Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Activity (aw) of Freeze-Dried Complexes
2.2. Polyphenols of Citrus Fiber/Blackberry Juice Complexes
2.3. Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes
2.4. IR Spectra of Citrus Fiber/Blackberry Juice Complexes
3. Materials and Methods
3.1. Materials
3.2. Preparation of Bioactive Food Complexes
3.3. Determination of Water Activity (aw) in Freeze-Dried Complexes
3.4. Extraction of Polyphenols
3.5. Determination of Total Polyphenols and Proanthocyanidins Contents
3.5.1. Total Polyphenol Content
3.5.2. Proanthocyanidin Content
3.6. High-Performance Liquid Chromatography (HPLC) Evaluation of Polyphenols
3.7. Determination of Antioxidant Activity
3.8. Fourier Transform Infrared with Attenuated Total Reflection (FTIR-ATR) Spectroscopy Analysis
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Qi, J.; Song, L.; Zeng, W.; Liao, J. Citrus fiber for the stabilization of O/W emulsion through combination of Pickering effect and fiber-based network. Food Chem. 2020, 343, 128523. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, B.; Pan, X.; White, A.; Chau, H.; Hotchkiss, A. Rheology and composition of citrus fiber. J. Food Eng. 2014, 125, 97–104. [Google Scholar] [CrossRef]
- Costa, T.; Rogez, H.; Pena, R. Adsorption capacity of phenolic compounds onto cellulose and xylan. Food Sci. Technol (Campinas) 2015, 35, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Kaume, L.; Gilbert, W.C.; Brownmiller, C.; Howard, L.R.; Devareddy, L. Cyanidin 3-O-β-D-glucoside-rich blackberries modulate hepatic gene expression, and anti-obesity effects in ovariectomized rats. J. Funct. Foods 2012, 4, 480–488. [Google Scholar] [CrossRef]
- Robinson, J.A.; Bierwirth, J.E.; Greenspan, P.; Pegg, R.B. Blackberry polyphenols: Review of composition, quantity, and health impacts from in vitro and in vivo studies. J. Food Bioact. 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Dobson, C.C.; Mottawea, W.; Rodrigue, A.; Buzati Pereira, L.B.; Hammami, R.; Power, A.K.; Bordenave, N. Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. Adv. Food Nutr. Res. 2019, 90, 135–181. [Google Scholar]
- Schulz, M.; Seraglio, S.K.T.; Della Betta, F.; Nehring, P.; Valese, A.C.; Daguer, H.; Gonzaga, L.V.; Oliveira Costa, A.C.; Fett, R. Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res. Int. 2019, 122, 627–634. [Google Scholar] [CrossRef]
- Branco, I.G.; Moraes, I.C.F.; Argandoña, E.J.S.; Madrona, G.S.; Dos Santos, C.; Ruiz, A.L.T.G.; De Carvalho, J.E.; Haminiuk, C.W.I. Influence of pasteurization on antioxidant and in vitro anti-proliferative effects of jambolan (Syzygium cumini (l.) Skeels) fruit pulp. Ind. Crops Prod. 2016, 89, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, C.; Chung, M.M.S.; dos Santos, C.; Mayer, C.R.M.; Moraes, I.C.F.; Branco, I.G. Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT 2017, 84, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Nowicka, P.; Teleszko, M.; Wojdyło, A.; Cebulak, T.; Oklejewicz, K. Analysis of phenolic compounds and antioxidant activity in wild blackberry fruits. Int. J. Mol. Sci. 2015, 16, 14540–14553. [Google Scholar] [CrossRef] [Green Version]
- Hager, T.J.; Howard, L.R.; Prior, R.L. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products. J. Agric. Food Chem. 2008, 56, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Patel, J.D.; Mumper, R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef]
- Turemis, N.; Kafkas, E.; Kafkas, S.; Kurkcuoglu, M.; Baser, K.H.C. Determination of aroma compounds in blackberry by GC/MS analysis. Chem. Nat. Compd. 2003, 39, 174–176. [Google Scholar] [CrossRef]
- Tomas, M.; Rocchetti, G.; Ghisoni, S.; Giuberti, G.; Capanoglu, E.; Lucini, L. Effect of different soluble dietary fibres on the phenolic profile of blackberry puree subjected to in vitro gastrointestinal digestion and large intestine fermentation. Food Res. Int. 2019, 130, 108954. [Google Scholar] [CrossRef]
- Colín-Cruz, M.A.; Pimentel-González, D.J.; Carrillo-Navas, H.; Alvarez-Ramírez, J.; Guadarrama-Lezama, A.Y. Co-encapsulation of bioactive compounds from blackberry juice and probiotic bacteria in biopolymeric matrices. LWT 2019, 110, 94–101. [Google Scholar] [CrossRef]
- Vallejo-Castillo, V.; Rodríguez-Stouvenel, A.; Martínez, R.; Bernal, C. Development of alginate-pectin microcapsules by the extrusion for encapsulation and controlled release of polyphenols from papaya (Carica papaya L.). J. Food Biochem. 2020, 44, e13331. [Google Scholar] [CrossRef]
- Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Polyphenol content and antioxidant capacity of berries: A review. Int. J. Agric. For. Life Sci. 2019, 3, 350–361. [Google Scholar]
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 2017, 237, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Lama-Muñoz, A.; Fernández-Bolañoz, J. Complexation of hydroxytyrosol and 3,4,-dihydroxyphenylglycol with pectin and their potential use for colon targeting. Carbohydr. Polym. 2017, 163, 292–300. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rodríguez-Juan, E.; González-Benjumea, A.; Fernández-Bolaños, J. Molecular interactions between 3,4-dihyroxyphenylglycol and pectin and antioxidant capacity of this complex in vitro. Carbohydr. Polym. 2018, 197, 260–268. [Google Scholar] [CrossRef]
- Vukoja, J.; Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Formulation and stability of cellulose-based delivery systems of raspberry phenolics. Process. 2021, 9, 90. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber - polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2018, 83, 235–247. [Google Scholar] [CrossRef]
- Van de Velde, F.; Pirovani, M.E.; Drago, S.R. Bioaccessibility analysis of anthocyanins and ellagitannins from blackberry at simulated gastrointestinal and colonic levels. J. Food Compos. Anal. 2018, 72, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Ahmadian, Z.; Niazmand, R.; Pourfarzad, A. Microencapsulation of saffron petal phenolic extract: Their characterization, in vitro gastrointestinal digestion, and storage stability. J. Food Sci. 2019, 84, 2745–2757. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Daza, M.C.; Roquim, M.; Dudonné, S.; Pilon, G.; Levy, E.; Marette, A.; Desjardins, Y. Berry polyphenols and fibers modulate distinct microbial metabolic functions and gut microbiota enterotype-like clustering in obese mice. Front. Microbiol. 2020, 11, 2032. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P.; Ištuk, J.; Barron, A.R. Study of interactions between individual phenolics of aronia with barley beta-glucan. Polish J. Food Nutr. Sci. 2021, 71, 187–196. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Fernández-Prior, Á.; Vioque, B.; Fernández-Bolaños, J. Strawberry dietary fiber functionalized with phenolic antioxidants from olives. Interactions between polysaccharides and phenolic compounds. Food Chem. 2018, 280, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Renard, C.M.; Baron, A.; Guyot, S.; Drilleau, J.F. Interactions between apple cell walls and native apple polyphenols: Quantification and some consequences. Int. J. Biol. Macromol. 2001, 29, 115–125. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Melton, L.D.; O’Connor, C.J.; Kilmartin, P.A.; Smith, B.G. Effect of apple cell walls and their extracts on the activity of dietary antioxidants. J. Agric. Food Chem. 2007, 56, 289–295. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Smith, B.G.; O’Connor, C.J.; Melton, D.L. Effect of raw and cooked onion dietary fiber on the antioxidant activity od ascorbic acid and quercetin. Food Chem. 2008, 11, 580–585. [Google Scholar] [CrossRef]
- Da Rosa, C.G.; Borges, C.D.; Zambiazi, R.C.; Rutz, J.K.; da Luz, S.R.; Krumreich, F.D.; Benvenutti, E.V.; Nunes, M.R. Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). LWT 2014, 58, 527–533. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Medvidović-Kosanović, M.; Novak, I. Anthocyanin content and antioxidant activity of various red fruit juices. Dtsch. Lebensm.-Rundsch. 2007, 103, 58–64. [Google Scholar]
- Gorinstein, S.; Huang, D.; Leontowicz, H.; Leontowicz, M.; Yamamoto, K.; Soliva-Fortuny, R.; Trakhtenberg, S. Determination of naringin and hesperidin in citrus fruit by high-performance liquid chromatography. The antioxidant potential of citrus fruit. Acta Chromatogr. 2006, 17, 108–124. [Google Scholar]
- Dong, R.; Yu, Q.; Liao, W.; Liu, S.; He, Z.; Hu, X.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity. Food Chem. 2021, 339, 127879. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, S.; Jo, Y.; Jin, C.H.; Nam, B.; Lee, S.Y.; Jeong, S.; Im, S.; Oh, S.C.; Cho, L.; et al. Comparison of phytochemicals and antioxidant activity in blackberry (Rubus fruticosus L.) fruits of mutant lines at the different harvest time. Plant Breed. Biotechnol. 2016, 4, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agr. Food Chem. 2011, 59, 43–49. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Netzel, G.; Wang, D.; Flanagan, B.M.; D’Arcy, B.R.; Gidley, M.J. Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chemi. 2015, 171, 388–396. [Google Scholar] [CrossRef]
- Bordenave, N.; Hamaker, B.R.; Ferruzzi, M.G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 2014, 5, 18–34. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues–Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, J.; Ye, F.; Zhao, G. Non-covalent interaction between ferulic acid and arabinan-rich pectic polysaccharide from rapeseed meal. Int. J. Bio. Macromol. 2017, 103, 307–315. [Google Scholar] [CrossRef]
- Fernandes, A.; Brás, N.F.; Mateus, N.; de Freitas, V. Understanding the molecular mechanism of anthocyanin binding to pectin. Langmuir 2014, 30, 8516–8852. [Google Scholar] [CrossRef] [PubMed]
- Murali, S.; Patel, A.S.; Kar, A. Storage stability of encapsulated black carrot powder prepared using spray and freeze-drying techniques. Curr. Agric. Res. J. 2019, 7, 261–267. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Aburto, J.; Moran, M.; Galano, A.; Torres-García, E. Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach. J. Anal. Appl. Pyrolysis 2015, 112, 94–104. [Google Scholar] [CrossRef]
- Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR Spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys. 2012, 8, 29–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelwahab, O.; Amin, N.K. Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies. Egypt. J. Aquat. Res. 2013, 39, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Prior, R.L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Ivić, I.; Kopjar, M.; Jakobek, L.; Jukić, V.; Korbar, S.; Marić, B.; Mesić, J.; Pichler, A. Influence of processing parameters on phenolic compounds and color of Cabernet Sauvignon red wine concentrates obtained by reverse osmosis and nanofiltration. Process. 2021, 9, 89. [Google Scholar] [CrossRef]
- Blando, F.; Gerardi, C.; Renna, M.; Castellano, S.; Serio, F. Characterisation of bioactive compounds in berries from plants grown under innovative photovoltaic greenhouses. J. Berry Res. 2018, 8, 55–69. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1994, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Sci. Food Agric. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
CF_1%/B | CF_2%/B | CF_4%/B |
---|---|---|
After preparation | ||
0.38 | 0.34 | 0.32 |
After storage | ||
0.45 | 0.40 | 0.40 |
TPC (mg GAE/L) | 647.4 ± 10.3 |
PC (mg PB2E/L) | 6.37 ± 0.81 |
DPPH (µmol TE/100 mL) | 2.39 ± 0.05 |
ABTS (µmol TE/100 mL) | 5.55 ± 0.08 |
FRAP (µmol TE/100 mL) | 0.57 ± 0.02 |
CUPRAC (µmol TE/100 mL) | 30.30 ± 0.31 |
Individual polyphenols (mg/mL) | |
Cyanidin 3-glucoside | 573.86 ± 3.02 |
Cyanidin 3-dioxalylglucoside | 212.76 ± 0.60 |
Ellagic acid | 40.80 ± 0.11 |
p-Coumaric acid | 41.10 ± 0.00 |
Caffeic acid | 3.85 ± 0.04 |
Chlorogenic acid | 31.50 ± 0.01 |
Gallic acid | 47.35 ± 0.30 |
Quercetin | 24.05 ± 0.02 |
Rutin | 4.95 ± 0.00 |
Samples | TPC (mg GAE/g) | PC (mg PB2E/g) |
---|---|---|
After preparation | ||
CF_1%/B | 12.89 ± 0.10 c | 1.90 ± 0.04 c |
CF_2%/B | 7.49 ± 0.05 b | 1.54 ± 0.03 b |
CF_4%/B | 6.27 ± 0.01 a | 1.15 ± 0.02 a |
After storage | ||
CF_1%/B | 6.47 ± 0.17 b | 1.42 ± 0.00 c |
CF_2%/B | 5.24 ± 0.11 a | 1.13 ± 0.02 b |
CF_4%/B | 4.96 ± 0.02 a | 0.93 ± 0.02 a |
Polyphenols | CF_1%/B | CF_2%/B | CF_4%/B |
---|---|---|---|
After preparation | |||
Cyanidin 3-glucoside | 246.45 ± 2.33 b | 243.57 ± 5.76 b | 160.78 ± 0.30 a |
Cyanidin 3-dioxalylglucoside | 31.45 ± 0.04 c | 22.67 ± 0.04 b | 20.51 ± 0.02 a |
Ellagic acid | 50.11 ± 0.47 c | 32.23 ± 1.27 b | 22.96 ± 0.08 a |
Quercetin | 33.77 ± 0.33 c | 22.59 ± 0.15 b | 20.43 ± 0.12 a |
Hesperidin | 1571.65 ± 4.33 c | 1422.25 ± 3.67 b | 1371.88 ± 9.38 a |
After storage | |||
Cyanidin 3-glucoside | 213.36 ± 0.22 b | 215.12 ± 2.40 b | 138.32 ± 2.35 a |
Cyanidin 3-dioxalylglucoside | 25.07 ± 0.20 b | 26.18 ± 0.06 c | 22.19 ± 0.08 a |
Ellagic acid | 44.55 ± 0.55 c | 32.78 ± 0.39 b | 21.94 ± 0.73 a |
Quercetin | 24.75 ± 0.02 c | 22.37 ± 0.07 b | 20.11 ± 0.05 a |
Hesperidin | 1358.84 ± 4.29 b | 1379.66 ± 15.13 b | 1317.59 ± 12.79 a |
Samples | DPPH | ABTS | FRAP | CUPRAC |
---|---|---|---|---|
After preparation | ||||
CF_1%/B | 50.39 ± 1.54 b | 52.83 ± 0.03 c | 9.71 ± 0.51 b | 515.00 ± 10.00 b |
CF_2%/B | 47.86 ± 1.96 b | 45.35 ± 0.08 b | 8.89 ± 0.60 b | 509.00 ± 12.00 b |
CF_4%/B | 36.48 ± 1.77 a | 29.60 ± 0.14 a | 6.65 ± 0.36 a | 362.00 ± 4.00 a |
After storage | ||||
CF_1%/B | 49.84 ± 1.13 c | 51.30 ± 0.03 c | 9.13 ± 0.47 c | 509.41 ± 2.57 c |
CF_2%/B | 45.07 ± 0.71 b | 37.58 ± 0.74 b | 8.02 ± 0.10 b | 453.81 ± 1.50 b |
CF_4%/B | 35.48 ± 0.38 a | 24.78 ± 0.47 a | 6.30 ± 0.19 a | 351.34 ± 2.79 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules 2021, 26, 4400. https://doi.org/10.3390/molecules26154400
Buljeta I, Pichler A, Šimunović J, Kopjar M. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules. 2021; 26(15):4400. https://doi.org/10.3390/molecules26154400
Chicago/Turabian StyleBuljeta, Ivana, Anita Pichler, Josip Šimunović, and Mirela Kopjar. 2021. "Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes" Molecules 26, no. 15: 4400. https://doi.org/10.3390/molecules26154400
APA StyleBuljeta, I., Pichler, A., Šimunović, J., & Kopjar, M. (2021). Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes. Molecules, 26(15), 4400. https://doi.org/10.3390/molecules26154400