Kabuli and Apulian black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Chickpea Hulls
2.2. Nutritional Composition of GF Fresh Pasta
2.3. Cooking Properties and Firmness of GF Fresh Pasta
2.4. Characteristics of Raw and Cooked GF Fresh Pasta
2.5. Sensory Liking
3. Materials and Methods
3.1. Materials
3.2. Fresh Pasta Production
3.3. Determination of Proximate Composition
3.4. Determination of Bioactive Compounds
3.5. Determination of Total Phytates
3.6. Determination of Raffinose Family Oligosaccharides and Soluble Sugars
3.7. Colour Determination
3.8. Cooking Properties
3.9. Firmness Determination
3.10. Sensory Liking
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fuad, T.; Prabhasankar, P. Role of ingredients in pasta product quality: A review on recent developments. Crit. Rev. Food Sci. Nutr. 2010, 50, 787–798. [Google Scholar] [CrossRef]
- Italian Republic. Decreto del Presidente della Repubblica (DPR) 9 febbraio 2001, n. 187. Regolamento per la revisione della normativa sulla produzione e commercializzazione di sfarinati e paste alimentari, a norma dell’articolo 50 della legge 22 febbraio 1994, n. 146; Ministry of Agricultural, Food and Forestry Policies: Rome, Italy, 2001.
- Pagani, M.A.; Lucisano, M.; Mariotti, M. Traditional Italian products from wheat and other starchy flours. In Handbook of Food Products Manufacturing, 1st ed.; Hui, Y.I., Ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007; Volume 2, pp. 327–388. [Google Scholar]
- Pasqualone, A.; Punzi, R.; Trani, A.; Summo, C.; Paradiso, V.M.; Caponio, F.; Gambacorta, G. Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. Int. J. Food Sci. Technol. 2017, 52, 2078–2087. [Google Scholar] [CrossRef]
- Mariotti, M.; Iametti, S.; Cappa, C.; Rasmussen, P.; Lucisano, M. Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the uncooked products. J. Cereal Sci. 2011, 53, 319–327. [Google Scholar] [CrossRef]
- Thompson, T.; Dennis, M.; Higgins, L.A.; Lee, A.R.; Sharrett, M.K. Gluten-free diet survey: Are Americans with coeliac disease consuming recommended amounts of fibre, iron, calcium and grain foods? J. Hum. Nutr. Diet. 2005, 18, 163–169. [Google Scholar] [CrossRef]
- Llavata, B.; Albors, A.; Martin-Esparza, M.E. High fibre gluten-free fresh pasta with tiger nut, chickpea and fenugreek: Technofunctional, sensory and nutritional properties. Foods 2020, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fradinho, P.; Niccolai, A.; Soares, R.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020, 45, 101743. [Google Scholar] [CrossRef]
- Martínez, M.L.; Marín, M.A.; Gili, R.D.; Penci, M.C.; Ribotta, P.D. Effect of defatted almond flour on cooking, chemical and sensorial properties of gluten-free fresh pasta. Int. J. Food Sci. 2017, 52, 2148–2155. [Google Scholar] [CrossRef]
- Summo, C.; De Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Nutritional, physico-chemical and functional characterization of a global chickpea collection. J. Food Compos. Anal. 2019, 84, 103306. [Google Scholar] [CrossRef]
- Pavan, S.; Lotti, C.; Marcotrigiano, A.R.; Mazzeo, R.; Bardaro, N.; Bracuto, V.; Taranto, F.; D’Agostino, N.; Schiavulli, A.; De Giovanni, C.; et al. Distinct genetic cluster in cultivated chickpea as revealed by genome-wide marker discovery and genotyping. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; De Angelis, D.; Squeo, G.; Difonzo, G.; Caponio, F.; Summo, C. The effect of the addition of Apulian black chickpea flour on the nutritional and qualitative properties of durum wheat-based bakery products. Foods 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Summo, C.; De Angelis, D.; Rochette, I.; Mouquet-Rivier, C.; Pasqualone, A. Influence of the preparation process on the chemical composition and nutritional value of canned purée of kabuli and Apulian black chickpeas. Heliyon 2019, 5, e01361. [Google Scholar] [CrossRef] [Green Version]
- De Pasquale, I.; Verni, M.; Verardo, V.; Gómez-Caravaca, A.M.; Rizzello, C.G. Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification. Foods 2021, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Niño-Medina, G.; Muy-Rangel, D.; Urías-Orona, V. Chickpea (Cicer arietinum) and soybean (Glycine max) hulls: Byproducts with potential use as a source of high value-added food products. Waste Biomass Valori 2017, 8, 1199–1203. [Google Scholar] [CrossRef]
- Aguilera, Y.; Mojica, L.; Rebollo-Hernanz, M.; Berhow, M.; De Mejía, E.G.; Martín-Cabrejas, M.A. Black bean coats: New source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage. Food Chem. 2016, 212, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Panozzo, J.; Pittock, C.; Ford, R. Quantitative trait loci analysis of seed coat color components for selective breeding in chickpea (Cicer arietinum L.). Can. J. Plant Sci. 2011, 91, 49–55. [Google Scholar] [CrossRef]
- Xu, B.J.; Yuan, S.H.; Chang, S.K.C. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci. 2007, 72, S167–S177. [Google Scholar] [CrossRef]
- Zhong, L.; Fang, Z.; Wahlqvist, M.L.; Wu, G.; Hodgson, J.M.; Johnson, S.K. Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends Food Sci. Technol. 2018, 80, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Clemente, A.; Olias, R. Beneficial effects of legumes in gut health. Curr. Opin. Food Sci. 2017, 14, 32–36. [Google Scholar] [CrossRef]
- Ojo, M.A. Phytic acid in legumes: A review of nutritional importance and hydrothermal processing effect on underutilised species. Food Res. 2020, 5, 22–28. [Google Scholar] [CrossRef]
- Peterbauer, T.; Richter, A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res. 2001, 11, 185–197. [Google Scholar] [CrossRef]
- Naczk, M.; Amarowicz, R.; Shahidi, F. Alpha-galactosides of sucrose in foods: Composition, flatulence-causing effects, and removal. In Antinutrients and Phytochemicals in Food; Shahidi, F., Ed.; ACS Publications: Washington, DC, USA, 1997; Volume 8, pp. 127–151. [Google Scholar] [CrossRef]
- Swennen, K.; Courtin, C.M.; Delcour, J.A. Non-digestible oligosaccharides with prebiotic properties. Crit. Rev. Food Sci. Nutr. 2006, 46, 459–471. [Google Scholar] [CrossRef]
- Liu, Y.; Ragaee, S.; Marcone, M.F.; Abdel-Aal, E.S.M. Effect of different cooking methods and heating solutions on nutritionally-important starch fractions and flatus oligosaccharides in selected pulses. Cereal Chem. 2020, 97, 1216–1226. [Google Scholar] [CrossRef]
- Alonso, B.O.; Rovir, R.F.; Vegas, C.A.; Pedrosa, M.M. The role of pulses in the present-day diet. Act. Diet. 2010, 14, 72–76. [Google Scholar]
- Patterson, C.A.; Curran, J.; Der, T. Effect of processing on antinutrient compounds in pulses. Cereal Chem. 2017, 94, 2–10. [Google Scholar] [CrossRef]
- Han, I.H.; Baik, B.K. Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound, and high hydrostatic pressure. Cereal Chem. 2006, 83, 428–433. [Google Scholar] [CrossRef]
- Gangola, M.P.; Khedikar, Y.P.; Gaur, P.M.; Baga, M.; Chibbar, R.N. Genotype and growing environment interaction shows a positive correlation between substrates of raffinose family oligosaccharides (RFO) biosynthesis and their accumulation in chickpea (Cicer arietinum L.) seeds. J. Agric. Food Chem. 2013, 61, 4943–4952. [Google Scholar] [CrossRef]
- Karner, U.; Peterbauer, T.; Raboy, V.; Jones, D.A.; Hedley, C.L.; Richter, A. Myo-Inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds. J. Exp. Bot. 2004, 55, 1981–1987. [Google Scholar] [CrossRef]
- Segev, A.; Badani, H.; Kapulnik, Y.; Shomer, I.; Oren-Shamir, M.; Galili, S. Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J. Food Sci. 2010, 75, S115–S119. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.; Summo, C.; Centrone, M.; Rybicka, I.; D’Agostino, M.; Annicchiarico, P.; Caponio, F.; Pavan, S.; Tamma, G.; Pasqualone, A. Macro-and micro-nutrient composition and antioxidant activity of chickpea and pea accessions. Pol. J. Food Nutr. Sci. 2021, 71, 177–185. [Google Scholar] [CrossRef]
- Kaya, E.; Tuncel, N.Y.; Tuncel, N.B. Utilization of lentil, pea, and faba bean hulls in Turkish noodle production. J. Food Sci. Techol. 2018, 55, 1734–1745. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Banerjee, R.; Sharma, B.D. Quality of low fat chicken nuggets: Effect of sodium chloride replacement and added chickpea (Cicer arietinum L.) hull flour. Asian-Australas. J. Anim. Sci. 2012, 25, 291. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Regulation (EC) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers Amending Regulations (EC) No. 1924/2006 and (EC) No. 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No. 608/2004. Off. J. Eur. Union 2011, 304, 18–63. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF (accessed on 22 July 2021).
- Ni, Q.; Ranawana, V.; Hayes, H.E.; Hayward, N.J.; Stead, D.; Raikos, V. Addition of broad bean hull to wheat flour for the development of high-fiber bread: Effects on physical and nutritional properties. Foods 2020, 9, 1192. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Herald, T.J.; Wang, D.; Wilson, J.D.; Bean, S.R.; Aramouni, F.M. Characterization of sorghum grain and evaluation of sorghum flour in a Chinese egg noodle system. J. Cereal Sci. 2012, 55, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Sharma, S.; Nagi, H.P.S.; Dar, B.N. Functional properties of pasta enriched with variable cereal brans. J. Food Sci. Techol. 2012, 49, 467–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, C.S.; Tudorica, C.M. Fresh pasta quality as affected by enrichment of non-starch polysaccharides. J. Food Sci. 2007, 72, S659–S665. [Google Scholar] [CrossRef] [PubMed]
- Tudorica, C.M.; Kuri, V.; Brennan, C.S. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Bustos, M.C.; Pérez, G.T.; León, A.E. Effect of four types of dietary fiber on the technological quality of pasta. Food Sci. Technol. Int. 2011, 17, 213–221. [Google Scholar] [CrossRef]
- De Almeida Costa, G.E.; da Silva Queiroz-Monici, K.; Reis, S.M.P.M.; de Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Manthey, F.A.; Yalla, S.R.; Dick, T.J.; Badaruddin, M. Extrusion properties and cooking quality of spaghetti containing buckwheat bran flour. Cereal Chem. 2004, 81, 232–236. [Google Scholar] [CrossRef]
- Chung, H.J.; Cho, A.; Lim, S.T. Effect of heat-moisture treatment for utilization of germinated brown rice in wheat noodle. LWT 2012, 47, 342–347. [Google Scholar] [CrossRef]
- Song, X.; Zhu, W.; Pei, Y.; Ai, Z.; Chen, J. Effects of wheat bran with different colors on the qualities of dry noodles. J. Cereal Sci. 2013, 58, 400–407. [Google Scholar] [CrossRef]
- Sanz-Penella, J.M.; Haros, M. Whole grain and phytate-degrading human bifidobacteria. In Wheat and Rice in Disease Prevention and Health, 1st ed.; Watson, R., Preedy, V., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 1, pp. 17–31. [Google Scholar] [CrossRef]
- Plaami, S.; Kumpulainen, J. Inositol phosphate content of some cereal-based foods. J. Food Compos. Anal. 1995, 8, 324–335. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Cooking effect on the bioactive compounds, texture, and color properties of cold-extruded rice/bean-based pasta supplemented with whole carob fruit. Foods 2020, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Fois, S.; Campus, M.; Piu, P.P.; Siliani, S.; Sanna, M.; Roggio, T.; Catzeddu, P. Fresh pasta manufactured with fermented whole wheat semolina: Physicochemical, sensorial, and nutritional properties. Foods 2019, 8, 422. [Google Scholar] [CrossRef] [Green Version]
- Anton, A.; Fulcher, R.S. Physical and nutritional impact of fortification of corn starch based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 133, 989–996. [Google Scholar] [CrossRef]
- Laleg, K.; Cassan, D.; Barron, C.; Prabhasankar, P.; Micard, V. Structural, culinary, nutritional and anti-nutritional properties of high protein, gluten free, 100% legume pasta. PLoS ONE 2016, 11, e0160721. [Google Scholar] [CrossRef]
- Levent, H. Physical, chemical and sensory evaluation of gluten-free tarhana with legume hulls and flours. Qual. Assur. Saf. Crop. Foods 2019, 11, 401–409. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M. Production trials to improve the nutritional quality of biscuits and to enrich them with natural anthocyanins. CyTA-J. Food 2013, 11, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F.; Blanco, A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015, 180, 64–70. [Google Scholar] [CrossRef]
- De Angelis, D.; Pasqualone, A.; Allegretta, I.; Porfido, C.; Terzano, R.; Squeo, G.; Summo, C. Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse. Heliyon 2021, 7, e06177. [Google Scholar] [CrossRef] [PubMed]
- AACC. Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Pasqualone, A.; Gambacorta, G.; Summo, C.; Caponio, F.; Di Miceli, G.; Flagella, Z.; Marrese, P.P.; Piro, G.; Perrotta, C.; De Bellis, L.; et al. Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chem. 2016, 213, 545–553. [Google Scholar] [CrossRef] [PubMed]
- ISO. ISO 8587: Sensory Analysis—Methodology-Ranking; ISO: Geneva, Switzerland, 2006. [Google Scholar]
Parameter | ABH | KH |
---|---|---|
Proximate composition | ||
Carbohydrates (g/100 g d.m.) | 16.30 ± 0.70 a | 1.31 ± 0.68 b |
Total dietary fibres (g/100 g d.m.) | 65.26 ± 0.69 b | 82.75 ± 0.67 a |
Proteins (g/100 g d.m.) | 11.26 ± 0.12 a | 7.85 ± 0.08 b |
Lipids (g/100 g d.m.) | 2.48 ± 0.08 a | 1.22 ± 0.09 b |
Ashes (g/100 g d.m.) | 4.70 ± 0.04 b | 6.87 ± 0.02 a |
Anti-nutritional compounds | ||
Total phytates (mg/g phytic acid d.m.) | 3.82 ± 0.28 a | 1.83 ± 0.01 b |
Verbascose (mg/g d.m.) | 10.48 ± 0.55 | 1 n.d. |
Stachyose (mg/g d.m.) | 14.24 ± 0.88 a | 7.35 ± 0.16 b |
Raffinose (mg/g d.m.) | 25.44 ± 0.38 a | 9.94 ± 0.76 b |
Soluble sugars | ||
Sucrose (mg/g d.m.) | 18.5 ± 0.34 a | 9.4 ± 0.50 b |
Bioactive compounds | ||
Total phenolic compounds (mg/g ferulic acid d.m.) | 0.81 ± 0.01 a | 0.63 ± 0.03 b |
Total anthocyanins (mg/kg cyanidin 3-O-glucoside d.m.) | 225.64 ± 0.52 a | 64.77 ± 0.14 b |
Total carotenoids (mg/kg β-carotene d.m.) | 62.16 ± 0.10 a | 25.01 ± 0.59 b |
Antioxidant activity (µmol/g Trolox 2 d.m.) | 4.91 ± 0.17 a | 3.34 ± 0.09 b |
Colour characteristics | ||
L* | 51.07 ± 0.04 b | 67.90 ± 0.05 a |
a* | 0.62 ± 0.03 b | 4.69 ± 0.01 a |
b* | 9.19 ± 0.05 b | 21.12 ± 0.02 a |
Nutritional Parameter | Type of Pasta | ||
---|---|---|---|
Control | ABH-Enriched | KH-Enriched | |
Carbohydrates (g/100 g) | 59.80 ± 0.19 a | 52.35 ± 0.23 b | 52.89 ± 0.28 b |
Proteins (g/100 g) | 5.23 ± 0.07 b | 5.56 ± 0.06 a | 5.22 ± 0.01 b |
Lipids (g/100 g) | 0.42 ± 0.01 c | 0.51 ± 0.02 a | 0.46 ± 0.01 b |
Total dietary fibres (g/100 g) | 5.75 ± 0.26 c | 10.42 ± 0.20 b | 13.44 ± 0.28 a |
Ashes (g/100 g) | 0.62 ± 0.01 c | 0.92 ± 0.01 b | 1.24 ± 0.02 a |
Moisture (g/100g) | 28.17 ± 0.20 b | 30.23 ± 0.09 a | 26.75 ± 0.11 c |
Energy value (kcal/100 g) | 275.43 ± 0.52 a | 257.09 ± 0.44 c | 263.50 ± 0.70 b |
Parameters | Raw Fresh Pasta | Cooked Fresh Pasta | ||||
---|---|---|---|---|---|---|
Control | ABH | KH | Control | ABH | KH | |
Anti-nutritional compounds | ||||||
Total phytates (mg/g phytic acid d.m.) | 1.79 ± 0.04 ab | 1.31 ± 0.06 d | 1.41 ± 0.05 cd | 1.87 ± 0.14 a | 1.54 ± 0.17 bcd | 1.62 ± 0.04 abc |
Verbascose (mg/g d.m.) | 1 n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Stachyose (mg/g d.m.) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Raffinose (mg/g d.m.) | n.d. | 8.39 ± 0.08 a | n.d. | n.d. | 6.09 ± 0.37 b | n.d. |
Sucrose (mg/g d.m.) | 7.52 ± 0.2 d | 16.08 ± 0.68 a | 9.02 ± 0.76 c | 4.42 ± 0.28 e | 11.75 ± 0.76 b | 7.69 ± 0.07 cd |
Bioactive compounds | ||||||
Total phenolic compounds (mg/g ferulic acid d.m.) | 0.29 ± 0.01 b | 0.33 ± 0.02 a | 0.31 ± 0.01 ab | 0.14 ± 0.01 e | 0.24 ± 0.02 c | 0.18 ± 0.01 d |
Total anthocyanins (mg/kg cyanidin 3-O-glucoside d.m.) | n.d. | 33.37 ± 1.20 a | 2.87 ± 0.08 c | n.d. | 20.59 ± 0.11 b | n.d. |
Total carotenoids (mg/kg β-carotene d.m.) | 0.66 ± 0.00 e | 8.24 ± 0.04 a | 1.97 ± 0.04 c | 0.43 ± 0.02 f | 5.86 ± 0.05 b | 1.71 ± 0.05 d |
Antioxidant activity (µmol/g Trolox 2 d.m.) | 1.48 ± 0.06 c | 2.15 ± 0.06 a | 2.06 ± 0.02 ab | 1.24 ± 0.05 d | 1.92 ± 0.08 b | 1.44 ± 0.11 c |
Colour characteristics | ||||||
L* | 90.49 ± 0.84 a | 69.43 ± 1.60 d | 85.19 ± 0.62 b | 80.80 ± 1.17 c | 47.67 ± 0.51 e | 70.48 ± 0.77 d |
a* | −0.16 ± 0.12 c | 2.23 ± 0.11 b | 2.02 ± 0.30 b | −1.04 ± 0.12 d | 3.14 ± 0.33 a | 2.86 ± 0.09 a |
b* | 8.61 ± 0.42 c | 12.16 ± 0.51 b | 13.03 ± 0.86 b | 8.98 ± 0.64 c | 6.60 ± 0.39 d | 17.51 ± 0.78 a |
Parameters | p-Value | ||
---|---|---|---|
Fortification (F) | Cooking (K) | F × K | |
Anti-nutritional compounds | |||
Total phytates | p < 0.001 | p < 0.01 | p = 0.379 |
Verbascose | p < 0.001 | p < 0.001 | p < 0.05 |
Stachyose | p < 0.001 | p < 0.001 | p < 0.001 |
Raffinose | p < 0.001 | p < 0.001 | p < 0.001 |
Soluble sugars | |||
Sucrose | p < 0.001 | p < 0.001 | p < 0.001 |
Bioactive compounds | |||
Total phenolic compounds | p < 0.001 | p < 0.001 | p < 0.001 |
Total anthocyanins | p < 0.001 | p < 0.001 | p < 0.001 |
Total carotenoids | p < 0.001 | p < 0.001 | p < 0.001 |
Antioxidant activity | p < 0.001 | p < 0.001 | p < 0.001 |
Colour characteristics | |||
L* | p < 0.001 | p < 0.001 | p < 0.001 |
a* | p < 0.001 | p < 0.01 | p < 0.001 |
b* | p < 0.001 | p = 0.308 | p < 0.001 |
Type of Pasta | |||
---|---|---|---|
Sensory Attribute | Control | ABH-Enriched | KH-Enriched |
Appearance | 28 a | 39 a | 35 a |
Colour | 26 a | 37 a | 39 a |
Smell | 27 a | 35 a | 40 a |
Texture | 38 a | 27 a | 37 a |
Taste | 30 a | 31 a | 41 a |
Aftertaste | 26 b | 33 ab | 43 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantini, M.; Summo, C.; Faccia, M.; Caponio, F.; Pasqualone, A. Kabuli and Apulian black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta. Molecules 2021, 26, 4442. https://doi.org/10.3390/molecules26154442
Costantini M, Summo C, Faccia M, Caponio F, Pasqualone A. Kabuli and Apulian black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta. Molecules. 2021; 26(15):4442. https://doi.org/10.3390/molecules26154442
Chicago/Turabian StyleCostantini, Michela, Carmine Summo, Michele Faccia, Francesco Caponio, and Antonella Pasqualone. 2021. "Kabuli and Apulian black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta" Molecules 26, no. 15: 4442. https://doi.org/10.3390/molecules26154442
APA StyleCostantini, M., Summo, C., Faccia, M., Caponio, F., & Pasqualone, A. (2021). Kabuli and Apulian black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta. Molecules, 26(15), 4442. https://doi.org/10.3390/molecules26154442