The Properties of Cu Ions in Zeolites CuY Studied by IR Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. The Properties of Cu2+ in Zeolite CuY
2.2. The Properties of Cu+
2.3. Reduction of Cu Ions
2.4. Oxidation of Cu Sites
2.5. Effect of Cu Content
3. Materials and Methods
3.1. Materials
3.2. XRF Studies
3.3. IR Studies
3.4. Temperature-Programmed Reduction
3.5. Temperature-Programmed Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Broclawik, E.; Datka, J.; Gil, B.; Kozyra, P. Why Cu+ in ZSM-5 framework is active in DeNOx reaction—Quantum chemical calculations and IR studies. Catal. Today 2002, 75, 353–357. [Google Scholar] [CrossRef]
- Rejmak, P.; Broclawik, E.; Góra-Marek, K.; Radoń, M.; Datka, J. Nitrogen Monoxide Interaction with Cu(I) Sites in Zeolites X and Y: Quantum Chemical Calculations and IR Studies. J. Phys. Chem. C 2008, 112, 17998–18010. [Google Scholar] [CrossRef]
- Hessou, E.P.; Kanhounnon, W.G.; Rocca, D.; Monnier, H.; Vallières, C.; Lebègue, S.; Badawi, M. Adsorption of NO, NO2, CO, H2O and CO2 over isolated monovalent cations in faujasite zeolite: A periodic DFT investigation. Theor. Chem. Acc. 2018, 137, 161. [Google Scholar] [CrossRef]
- Broclawik, E.; Datka, J.; Gil, B.; Kozyra, P. Molecular modelling of copper sites in ZSM-5: DFT and IR studies on the properties of Cu2+ and Cu+ Centres and their interaction with NO. In Metal-Ligand Interactions; Russo, N., Salahub, D.R., Witko, M., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 371–384. [Google Scholar]
- Iwamoto, M.; Hamada, H. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes. Catal. Today 1991, 10, 57–71. [Google Scholar] [CrossRef]
- Iwamoto, M.; Yahiro, H.; Mizuno, N.; Zhang, W.X.; Mine, Y.; Furukawa, H.; Kagawa, S. Removal of nitrogen monoxide through a novel catalytic process. 2. Infrared study on surface reaction of nitrogen monoxide adsorbed on copper ion-exchanged ZSM-5 zeolites. J. Phys. Chem. 1992, 96, 9360–9366. [Google Scholar] [CrossRef]
- Shelef, M. On the mechanism of nitric oxide decomposition over Cu-ZSM-5. Catal. Lett. 1992, 15, 305–310. [Google Scholar] [CrossRef]
- Valyon, J.; Hall, W.K. Studies of the surface species formed from nitric oxide on copper zeolites. J. Phys. Chem. 1993, 97, 1204–1212. [Google Scholar] [CrossRef]
- Spoto, G.; Zecchina, A.; Bordiga, S.; Ricchiardi, G.; Martra, G.; Leofanti, G.; Petrini, G. Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl: Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide. Appl. Catal. B Environ. 1994, 3, 151–172. [Google Scholar] [CrossRef]
- Mizumoto, M.; Yamazoe, N.; Seiyama, T. Effects of coexisting gases on the catalytic reduction of NO with NH3 over Cu(II) NaY. J. Catal. 1979, 59, 319–324. [Google Scholar] [CrossRef]
- Wichterlová, B.; Sobalík, Z.; Skokánek, M. Effect of water vapour and ammonia on the solid-solid interaction of Cu oxide with Y-type zeolite: Preparation of catalyst for reduction of nitric oxide with ammonia at low temperature. Appl. Catal. A Gen. 1993, 103, 269–280. [Google Scholar] [CrossRef]
- Petunchi, J.O.; Sill, G.; Hall, W.K. Studies of the selective reduction of nitric oxide by hydrocarbons. Appl. Catal. B Environ. 1993, 2, 303–321. [Google Scholar] [CrossRef]
- Burch, R.; Scire, S. Selective catalytic reduction of nitric oxide with ethane and methane on some metal exchanged ZSM-5 zeolites. Appl. Catal. B Environ. 1994, 3, 295–318. [Google Scholar] [CrossRef]
- Kucherov, A.V.; Gerlock, J.L.; Jen, H.W.; Shelef, M. In Situ ESR Monitoring of CuH-ZSM-5 Up to 500 °C in Flowing Dry Mixtures of No(NO2), C3H6(C2H5OH), and Excess O2. J. Catal. 1995, 152, 63–69. [Google Scholar] [CrossRef]
- Choi, E.-Y.; Nam, I.-S.; Kim, Y.G. TPD Study of Mordenite-Type Zeolites for Selective Catalytic Reduction of NO by NH3. J. Catal. 1996, 161, 597–604. [Google Scholar] [CrossRef]
- Tsuruya, S.; Tsukamoto, M.; Watanabe, M.; Masai, M. Ethanol oxidation over Y-type zeolite ion-exchanged with copper(II) and cobalt(II) ions. J. Catal. 1985, 93, 303–311. [Google Scholar] [CrossRef]
- Bun, S.; Nishiyama, S.; Tsuruya, S.; Masai, M. Ethanol conversion over ion-exchanged ZSM-5 zeolites. Appl. Catal. 1990, 59, 13–29. [Google Scholar] [CrossRef]
- Hu, W.; Li, D.; Yang, Y.; Li, T.; Chen, H.; Liu, P. Copper ferrite supported gold nanoparticles as efficient and recyclable catalyst for liquid-phase ethanol oxidation. J. Catal. 2018, 357, 108–117. [Google Scholar] [CrossRef]
- Kuterasiński, Ł.; Podobiński, J.; Datka, J. Oxidation of Ethanol in Cu-Faujasites Studied by IR Spectroscopy. Molecules 2021, 26, 2669. [Google Scholar] [CrossRef] [PubMed]
- Tsuruya, S.; Okamoto, Y.; Kuwada, T. Benzyl alcohol oxidation over Y-type zeolite ion-exchanged with copper(II) ion. J. Catal. 1979, 56, 52–64. [Google Scholar] [CrossRef]
- Nakao, M.; Nishiyama, S.; Tsuruya, S.; Masai, M. Catalysis of copper(II)-NaZSM-5 zeolites during benzyl alcohol oxidation. Inorg. Chem. 1992, 31, 4662–4668. [Google Scholar] [CrossRef]
- Sueto, S.; Nishiyama, A.; Tsuruya, H.; Masai, M. Catalytic activity of NaZSM-5 supported Cu catalysts with or without added alkali metal in benzyl alcohol oxidation. J. Chem. Soc. Faraday Trans. 1997, 93, 659–664. [Google Scholar] [CrossRef]
- Azizi, S.N.; Ehsani Tilami, S. Cu-modified analcime as a catalyst for oxidation of benzyl alcohol: Experimental and theoretical. Microporous Mesoporous Mater. 2013, 167, 89–93. [Google Scholar] [CrossRef]
- Xu, J.; Ekblad, M.; Nishiyama, S.; Tsuruya, S.; Masai, M. Effect of alkali metals added to Cu ion-exchanged Y-type zeolite catalysts in the gas-phase catalytic oxidation of benzyl alcohol. J. Chem. Soc. Faraday Trans. 1998, 94, 473–479. [Google Scholar] [CrossRef]
- Konda, T.; Nishiyama, S.; Tsuruya, S. Influence and role of added alkali metals on the gas-phase oxidation of benzyl alcohol catalyzed by Cu ion-exchanged NaX zeolites. Phys. Chem. Chem. Phys. 1999, 1, 5393–5399. [Google Scholar] [CrossRef]
- Bhagya, K.N.; Gayathri, V. Metal complexes of 2-methylimidazole encapsulated in zeolite-Y as efficient and reusable catalysts for oxidation of phenol and benzyl alcohol. J. Porous Mater. 2013, 20, 257–266. [Google Scholar] [CrossRef]
- Hayashibara, H.; Nishiyama, S.; Tsuruya, S.; Masai, M. The Effect of Alkali Promoters on Cu-Na-ZSM-5 Catalysts in the Oxidation of Benzyl Alcohol. J. Catal. 1995, 153, 254–264. [Google Scholar] [CrossRef]
- Li, F.; Hu, D.; Yuan, Y.; Luo, B.; Song, Y.; Xiao, S.; Chen, G.; Fang, Y.; Lu, F. Zeolite Y encapsulated Cu (II) and Zn (II)-imidazole-salen catalysts for benzyl alcohol oxidation. Mol. Catal. 2018, 452, 75–82. [Google Scholar] [CrossRef]
- Drake, I.J.; Zhang, Y.; Briggs, D.; Lim, B.; Chau, T.; Bell, A.T. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate. J. Phys. Chem. B 2006, 110, 11654–11664. [Google Scholar] [CrossRef]
- Garnier, T.; Danel, M.; Magné, V.; Pujol, A.; Bénéteau, V.; Pale, P.; Chassaing, S. Copper(I)-USY as a Ligand-Free and Recyclable Catalyst for Ullmann-Type O-, N-, S-, and C-Arylation Reactions: Scope and Application to Total Synthesis. J. Org. Chem. 2018, 83, 6408–6422. [Google Scholar] [CrossRef] [PubMed]
- Deka, U.; Lezcano-Gonzalez, I.; Weckhuysen, B.M.; Beale, A.M. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx. ACS Catal. 2013, 3, 413–427. [Google Scholar] [CrossRef]
- Turnes Palomino, G.; Bordiga, S.; Zecchina, A.; Marra, G.L.; Lamberti, C. XRD, XAS, and IR characterization of copper-exchanged Y zeolite. J. Phys. Chem. B 2000, 104, 8641–8651. [Google Scholar] [CrossRef]
- Nour, Z.; Petitjean, H.; Berthomieu, D. Cooperative cation migrations upon CO addition in CuI-and alkali-exchanged faujasite: A DFT study. J. Phys. Chem. C 2010, 114, 17802–17811. [Google Scholar] [CrossRef]
- Petitjean, H.; Lepetit, C.; Nour, Z.; Poteau, R.; del Rosal, I.; Berthomieu, D. How CuI and NaI interact with faujasite zeolite? A theoretical investigation. J. Phys. Chem. C 2020, 124, 28026–28037. [Google Scholar] [CrossRef]
- Kuterasiński, Ł.; Podobiński, J.; Rutkowska-Zbik, D.; Datka, J. IR studies of the Cu ions in Cu-faujasites. Molecules 2019, 24, 4250. [Google Scholar] [CrossRef] [Green Version]
- Kuterasinski, Ł.; Podobinski, J.; Madej, E.; Smoliło-Utrata, M.; Rutkowska-Zbik, D.; Datka, J. Reduction and oxidation of cu species in Cu-faujasites studied by IR spectroscopy. Molecules 2020, 25, 4765. [Google Scholar] [CrossRef] [PubMed]
- Ziółek, M.; Sobczak, I.; Nowak, I.; Daturi, M.; Lavalley, J.C. Effect of sulfur dioxide on nitric oxide adsorption and decomposition on Cu-containing micro- and mesoporous molecular sieves. Top. Catal. 2000, 11, 343–350. [Google Scholar] [CrossRef]
- Davydov, A.A.; Budneva, A.A. IR spectra of CO and NO adsorbed on CuO. React. Kinet. Catal. Lett. 1984, 25, 121–124. [Google Scholar] [CrossRef]
- Broclawik, E.; Datka, J.; Gil, B. Sorption of CO and N2 in CuZSM-5 studied by IR spectroscopy. In Porous Materials in Environmentally Friendly Pocesses; Kiricsi, I., Nagy, J.B., Karge, H.G., Palyi, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 125, pp. 603–610. [Google Scholar]
- Lippmaa, E.; Magi, M.; Samoson, A.; Engelhard, G.; Grimmer, A.R. Structural Studies of Silicates by Solid-State High-Resolution 29Si NMR. J. Am. Chem. Soc. 1980, 102, 4889–4893. [Google Scholar] [CrossRef]
- Engelhardt, G.; Lohse, U.; Lippmaa, E.; Tarmak, M.; Mägi, M. 29Si-NMR-Untersuchungen zur Verteilung der Silicium-und Aluminiumatome im Alumosilicatgitter von Zeolithen mit Faujasit-Struktur. Z. Anorg. Allg. Chem. 1981, 482, 49–64. [Google Scholar] [CrossRef]
- Klinowski, J.; Fyfe, C.A.; Gobbi, G.C. High-resolution solid-state nuclear magnetic resonance studies of dealuminated zeolite Y. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1985, 81, 3003–3019. [Google Scholar] [CrossRef]
- Klinowski, J. Solid-State NMR Studies of Molecular Sieve Catalysts. Chem. Rev. 1991, 91, 1459–1479. [Google Scholar] [CrossRef]
- Gil, B.; Broclawik, E.; Datka, J.; Klinowski, J. Acidic hydroxyl groups in zeolites X and Y. A correlation between infrared and solid-state NMR spectra. J. Phys. Chem. 1994, 98, 930–933. [Google Scholar] [CrossRef]
- Rejmak, P.; Sierka, M.; Sauer, J. Theoretical studies of Cu(I) sites in faujasite and their interaction with carbon monoxide. Phys. Chem. Chem. Phys. 2007, 9, 5446–5456. [Google Scholar] [CrossRef] [PubMed]
- Gackowski, M.; Tarach, K.; Kuterasiński, Ł.; Podobiński, J.; Jarczewski, S.; Kuśtrowski, P.; Datka, J. Hierarchical zeolites Y obtained by desilication: Porosity, acidity and catalytic properties. Microporous Mesoporous Mater. 2018, 263, 282–288. [Google Scholar] [CrossRef]
- Kuterasińki, Ł.; Gackowski, M.; Podobiński, J.; Rutkowska-Zbik, D.; Datka, J. Nitrogen as probe molecule for the IR studies of heterogeneity of OH groups in zeolites. Molecules 2021. submitted. [Google Scholar]
- Petunchi, J.O.; Marcelin, G.; Hall, W.K. Studies of the changes occurring on reduction and reoxidation of Cu-Y zeolites. J. Phys. Chem. 1992, 96, 9967–9975. [Google Scholar] [CrossRef]
- Mintova, S.; Barrier, N. Verified Syntheses of Zeolitic Materials, 3rd ed.; Synthesis Commission of the International Zeolite Association: Amsterdam, The Netherlands, 2016; ISBN 978-0-692-68539-6. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podobiński, J.; Gackowski, M.; Mordarski, G.; Samson, K.; Śliwa, M.; Rutkowska-Zbik, D.; Datka, J. The Properties of Cu Ions in Zeolites CuY Studied by IR Spectroscopy. Molecules 2021, 26, 4686. https://doi.org/10.3390/molecules26154686
Podobiński J, Gackowski M, Mordarski G, Samson K, Śliwa M, Rutkowska-Zbik D, Datka J. The Properties of Cu Ions in Zeolites CuY Studied by IR Spectroscopy. Molecules. 2021; 26(15):4686. https://doi.org/10.3390/molecules26154686
Chicago/Turabian StylePodobiński, Jerzy, Mariusz Gackowski, Grzegorz Mordarski, Katarzyna Samson, Michał Śliwa, Dorota Rutkowska-Zbik, and Jerzy Datka. 2021. "The Properties of Cu Ions in Zeolites CuY Studied by IR Spectroscopy" Molecules 26, no. 15: 4686. https://doi.org/10.3390/molecules26154686
APA StylePodobiński, J., Gackowski, M., Mordarski, G., Samson, K., Śliwa, M., Rutkowska-Zbik, D., & Datka, J. (2021). The Properties of Cu Ions in Zeolites CuY Studied by IR Spectroscopy. Molecules, 26(15), 4686. https://doi.org/10.3390/molecules26154686