Natural Products from Madagascar, Socio-Cultural Usage, and Potential Applications in Advanced Biomedicine: A Concise Review
Abstract
:1. Introduction
2. Some Common Madagascan Natural Products
2.1. Vonenina
2.2. Lantana and Marigold
2.3. Katrafay
3. Vanilla and Masonjoany
3.1. Vanilla
3.2. Masonjoany
4. Nanomaterials in Advanced Biomedicine: Therapies of the Future?
Liposomes, Cat-Anionic Vesicles, and Nanotubes
5. Conclusive Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Clusius, C. Genus XII of the Pernicious Mushrooms. 1601. Available online: https://books.google.com.hk/books?hl=zh-CN&lr=&id=ZEm5-F2tmhUC&oi=fnd&pg=PA1&dq=Rariorum+plantarum+historia&ots=KyhGY2GC2s&sig=-IECn6VTHZ3YKQyDEsVw0lMHufM&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q&f=false (accessed on 23 June 2021).
- Linnaeus, C. Rariorum Plantarum Historia. Flora Svecica [suecica] Exhibens Plantas per Regnum Sueciae Crescentes Systematice cum Differentiis Specierum, Synonymis Autorum, No-Minibus Incolarum, Solo Locorum, usu Pharmacopæorum; Laurentii Salvii: Stockholm, Sweden, 1745. (In Latin) [Google Scholar]
- Zimmerman, A.D.; Parfitt, B.D. Lophophora williamsii. In Flora of North America Editorial Committee; Oxford University Press: Oxford, UK; New York, NY, USA, 1993; pp. 242–262. [Google Scholar]
- Cox, L.R. Thoughts on the classification of the Gasteropoda. J. Molluscan Stud. 1960, 33, 239–261. [Google Scholar]
- Piperno, D.R.; Ranere, A.J.; Holst, I.; Iriarte, J.; Dickau, R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. USA 2009, 106, 501–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verheye, I.W.H. Plant Breeding and Genetics; Soils, Plant Growth and Crop Production Volume; Eolss Publishers: Paris, France, 2010; pp. 1859–2024. [Google Scholar]
- Aiello, C.; Berardi, V.; Ricci, F.; Risuleo, G. Biological properties of a methanolic extract of neem oil, a natural oil from the seeds of the Neem Tree (Azadirachta indica var. A. Juss). In Nuts & Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: London, UK; Burlington, MA, USA; San Diego, CA, USA, 2011; Chapter 96; pp. 813–821. ISBN 978-0-12-375688-6. [Google Scholar]
- Risuleo, G. Biological properties of a partially purified component of Neem oil: An updated and revised work. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; Preedy, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 6; pp. 67–72. [Google Scholar] [CrossRef]
- La Mesa, C.; Corbo, A.; Gkouvi, A.; Risuleo, G. Bio-Active Principles from the Animal and Plant Kingdom: A Review. In Advance Research in Organic and Inorganic Chemistry (AROIC); Distributed under Creative Commons CC-BY 4.0; Corpus Publishers: Glenroy, Australia, 2020. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Boiteau, P.; Allorge-Boiteau, L. Plantes Médicinales de Madagascar: Cinquante-Huit Plantes Médicinales Utilisées sur le Marche de Tananarive (Zoma) à Madagascar; ACCT et Èdition Khartala: Paris, France, 1993; ISBN 2-86537-407-6. [Google Scholar]
- Van Der Heijden, R.; Jacobs, D.I.; Snoeijer, W.; Hallard, D.; Verpoorte, R. The Catharanthus alkaloids: Pharmacognosy and biotechnology. Curr. Med. Chem. 2004, 11, 607–628. [Google Scholar] [CrossRef] [PubMed]
- Keglevich, P.; Hazai, L.; Kalaus, G.; Szántay, C. Modifications on the basic skeletons of vinblastineee and vincristine. Molecules 2012, 17, 5893–5914, PMC 6268133. [Google Scholar] [CrossRef] [PubMed]
- Sears, J.E.; Boger, D.L. Total synthesis of vinblastineee, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure-function properties. Acc. Chem. Res. 2015, 48, 653–662, PMC 4363169. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.W. Taxonomy of Lantana sect Lantana (Verbenaceae): II Taxonomic revision. J. Bot. Res. Inst. Tex. 2012, 6, 403–441. [Google Scholar]
- Ramaroson-Raonizafinimanana, B.; Ramanoelina, P.A.R.; Rasoarahona, J.R.E.; Gaydou, E.M. Chemical Compositions of Aerial Part of Tagetes minuta L: Chemotype Essential Oils from Madagascar. J. Essent. Oil Res. 2009, 21, 390–392. [Google Scholar] [CrossRef]
- Hadfield, R.A.; Vlahovic, T.C.; Khan, M.T. The Use of Marigold Therapy for Podiatric Skin Conditions. Foot Ankle J. 2008, 1, 1–8. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Petitjean, A.M.; Ratsimamanga-Urverg, S.; Rakoto Ratsimamanga, A. Medicinal plants used to treat malaria in Madagascar. J. Ethnopharmacol. 1992, 37, 117–127. [Google Scholar] [CrossRef]
- Gupta, P.; Vasudeva, N. In vitro antiplasmodial and antimicrobial potential of Tagetes erecta roots. Pharm. Biol. 2010, 48, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Novy, J.W. Medicinal plants of the eastern region of Madagascar. J. Ethnopharmacol. 1997, 55, 119–126. [Google Scholar] [CrossRef]
- Koorbanally, N.A.; Randrianarivelojosia, M.; Mulholland, D.A.; Quarles van Ufford, L.; van den Berg, A.J.J. Chalcones from the seed of Cedrelopsis grevei (Ptaeroxylaceae). Phytochemistry 2003, 62, 1225–1229. [Google Scholar] [CrossRef]
- Mingorance, C.; Andriantsitohaina, R.; Alvarez de Sotomayor, M. Cedrelopsis grevei improves endothelial vasodilatation in aged rats through an increase of NO participation. J. Ethnopharmacol. 2008, 17, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Rakotobe, M.; Menut, C.; Sahondra, H.; Andrianoelisoa, H.S.; Rahajanirina, V.; Collas de Chatelperrond, P.; Roger, E.; Danthu, P. The Bark Essential Oil Composition and Chemotaxonomical Appraisal of Cedrelopsis grevei H. Baillon from Madagascar. Nat. Prod. Commun. 2008, 3, 1–6. [Google Scholar]
- Gobley, N.T. Recherches sur le principe odorant de la vanilla (Research on the fragrant substance of vanilla). J. Pharm. Chim. Ser. 1858, 34, 401–405. [Google Scholar]
- Raharivelomanana, P.; Bianchini, J.P.; Ramanoelina, A.R.P.; Rasoharahona, J.R.E.; Chatel, F.; Faure, R. Structures of cadinane- and guaiane-type sesquiterpenoids from Enterospermum madagascariensis (Baill.) Homolle. Magn. Reson. Chem. 2005, 43, 1049–1052. [Google Scholar] [CrossRef]
- Muzzalupo, R.; Nicoletta, F.P.; Trombino, S.; Cassano, R.; Iemma, F.; Picci, N. A new crown ether as vesicular carrier for 5-fluoruracil: Synthesis, characterization and drug delivery evaluation. Colloids Surf. B Biointerfaces 2007, 58, 197–202. [Google Scholar] [CrossRef]
- Vintiloiu, A.; Leroux, J.-C.J. Organogels and their use in drug delivery—A review. J. Controlled Release 2008, 125, 179–192. [Google Scholar] [CrossRef]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [Green Version]
- Lonez, C.; Vandenbranden, M.; Ruysschaert, J.M. Cationic liposomal lipids: From gene carriers to cell signaling. Prog. Lipid Res. 2008, 47, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Patri, A.K.; Simanek, E. Biological applications of dendrimers. Mol. Pharm. 2012, 5, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puligundla, P.; Mok, C.; Ko, S.; Liang, J.; Recharla, N. Nanotechnological approaches to enhance the bioavailability and therapeutic efficacy of green tea polyphenols. J. Funct. Foods 2017, 34, 139–151. [Google Scholar] [CrossRef]
- Patri, A.K.; Kukowska-Latallo, J.F.; Baker, J.R., Jr. Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev. 2005, 14, 2203–2214. [Google Scholar] [CrossRef] [PubMed]
- Self-Peng, F.; Zhang, W.; Qiu, F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr. Med. Chem. 2020, 27, 4855–4881. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A. Graphene: Safe or toxic? The two faces of the medal. Angew. Chem. Int. 2013, 52, 4986–4997. [Google Scholar] [CrossRef]
- Risuleo, G.; La Mesa, C. Nanoparticles and molecular delivery: State of the art and future perspectives. In Nutraceuticals in Veterinary Medicine; Springer: Cham, Switzerland, 2019; pp. 737–747. [Google Scholar] [CrossRef]
- La Mesa, C.; Risuleo, G. Colloid Stability Influences on the Biological Organization and Functions. Colloid Science. Karakus, S., Ed.; Available online: https://www.intechopen.com/online-first/ (accessed on 23 June 2021). [CrossRef] [Green Version]
- La Mesa, C.; Risuleo, G. Surfactant Mixtures: Performances vs. Aggregation States. In Surfactants and Detergents; Dutta, A., Ed.; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-78984-661-4. [Google Scholar] [CrossRef] [Green Version]
- Piccioni, F.; Borioni, A.; Delfini, M.; Del Giudice, M.R.; Mustazza, C.; Rodomonte, A.; Risuleo, G. Metabolic alterations in cultured mouse fibroblasts induced by an inhibitor of the tyrosine kinase receptors Fibroblast Growth Factor Receptor 1. Anal. Biochem. 2007, 367, 111–112. [Google Scholar] [CrossRef] [PubMed]
- Letizia, C.; Andreozzi, P.; Scipioni, A. Protein Binding onto Surfactant-Based Synthetic Vesicles. J. Phys. Chem. B 2007, 111, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Israelachvili, J.; Mitchell, D.J.; Ninham, B.W.J. Theory of self-assembly of hydrocar-bon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Berardi, V.; Aiello, C.; Bonincontro, A.; Risuleo, G. Alterations of the plasma membrane caused by murine polyomavirus proliferation: An electrorotation study. J. Membr. Biol. 2009, 229, 19–25. [Google Scholar] [CrossRef]
- Cosimati, R.; Milardi, G.L.; Bombelli, C.; Bonincontro, A.; Bordi, F.; Mancini, G.; Risuleo, G. Interactions of DMPC and DMPC/gemini liposomes with the cell membrane investigated by electrorotation. Biochim. Biophys. Acta 2013, 1828, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Stefanutti, E.; Papacci, F.; Sennato, S.; Bombelli, C.; Viola, I.; Bonincontro, A.; Bordi, F.; Mancini, G.; Gigli, G.; Risuleo, G. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage. Biochim. Biophys. Acta 2014, 1838, 2646–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonincontro, A.; Risuleo, G. Electrorotation: A Spectroscopic Imaging Approach to Study the Alterations of the Cytoplasmic Membrane. Adv. J. Mol. Imaging 2015, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kuo, J.H.; Jan, M.S.; Chang, C.H. Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells. Colloids Surf. B Biointerfaces 2005, 41, 189–196. [Google Scholar] [CrossRef]
- Vlachy, N.; Touraud, D.; Heilmann, J.; Kunz, W. Determining the cytotoxicity of catanionic surfactant mixtures on HeLa cells. Colloids Surf. B Biointerfaces 2009, 70, 278–280. [Google Scholar] [CrossRef]
- Aiello, C.; Andreozzi, P.; La Mesa, C.; Risuleo, G. Biological activity of SDS-CTAB cat-anionic vesicles in cultured cells and assessment of their cytotoxicity ending in apoptosis. J. Coll. Surf. B Biointerfaces 2010, 78, 149–154. [Google Scholar] [CrossRef]
- Lozano, N.; Perez, L.; Pons, R.; Pinazo, A. Diacyl glycerol arginine-based surfactants: Biological and physicochemical properties of catanionic formulations. Amino Acids 2011, 40, 721–729. [Google Scholar] [CrossRef]
- Russo, L.; Berardi, V.; Tardani, F.; La Mesa, C.; Risuleo, G. Delivery of RNA and its intracellular translation into protein mediated by SDS-CTAB vesicles: Potential use in nanobiotechnology. Biomed Res. Int. 2013, 734596. [Google Scholar] [CrossRef]
- Pucci, C.; Scipioni, A.; La Mesa, C. Albumin binding onto synthetic vesicles. Soft Matter 2012, 8, 9669–9675. [Google Scholar] [CrossRef]
- Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 2008, 41, 60–68. [Google Scholar] [CrossRef]
- Ji, D.K.; Ménard-Moyon, C.; Bianco, A. Physically triggered nanosystems based on two-dimensional materials for cancer theranostics. Adv. Drug Deliv. Rev. 2019, 138, 211–232. [Google Scholar] [CrossRef]
- Venkatesan, J.; Pallela, R.; Kim, S.K. Applications of carbon nanomaterials in bone tissue engineering. J. Biomed. Nanotecnol. 2014, 10, 3105–3123. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical applications of carbon-nanomaterials: Drug and gene delivery potentials. J. Cell Physiol. 2018, 234, 298–319. [Google Scholar] [CrossRef] [Green Version]
- Shtansky, D.V.; Firestein, K.L.; Golberg, D.V. Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale 2018, 10, 17477–17493. [Google Scholar] [CrossRef] [Green Version]
- Holt, B.D.; Shawky, J.H.; Dahl, K.N.; Davidson, L.A.; Islam, M.F. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes. J. Appl. Toxicol. 2016, 36, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Risuleo, G.; La Mesa, C. Dispersability of carbon nanotubes in biopolymer-based fluids and their potential biotechnological applications. Trends Nanotechnol. Mater. Sci. 2016, 1, 1–7. [Google Scholar]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, D.; Patnaik, S.; Sood, S.; Das, N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J. Pharm. Anal. 2019, 9, 293–300, PMCID:PMC6. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.N.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Pillay, V. Carbon Dots as Nanotherapeutics for Biomedical Application. Curr. Pharm. Des. 2020, 26, 2207–2221. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.H.K.; Chan, K.K.; Tjin, S.C.; Yong, K.T. Carbon Allotrope-Based Optical Fibers for Environmental and Biological Sensing: A Review. Sensors 2020, 5, 2040–2046, PMCID:PMC7180950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzi, L.; Ménard-Moyon, C.; Russier, J.; Ang, W.H.; Pastorin, G.; Risuleo, G.; Bianco, A. A Comparative study on the anticancer efficacy of two types of Functionalized Multi-walled carbon nanotubes filled with a cisplatin prodrug. Nanoscale 2015, 7, 5383–5394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzi, L.; Cadarsi, S.; Mouchet, F.; Pinelli, E.; Janowska, I.; Russier, J.; Ménard-Moyon, C.; Risuleo, G.; Soula, B.; Galibert, A.-M.; et al. Examining the impact of few-layer graphene using cellular and amphibian models. 2D Matter 2016, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Muzi, L.; Tardani, F.; La Mesa, C.; Bonincontro, A.; Bianco, A.; Risuleo, G. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines. Nanotechnology 2016, 15, 155704. [Google Scholar] [CrossRef] [PubMed]
- Zanni, E.; De Bellis, G.; Bracciale, M.P.; Broggi, A.; Santarelli, M.L.; Sarto, M.S.; Palleschi, C.; Uccelletti, D. Graphite nanoplatelets and Caenorhabditis elegans: Insights from an in vivo model. Nano Lett. 2012, 12, 2740–2744. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Dong, S.; Petersen, E.J. Biological uptake and depuration of radio-labeled graphene by Daphnia magna. Environ. Sci. Technol. 2013, 47, 12524–12531. [Google Scholar] [CrossRef]
- Pretti, C.; Oliva, M.; Di Pietro, R.; Monni, G.; Cevasco, G.; Chiellini, F.; Pomelli, C.; Chiappe, C. Ecotoxicity of pristine graphene to marine organisms. Ecotoxicol. Environ. Saf. 2014, 101, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Mouchet, F.; Landois, P.; Datsyuk, V.; Puech, P.; Pinelli, E.; Flahaut, E.; Gauthier, L. International amphibian micronucleus standardized procedure (ISO 21427-1) for in vivo evaluation of double-walled carbon nanotubes toxicity and genotoxicity in water. Environ. Toxicol. 2011, 26, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesa, C.L.; Ranalison, O.; Randriantseheno, L.N.; Risuleo, G. Natural Products from Madagascar, Socio-Cultural Usage, and Potential Applications in Advanced Biomedicine: A Concise Review. Molecules 2021, 26, 4507. https://doi.org/10.3390/molecules26154507
Mesa CL, Ranalison O, Randriantseheno LN, Risuleo G. Natural Products from Madagascar, Socio-Cultural Usage, and Potential Applications in Advanced Biomedicine: A Concise Review. Molecules. 2021; 26(15):4507. https://doi.org/10.3390/molecules26154507
Chicago/Turabian StyleMesa, Camillo La, Oliarinony Ranalison, Lovasoa N. Randriantseheno, and Gianfranco Risuleo. 2021. "Natural Products from Madagascar, Socio-Cultural Usage, and Potential Applications in Advanced Biomedicine: A Concise Review" Molecules 26, no. 15: 4507. https://doi.org/10.3390/molecules26154507
APA StyleMesa, C. L., Ranalison, O., Randriantseheno, L. N., & Risuleo, G. (2021). Natural Products from Madagascar, Socio-Cultural Usage, and Potential Applications in Advanced Biomedicine: A Concise Review. Molecules, 26(15), 4507. https://doi.org/10.3390/molecules26154507