Potential Assessment of UGT2B17 Inhibition by Salicylic Acid in Human Supersomes In Vitro
Abstract
:1. Introduction
2. Results and Discussion
2.1. UGT2B17 Assay Analytical Wavelength Selection
2.2. UGT2B17 Assay Method Development
2.3. UGT2B17 Assay Method Validation
2.3.1. Selectivity and Specificity
2.3.2. Robustness Tests
Flow Rate Alteration
Column Temperature Alteration
2.3.3. Linearity and Range
Calibration Curve of Testosterone Glucuronide
Calibration Curve of Testosterone
2.3.4. Limit of Detection and Limit of Quantitation (LOD and LOQ)
2.3.5. Precision
Testosterone Intra-Assay Precision
Testosterone Glucuronide Intra-Assay Precision
Testosterone Inter-Assay Precision
Testosterone Glucuronide Inter-Assay Precision
2.3.6. Stability Test
Stability Test of Testosterone (Substrate of UGT2B17 Enzyme)
Stability Test of Testosterone Glucuronide (Metabolite of UGT2B17 Enzyme)
2.4. In Vitro Potential Assessment of UGT2B17 Enzyme Activity Inhibition by Salicylic Acid
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Human UGT2B17 Supersomes
3.3. High Performance Liquid Chromatography (HPLC) Conditions
3.4. Potential Assessment of UGT2B17 Assay Inhibition by Salicylic Acid In Vitro
3.5. Preparation of Analyte and Metabolite Standards
3.5.1. Salicylic Acid and Testosterone Stock and Standard Solutions Preparation
3.5.2. Testosterone Glucuronide Stock and Standard Solution Preparation
3.6. Mobile Phase Composition
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jenkinson, C.; Petroczi, A.; Naughton, D.P. Red wine and component flavonoids inhibit UGT2B17 in vitro. Nutr. J. 2012, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, C.; Petroczi, A.; Naughton, D.P. Effects of Dietary Components on Testosterone Metabolism via UDP-Glucuronosyltransferase. Front. Endocrinol. 2013, 4, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkinson, C.; Petroczi, A.; Barker, J.; Naughton, D.P. Dietary green and white teas suppress UDP-glucuronosyltransferase UGT2B17 mediated testosterone glucuronidation. Steroids 2012, 77, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Jančová, P.; Anzenbacher, P.; Anzenbacherova, E. Phase II Drug Metabolizing Enzymes. Biomed. Pap. 2010, 154, 103–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodges, R.E.; Minich, D.M. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J. Nutr. Metab. 2015, 2015, 760689. [Google Scholar] [CrossRef] [PubMed]
- Manevski, N.; Swart, P.; Balavenkatraman, K.K.; Bertschi, B.; Camenisch, G.; Kretz, O.; Schiller, H.; Walles, M.; Ling, B.; Wettstein, R.; et al. Phase II Metabolism in Human Skin: Skin Explants Show Full Coverage for Glucuronidation, Sulfation, N-Acetylation, Catechol Methylation, and Glutathione Conjugation. Drug Metab. Dispos. 2014, 43, 126–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jancova, P. Topics on Drug Metabolism; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Lakehal, F.; Wendum, D.; Becquemont, L.; Poupon, R.; Balladur, P.; Hannoun, L.; Beaune, P.H.; Housset, C. Phase I and Phase II drug-metabolizing enzymes are expressed and heterogeneously distributed in the biliary epithelium. Hepatology 1999, 30, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Dachineni, R.; Kumar, D.R.; Callegari, E.; Kesharwani, S.S.; Sankaranarayanan, R.; Seefeldt, T.; Tummala, H.; Bhat, G.J. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin’s chemopreventive effects against colorectal cancer. Int. J. Oncol. 2017, 51, 1661–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salhab, H.; Naughton, D.P.; Barker, J. Validation of an HPLC Method for the Simultaneous Quantification of Metabolic Reaction Products Catalysed by CYP2C11 Enzymes in Rat Liver Microsomes: In Vitro Inhibitory Effect of Salicylic Acid on CYP2C11 Enzyme. Molecules 2019, 24, 4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salhab, H.; Naughton, D.P.; Barker, J. Validation of an HPLC Method for the Simultaneous Quantification of Metabolic Reaction Products Catalysed by CYP2E1 Enzyme Activity: Inhibitory Effect of Cytochrome P450 Enzyme CYP2E1 by Salicylic Acid in Rat Liver Microsomes. Molecules 2020, 25, 932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, C.; De La Torre, R.; Segura, J.; Ventura, R. Stability studies of testosterone and epitestosterone glucuronides in urine. Rapid Commun. Mass Spectrom. 2006, 20, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Zhang, C.-Z.; Ran, R.-X.; Cao, Y.-F.; Du, Z.; Fu, Z.-W.; Huang, C.-T.; Zhao, Z.-Y.; Zhang, W.-H.; Fang, Z.-Z. In Vitro Comparative Study of the Inhibitory Effects of Mangiferin and Its Aglycone Norathyriol towards UDP-Glucuronosyl Transferase (UGT) Isoforms. Molecules 2017, 22, 1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picking, D.; Chambers, B.; Barker, J.; Shah, I.; Porter, R.; Naughton, D.P.; Delgoda, R. Inhibition of Cytochrome P450 Activities by Extracts of Hyptis verticillata Jacq.: Assessment for Potential HERB-Drug Interactions. Molecules 2018, 23, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Liu, Y.; Jeong, H. Drug-Drug Interaction Potentials of Tyrosine Kinase Inhibitors via Inhibition of UDP-Glucuronosyltransferases. Sci. Rep. 2015, 5, 17778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, M.; Jeong, J.; Ryu, J.; Cho, Y.; Kang, H. Pharmacokinetics and Brain Distribution of the Ac-tive Components of DA-9805, Saikosaponin A, Paeonol and Imperatorin in Rats. Pharmaceutics 2018, 10, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time (min) | Phosphate Buffer (pH = 3.8) (%) | Acetonitrile (%) | Methanol (%) |
---|---|---|---|
0.01 | 47 | 13 | 40 |
9.00 | 47 | 13 | 40 |
9.01 | 18 | 13 | 69 |
17.00 | 5 | 13 | 82 |
17.01 | 47 | 13 | 40 |
20.00 | 47 | 13 | 40 |
Flow Rate | UGT2B17 Components | Mean Retention Time (min) | Mean Peak Area (Mean ± σ) | Resolution |
---|---|---|---|---|
Gradient elution mode: normal conditions (flow rate = 1 mL/min) | UGT2B17 enzyme | 2.19 | 58,891.67 ± 4.40 | Better resolution obtained between five components (all compounds eluted earlier before 15 min). |
Salicylic acid (100 µM) | 3.18 | 30,131.33 ± 1.72 | ||
Phenacetin (50 µM) | 6.19 | 86,736.67 ± 2.50 | ||
Testosterone glucuronide (100 µM) | 9.43 | 186,348.70 ± 1.03 | ||
Testosterone (200 µM) | 14.40 | 442,266.30 ± 2.38 | ||
Gradient elution mode at a flow rate of 0.8 mL/min | UGT2B17 enzyme | 2.73 | 77,169.33 ± 0.36 | Good resolution obtained between five compounds (testosterone eluted after 15 min). |
Salicylic acid (100 µM) | 3.99 | 41,810.33 ± 5.30 | ||
Phenacetin (50 µM) | 7.73 | 107,386.70 ± 1.64 | ||
Testosterone glucuronide (100 µM) | 11.66 | 2,231,853.00 ± 5.02 | ||
Testosterone (200 µM) | 15.73 | 537,723.00 ± 0.64 |
Flow Rate | UGT2B17 Components | Mean Retention Time (min) | Mean Peak Area (Mean ± σ) | Resolution |
---|---|---|---|---|
Gradient elution mode: normal conditions (flow rate = 1 mL/min) | UGT2B17 enzyme | 2.19 | 58,891.67 ± 4.40 | UGT2B17 enzyme and salicylic acid were well separated (very good resolution) (difference in retention time = 1 min). |
Salicylic acid (100 µM) | 3.18 | 30,131.33 ± 1.72 | ||
Phenacetin (50 µM) | 6.19 | 86,736.67 ± 2.50 | ||
Testosterone glucuronide (100 µM) | 9.43 | 186,348.70 ± 1.03 | ||
Testosterone (200 µM) | 14.38 | 442,266.30 ± 2.38 | ||
Gradient elution mode (flow rate = 1.2 mL/min) | UGT2B17 enzyme | 2.73 | 45,843.33 ± 0.45 | Good separation between UGT2B17 enzyme and salicylic acid (difference in retention time = 0.81 min). |
Salicylic acid (100 µM) | 3.99 | 29,678.67 ± 1.62 | ||
Phenacetin (50 µM) | 7.73 | 72,981.67 ± 2.19 | ||
Testosterone glucuronide (100 µM) | 11.66 | 153,252.70 ± 1.24 | ||
Testosterone (200 µM) | 15.73 | 383,111.00 ± 2.85 |
Column Temperature | UGT2B17 Components | Mean Retention Time (min) | Mean Peak Area (Mean ± σ) | Resolution |
---|---|---|---|---|
Gradient elution mode at normal conditions (T = 25 °C) | UGT2B17 enzyme | 2.19 | 58,891.67 ± 4.40 | Very good separation for all components (resolution between UGT2B17 enzyme and salicylic acid was 1 min). |
Salicylic acid (100 µM) | 3.18 | 30,131.33 ± 1.72 | ||
Phenacetin (50 µM) | 6.19 | 86,736.67 ± 2.50 | ||
Testosterone glucuronide (100 µM) | 9.43 | 186,348.70 ± 1.03 | ||
Testosterone (200 µM) | 14.38 | 442,266.30 ± 2.38 | ||
Gradient elution mode (T = 30 °C) | UGT2B17 enzyme | 2.18 | 63,574.67 ± 4.19 | Good separation between all components (resolution between UGT2B17 enzyme and salicylic acid was 0.94 min). |
Salicylic acid (100 µM) | 3.12 | 30,386.33 ± 1.52 | ||
Phenacetin (50 µM) | 5.92 | 92,263.33 ± 4.94 | ||
Testosterone glucuronide (100 µM) | 8.54 | 178,039.00 ± 5.85 | ||
Testosterone (200 µM) | 14.21 | 456,677.30 ± 2.47 |
Column Temperature | UGT2B17 Components | Mean Retention Time (min) | Mean Peak Area (Mean ± σ) | Resolution |
---|---|---|---|---|
Gradient elution mode at normal conditions (T = 25 °C) | UGT2B17 enzyme | 2.19 | 58,891.67 ± 4.40 | All compounds were well separated (very good resolution) |
Salicylic acid (100 µM) | 3.18 | 30,131.33 ± 1.72 | ||
Phenacetin (50 µM) | 6.19 | 86,736.67 ± 2.50 | ||
Testosterone glucuronide (100 µM) | 9.43 | 186,348.70 ± 1.03 | ||
Testosterone (200 µM) | 14.38 | 442,266.3 ± 2.38 | ||
Gradient elution mode (T = 20 °C) | UGT2B17 enzyme | 2.20 | 61,039.00 ± 0.19 | Good separation between all components |
Salicylic acid (100 µM) | 3.25 | 28,490.33 ± 0.95 | ||
Phenacetin (50 µM) | 6.46 | 85,718.67 ± 3.15 | ||
Testosterone glucuronide (100 µM) | 10.39 | 175,511.00 ± 4.88 | ||
Testosterone (200 µM) | 14.56 | 426,661.30 ± 0.23 |
Analytes | Testosterone | Testosterone Glucuronide |
---|---|---|
Limit of Detection (LOD) | 6.42 μM | 2.76 μM |
Limit of Quantitation (LOQ) | 19.46 μM | 8.38 μM |
Testosterone Standard | Theoretical Concentration (µM) | Standard Deviation (std) | Percentage Error (% error) |
---|---|---|---|
Low activity (C = 25 µM) | 26.44 | 0.43 | 1.64 |
Medium activity (C = 100 µM) | 95.53 | 1.19 | 1.24 |
High activity (C = 200 µM) | 178.67 | 4.09 | 2.29 |
Testosterone Glucuronide Analyte | Theoretical Concentration (µM) | Standard Deviation (std) | Percentage Error (% error) |
---|---|---|---|
Low activity (C = 10 µM) | 11.45 | 0.27 | 2.35 |
Moderate activity (C = 40 µM) | 39.19 | 0.57 | 1.45 |
High activity (C = 80 µM) | 75.24 | 0.91 | 1.20 |
Testosterone Analyte | Average Peak Area (n = 3 Each Level) | Theoretical Concentration (µM) | Standard Deviation (std) | Percentage Error (% Error) | |
---|---|---|---|---|---|
Low activity (C = 25 µM) | Day 1 | 0.51 | 23.78 | 1.65 | 6.93 |
Day 2 | 0.44 | ||||
Day 3 | 0.37 | ||||
Medium activity (C = 100 µM) | Day 1 | 2.42 | 96.32 | 2.34 | 2.42 |
Day 2 | 2.13 | ||||
Day 3 | 1.78 | ||||
High activity (C = 200 µM) | Day 1 | 4.97 | 201.00 | 20.09 | 10.00 |
Day 2 | 4.32 | ||||
Day 3 | 4.16 |
Testosterone Glucuronide Analyte | Average Peak Area (n = 3 Each Level) | Theoretical Concentration (µM) | Standard Deviation (std) | Percentage Error (% Error) | |
---|---|---|---|---|---|
Low activity (C = 10 µM) | Day 1 | 1.43 | 11.08 | 0.31 | 2.82 |
Day 2 | 1.74 | ||||
Day 3 | 1.05 | ||||
Medium activity (C = 40 µM) | Day 1 | 0.72 | 37.35 | 1.30 | 3.49 |
Day 2 | 0.86 | ||||
Day 3 | 0.53 | ||||
High activity (C = 80 µM) | Day 1 | 0.17 | 71.88 | 2.79 | 3.88 |
Day 2 | 0.21 | ||||
Day 3 | 0.13 |
Stability Test Parameters | Testosterone Glucuronide Actual Concentration (µM) | |||
---|---|---|---|---|
10 | 40 | 80 | ||
Theoretical concentration (µM) | 0 h | 9.44 | 37.78 | 72.17 |
48 h | 9.44 | 37.78 | 74.04 | |
72 h | 9.29 | 37.67 | 73.08 | |
% Recovery a | 48 h | 100.00 | 100.00 | 102.59 |
72 h | 98.42 | 99.72 | 101.26 | |
Accuracy b (%) | 0 h | 105.58 | 105.56 | 109.79 |
48 h | 105.58 | 105.56 | 107.45 | |
72 h | 107.08 | 105.83 | 108.65 |
Pharmacokinetic Parameters | 0 µM Salicylic Acid | 15 µM Salicylic Acid | 25 µM Salicylic Acid | 40 µM Salicylic Acid |
---|---|---|---|---|
Km (µM) | 259.74 ± 2.14 | 61.58 ± 0.068 | 119.90 ± 0.99 | 98.19 ± 0.81 |
Vmax (µM−1 min−1) | 0.40 ± 1.77 | 0.092 ± 0.86 | 0.16 ± 0.73 | 0.15 ± 0.65 |
Clint (µM−2 min−1) | 0.0015 ± 4.48 | 0.0015 ± 0.30 | 0.0014 ± 5.07 | 0.0015 ± 4.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salhab, H.; Naughton, D.P.; Barker, J. Potential Assessment of UGT2B17 Inhibition by Salicylic Acid in Human Supersomes In Vitro. Molecules 2021, 26, 4410. https://doi.org/10.3390/molecules26154410
Salhab H, Naughton DP, Barker J. Potential Assessment of UGT2B17 Inhibition by Salicylic Acid in Human Supersomes In Vitro. Molecules. 2021; 26(15):4410. https://doi.org/10.3390/molecules26154410
Chicago/Turabian StyleSalhab, Hassan, Declan P. Naughton, and James Barker. 2021. "Potential Assessment of UGT2B17 Inhibition by Salicylic Acid in Human Supersomes In Vitro" Molecules 26, no. 15: 4410. https://doi.org/10.3390/molecules26154410
APA StyleSalhab, H., Naughton, D. P., & Barker, J. (2021). Potential Assessment of UGT2B17 Inhibition by Salicylic Acid in Human Supersomes In Vitro. Molecules, 26(15), 4410. https://doi.org/10.3390/molecules26154410