Catalytic Diversity of GH30 Xylanases
Abstract
:1. Introduction
2. Results
2.1. Activity of GH30 Xylanases on 4-O-Methylglucuronoxylan and Its Derivatives
2.2. Action of GH30 Xylanases on Rho, AraX and Xyl4
2.3. Effect of MeGlcA Content on an Extent of GX Hydrolysis
3. Discussion
4. Materials and Methods
4.1. Substrates, Standards and Enzymes
4.2. Hydrolysis of Polysaccharides and Oligosaccharides
4.3. MALDI ToF MS
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St John, F.J.; González, J.M.; Pozharski, E. Consolidation of glycosyl hydrolase family 30: A dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett. 2010, 584, 4435–4441. [Google Scholar] [CrossRef] [Green Version]
- St John, F.J.; Rice, J.D.; Preston, J.F. Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J. Bacteriol. 2006, 188, 8617–8626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vršanská, M.; Kolenová, K.; Puchart, V.; Biely, P. Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS J. 2007, 274, 1666–1677. [Google Scholar] [CrossRef] [PubMed]
- Urbániková, Ľ.; Vršanská, M.; Mørkeberg Krogh, K.B.R.; Hoff, T.; Biely, P. Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. FEBS J. 2011, 278, 2105–2116. [Google Scholar] [CrossRef]
- St John, F.J.; Hurlbert, J.C.; Rice, J.D.; Preston, J.F.; Pozharski, E. Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase. J. Mol. Biol. 2011, 407, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Hurlbert, J.C.; Preston, J.F. Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi. J. Bacteriol. 2001, 183, 2093–2100. [Google Scholar] [CrossRef] [Green Version]
- Šuchová, K.; Kozmon, S.; Puchart, V.; Malovíková, A.; Hoff, T.; Mørkeberg Krogh, K.B.R.; Biely, P. Glucuronoxylan recognition by GH 30 xylanases: A study with enzyme and substrate variants. Arch. Biochem. Biophys. 2018, 643, 42–49. [Google Scholar] [CrossRef]
- Biely, P.; Malovíková, A.; Hirsch, J.; Mørkeberg Krogh, K.B.R.; Ebringerová, A. The role of the glucuronoxylan carboxyl groups in the action of endoxylanases of three glycoside hydrolase families: A study with two substrate mutants. Biochim. Biophys. Acta 2015, 1850, 2246–2255. [Google Scholar] [CrossRef]
- St John, F.J.; Dietrich, D.; Crooks, C.; Balogun, P.; de Serrano, V.; Pozharski, E.; Smith, J.K.; Bales, E.; Hurlbert, J. A plasmid borne, functionally novel glycoside hydrolase family 30 subfamily 8 endoxylanase from solventogenic Clostridium. Biochem. J. 2018, 475, 1533–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamichi, Y.; Watanabe, M.; Matsushika, A.; Inoue, H. Substrate recognition by a bifunctional GH30-7 xylanase B from Talaromyces cellulolyticus. FEBS Open Bio 2020, 10, 1180–1189. [Google Scholar] [CrossRef]
- Puchart, V.; Šuchová, K.; Biely, P. Xylanases of glycoside hydrolase family 30—An overview. Biotechnol. Adv. 2021, 47, 107704. [Google Scholar] [CrossRef]
- St John, F.J.; Crooks, C.; Dietrich, D.; Hurlbert, J. Xylanase 30 A from Clostridium thermocellum functions as a glucuronoxylan xylanohydrolase. J. Mol. Catal. B Enzym. 2016, 133, S445–S451. [Google Scholar] [CrossRef]
- Šuchová, K.; Puchart, V.; Biely, P. A novel bacterial GH30 xylobiohydrolase from Hungateiclostridium clariflavum. Appl. Microbiol. Biotechnol. 2021, 105, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Biely, P.; Puchart, V.; Stringer, M.A.; Mørkeberg Krogh, K.B.R. Trichoderma reesei XYN VI—A novel appendage dependent eukaryotic glucuronoxylan hydrolase. FEBS J. 2014, 281, 3894–3903. [Google Scholar] [CrossRef]
- Tenkanen, M.; Vršanská, M.; Siika-aho, M.; Wong, D.W.; Puchart, V.; Penttilä, M.; Saloheimo, M.; Biely, P. Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. FEBS J. 2013, 280, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Šuchová, K.; Puchart, V.; Spodsberg, N.; Mørkeberg Krogh, K.B.R.; Biely, P. A novel GH30 xylobiohydrolase from Acremonium alcalophilum releasing xylobiose from the non-reducing end. Enzyme Microb. Technol. 2020, 134, 109484. [Google Scholar] [CrossRef]
- Stringer, M.A.; Spodsberg, N.; Mørkeberg Krogh, K.B.R.; Biely, P. Polypeptides Having Xylanase Activity and Polynucleotides Encoding Same. U.S. 2014/0230097, 14 August 2016. [Google Scholar]
- Šuchová, K.; Biely, P.; Mørkeberg Krogh, K.B.R.; Puchart, V. Non-specific GH30_7 endo-β-1,4-xylanase from Talaromyces leycettanus. Molecules. under review.
- Valenzuela, S.V.; Diaz, P.; Pastor, F.I.J. Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl. Environ. Microbiol. 2012, 78, 3923–3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakka, M.; Tachino, S.; Katsuzaki, H.; van Dyk, J.S.; Pletschke, B.I.; Kimura, T.; Sakka, K. Characterization of Xyn30A and Axh43A of Bacillus licheniformis SVD1 identified by its genomic analysis. Enzyme Microb. Technol. 2012, 51, 193–199. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, Z.; Xu, J.; Chang, S.; Wu, B.; He, B. A family 30 glucurono-xylanase from Bacillus subtilis LC9: Expression, characterization and its application in Chinese bread making. Int. J. Biol. Macromol. 2018, 117, 377–384. [Google Scholar] [CrossRef]
- Padilha, I.Q.M.; Valenzuela, S.V.; Grisi, T.C.S.L.; Diaz, P.; de Araújo, D.A.M.; Pastor, F.I.J. A glucuronoxylan-specific xylanase from a new Paenibacillus favisporus strain isolated from tropical soil of Brazil. Int. Microbiol. 2014, 17, 175–184. [Google Scholar] [CrossRef]
- St John, F.J.; Dietrich, D.; Crooks, C.; Pozharski, E.; González, J.M.; Bales, E.; Smith, K.; Hurlbert, J.C. A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity. Acta Cryst. 2014, D70, 2950–2958. [Google Scholar] [CrossRef] [Green Version]
- Katsimpouras, C.; Dedes, G.; Thomaidis, N.S.; Topakas, E. A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity. Biotechnol. Biofuels 2019, 12, 120. [Google Scholar] [CrossRef] [Green Version]
- Nakamichi, Y.; Fouquet, T.; Ito, S.; Watanabe, M.; Matsushika, A.; Inoue, H. Structural and functional characterization of a GH30-7 xylanase B from the filamentous fungus Talaromyces cellulolyticus. J. Biol. Chem. 2019, 294, 4065–4078. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, K.; Eyzaguirre, J. Identification, heterologous expression and characterization of a novel glycoside hydrolase family 30 xylanase from the fungus Penicillium purpurogenum. Carbohydr. Res. 2018, 468, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yang, J.; Li, J.; Shi, P.; Huang, H.; Bai, Y.; Fan, Y.; Yao, B. Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY 1 that is homologous to family 30 glycosyl hydrolases. Appl. Microbiol. Biotechnol. 2010, 86, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, Y.; Fouquet, T.; Ito, S.; Matsushika, A.; Inoue, H. Mode of action of GH30-7 reducing-end xylose-releasing exoxylanase A (Xyn30A) from the filamentous fungus Talaromyces cellulolyticus. Appl. Environ. Microbiol. 2019, 85, e00552-19. [Google Scholar] [CrossRef] [Green Version]
- Nakamichi, Y.; Fujii, T.; Fouquet, T.; Matsushika, A.; Inoue, H. GH30-7 endoxylanase C from the filamentous fungus Talaromyces cellulolyticus. Appl. Environ. Microbiol. 2019, 85, e01442-19. [Google Scholar] [CrossRef]
- Ebringerová, A.; Kramár, A.; Rendoš, F.; Domanský, R. Stepwise extraction of hemicellulose from wood of white beech (Carpinus betulus L.). Holzforschung 1967, 21, 74–77. [Google Scholar] [CrossRef]
- Biely, P.; Vršanská, M.; Tenkanen, M.; Kluepfel, D. Endo-β-1,4-xylanases: Differences in catalytic properties. J. Biotechnol. 1997, 57, 151–166. [Google Scholar] [CrossRef]
- Biely, P.; Hirsch, J.; la Grange, D.C.; van Zyl, W.H.; Prior, B.A. A chromogenic substrate for a β-xylosidase-coupled assay of α-glucuronidase. Anal. Biochem. 2000, 286, 289–294. [Google Scholar] [CrossRef]
- Puchart, V.; Fraňová, L.; Mørkeberg Krogh, K.B.R.; Hoff, T.; Biely, P. Action of different types of endoxylanases on eucalyptus xylan in situ. Appl. Microbiol. Biotechnol. 2018, 102, 1725–1736. [Google Scholar] [CrossRef] [PubMed]
- Paleg, L.G. Citric acid interference in the estimation of reducing sugars with alkaline copper reagents. Anal. Chem. 1959, 31, 1092–1094. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
GH30 Subfamily | Arg | Specific Activity (U/mg) | % of Activity on GX * Exhibited on | Products Released From | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GX | Rho | AraX | GXE | GXR | GX | GXE | GXR | ||||
EcXyn30A | 8 | P | 46.7 | nd | nd | 0.3 | 0.3 | MeGlcA2Xyln | Me-MeGlcA2Xyln | MeGlc2Xyln | [8] |
BsXynC | 8 | P | 59.5 a | nd | nd | 0.6 | 0.2 | MeGlcA2Xyln | Me-MeGlcA2Xyln | MeGlc2Xyln | a [3], this study |
CtXyn30A | 8 | P | 17 b | nd | nd | 1.4 | nd | MeGlcA2Xyln | Me-MeGlcA2Xyln | MeGlc2Xyln | b [12], this study |
RcXyn30A | 8 | P | 21.7 | nd | nd | 0.03 | nd | MeGlcA2Xyln | Me-MeGlcA2Xyln | MeGlc2Xyln | this study |
CaXyn30A | 8 | N | 90.9 c | nt | 113 c | 156 | 72 | Xyl2-Xyl4, MeGlcA(Xyl)2–5 | Xyl2-Xyl4, Me-MeGlcA(Xyl)2–5 | Xyl2-Xyl4, MeGlc(Xyl)2–5 | c [13], this study |
TrXynVI | 7 | E | 5.2 | 0.1 | 0.078 | 2.8 | 1.1 | Xyl2-Xyl4, MeGlcA2Xyln | Xyl2-Xyl4, Me-MeGlcA2Xyln | Xyl2-Xyl4, MeGlc2Xyln | this study |
TlXyn30A | 7 | E | 12.4 | 3.1 | 3.5 | 29.7 | 28 | Xyln, MeGlcA2Xyln | Xyln, Me-MeGlcA(Xyl)n | Xyln, MeGlc(Xyl)n | this study |
TrXynIV | 7 | N | 0.11 | 0.18 | nd | 77.4 | 11.8 | Xyl, Xyl2, MeGlcA(Xyl)n | Xyl, Xyl2, Me-MeGlcA(Xyl)n | Xyl, Xyl2, MeGlc(Xyl)n | this study |
AaXyn30A | 7 | E | 3.2 d | 5.4 d | 0.09 d | 73.5 | 75.2 | Xyl2, MeGlcAn−1Xyln, MeGlcAnXyln | Xyl2, Me-MeGlcAn−1Xyln, Me-MeGlcAnXyln | Xyl2, MeGlcn−1Xyln, MeGlcnXyln | d [17], this study |
HcXyn30A | ? | N | 13.4 e | 10.7 e | 0.011 e | 80.6 | 78.1 | Xyl2, MeGlcAn−1Xyln, MeGlcAnXyln | Xyl2, Me-MeGlcAn−1Xyln, Me-MeGlcAnXyln | Xyl2, MeGlcn−1Xyln, MeGlcnXyln | e [14], this study |
GH30 Subfamily | Arg | Specific Activity (U/mg) | Products and Rates of Linear XOs Hydrolysis | Specificity | Reference | ||
---|---|---|---|---|---|---|---|
Beech GX | AraX | ||||||
BlXyn30A | 8 | P | 7.87 | nd | products Xyl, Xyl2, Xyl3, very low rate | glucuronoxylanase | [21] |
BsLC9Xyn30 | 8 | P | 36.2 | nt | products Xyl2, Xyl3, very low rate | glucuronoxylanase | [22] |
PbXyn30A | 8 | P | 30.3 | nd | nt | glucuronoxylanase | [20] |
PfXyn30A | 8 | P | 244 | nd | nt | glucuronoxylanase | [23] |
CpXyn30A | 8 | N | 1.1 * | 1.7 | products Xyl2, Xyl3 and Xyl4, Xyl6-1.19 U/mg, Xyl5-0.36 U/mg, Xyl4-very low rate | nonspecific xylanase | [24] |
TtXyn30A | 7 | E | 6 | 0.07 | products Xyl2 (even XOs) or Xyl and Xyl2 (odd XOs) | glucuronoxylanase/xylobiohydrolase | [25] |
TcXyn30B | 7 | E | 11.3 | nd | products Xyl2 (even XOs) or Xyl and Xyl2 (odd XOs), Xyl3-0.388 U/mg | glucuronoxylanase/xylobiohydrolase | [26] |
TpXyn30A | 7 | E | 24 | 22 | product mainly Xyl2 | presumably nonspecific xylanase | [27] |
BisXYLD | 7 | E | 2463 | 790 | nt | nonspecific xylanase | [28] |
TcXyn30A | 7 | N | 0.162 | 0.279 | product Xyl, Xyl3-28.1 U/mg | reducing-end xylose releasing exoxylanase | [29] |
TcXyn30C | 7 | N | 38 | 47 | products mainly Xyl2 and Xyl3, Xyl6-1.6 U/mg, Xyl5-0.42 U/mg, Xyl4-0.131 U/mg, Xyl3-0.015 U/mg | nonspecific xylanase | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šuchová, K.; Puchart, V.; Spodsberg, N.; Mørkeberg Krogh, K.B.R.; Biely, P. Catalytic Diversity of GH30 Xylanases. Molecules 2021, 26, 4528. https://doi.org/10.3390/molecules26154528
Šuchová K, Puchart V, Spodsberg N, Mørkeberg Krogh KBR, Biely P. Catalytic Diversity of GH30 Xylanases. Molecules. 2021; 26(15):4528. https://doi.org/10.3390/molecules26154528
Chicago/Turabian StyleŠuchová, Katarína, Vladimír Puchart, Nikolaj Spodsberg, Kristian B. R. Mørkeberg Krogh, and Peter Biely. 2021. "Catalytic Diversity of GH30 Xylanases" Molecules 26, no. 15: 4528. https://doi.org/10.3390/molecules26154528
APA StyleŠuchová, K., Puchart, V., Spodsberg, N., Mørkeberg Krogh, K. B. R., & Biely, P. (2021). Catalytic Diversity of GH30 Xylanases. Molecules, 26(15), 4528. https://doi.org/10.3390/molecules26154528