Wu, Y. Fast separation and determination of coumarins in Fructus cnidii extracts by CEC using poly(butyl methacrylate-co-ethylene dimethacrylate-co-[2-(methacryloyloxy) ethyl] trimethylammonium chloride) monolithic columns. J. Sep. Sci. 2010, 33, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, N.; Zhang, W.; Chen, J.; Chen, Z. Simultaneous determination of vinblastine and its monomeric precursors vindoline and catharanthine in Catharanthus roseus by capillary electrophoresis-mass spectrometry. J. Sep. Sci. 2011, 34, 2885–2892. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, W.; Mao, Z.; Chen, Z. Analysis of Evodiae Fructus by capillary electrochromatography-mass spectrometry with methyl-vinylimidazole functionalized organic polymer monolilth as stationary phases. J. Chromatogr. A 2019, 1602, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Dong, X.; Yang, J.; Zhen, X.T.; Ye, L.H.; Chu, C.; Wang, B.; Hu, Y.H.; Zheng, H.; Cao, J. Solid acids assisted matrix solid-phase dispersion microextraction of alkaloids by capillary electrophoresis coupled with quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2019, 42, 3579–3588. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z. Nonaqueous CE ESI-IT-MS analysis of Amaryllidaceae alkaloids. J. Sep. Sci. 2013, 36, 1078–1084. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z. Separation of isomeric bavachin and isobavachalcone in the Fructus Psoraleae by capillary electrophoresis-mass spectrometry. J. Sep. Sci. 2012, 35, 1644–1650. [Google Scholar] [CrossRef]
- Posch, T.N.; Martin, N.; Pütz, M.; Huhn, C. Nonaqueous capillary electrophoresis-mass spectrometry: A versatile, straightforward tool for the analysis of alkaloids from psychoactive plant extracts. Electrophoresis 2012, 33, 1557–1566. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, L.; Liu, W.; Chen, D.D.Y. Quantitative Nonaqueous Capillary Electrophoresis-Mass Spectrometry Method for Determining Active Ingredients in Plant Extracts. Anal. Chem. 2017, 89, 1411–1415. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, J.; Zhang, W.; Chen, Z. Analysis of active alkaloids in the Menispermaceae family by nonaqueous capillary electrophoresis-ion trap mass spectrometry. J. Sep. Sci. 2013, 36, 341–349. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Population | herbal drugs and medicinal plants | garden and ornamental plants, vegetables and fruits, edible products, beverages |
Intervention | use of CE method | other methods |
Comparison | capillary electrophoresis vs. other methods | not applicable |
Outcome | analysis of active constituents | different outcomes |
Study type | original research articles, full articles, English language | review articles, reports, abstracts, articles with no quantitative information or details |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gackowski, M.; Przybylska, A.; Kruszewski, S.; Koba, M.; Mądra-Gackowska, K.; Bogacz, A. Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations. Molecules 2021, 26, 4141. https://doi.org/10.3390/molecules26144141
Gackowski M, Przybylska A, Kruszewski S, Koba M, Mądra-Gackowska K, Bogacz A. Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations. Molecules. 2021; 26(14):4141. https://doi.org/10.3390/molecules26144141
Chicago/Turabian StyleGackowski, Marcin, Anna Przybylska, Stefan Kruszewski, Marcin Koba, Katarzyna Mądra-Gackowska, and Artur Bogacz. 2021. "Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations" Molecules 26, no. 14: 4141. https://doi.org/10.3390/molecules26144141
APA StyleGackowski, M., Przybylska, A., Kruszewski, S., Koba, M., Mądra-Gackowska, K., & Bogacz, A. (2021). Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations. Molecules, 26(14), 4141. https://doi.org/10.3390/molecules26144141