Tannin Content in Vitis Species Red Wines Quantified Using Three Analytical Methods
Abstract
:1. Introduction
2. Results
2.1. Phenolic Compounds and Tannin Content Per Variety
2.2. Tannin Content Measured by Three Methods
3. Discussion
4. Materials and Methods
4.1. Chemicals and Wine Samples
4.2. Wine Chemical Analyses
4.3. Wine Total Iron-Reactive Phenolic Compounds Content
4.4. Wine Tannin Content
4.5. Statistical Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mcrae, J.M.; Kennedy, J.A. Wine and Grape Tannin Interactions with Salivary Proteins and Their Impact on Astringency: A Review of Current Research. Molecules 2011, 16, 2348–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, T.; Noble, A.C. Temporal Perception of Astringency and Sweetness in Red Wine. Food Qual. Prefer. 1995, 6, 27–33. [Google Scholar] [CrossRef]
- Wang, S.; Olarte Mantilla, S.M.; Smith, P.A.; Stokes, J.R.; Smyth, H.E. Astringency Sub-Qualities Drying and Pucker Are Driven by Tannin and PH—Insights from Sensory and Tribology of a Model Wine System. Food Hydrocoll. 2020, 109, 106109. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Byrnes, N.K.; Heymann, H.; Kennedy, J.A. Understanding the Relationship between Red Wine Matrix, Tannin Activity, and Sensory Properties. J. Agric. Food Chem. 2016, 64, 9116–9123. [Google Scholar] [CrossRef] [PubMed]
- Preys, S.; Mazerolles, G.; Courcoux, P.; Samson, A.; Fischer, U.; Hanafi, A.; Bertrand, D.; Cheynier, V. Relationship between Polyphenolic Composition and Some Sensory Properties in Red Wines Using Multiway Analyses. Anal. Chim. Acta 2006, 563, 126–136. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Heymann, H.; Waterhouse, A.L. Red Wine Dryness Perception Related to Physicochemistry. J. Agric. Food Chem. 2020, 68, 2964–2972. [Google Scholar] [CrossRef] [PubMed]
- Yacco, R.S.; Watrelot, A.A.; Kennedy, J.A. Red Wine Tannin Structure–Activity Relationships during Fermentation and Maceration. J. Agric. Food Chem. 2016, 64, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V.; Dueñas-Paton, M.; Salas, E.; Maury, C.; Souquet, J.-M.; Sarni-Manchado, P.; Fulcrand, H. Structure and Properties of Wine Pigments and Tannins. Am. J. Enol. Vitic. 2006, 57, 298–305. [Google Scholar]
- Arapitsas, P.; Perenzoni, D.; Guella, G.; Mattivi, F. Improving the Phloroglucinolysis Protocol and Characterization of Sagrantino Wines Proanthocyanidins. Molecules 2021, 26, 1087. [Google Scholar] [CrossRef]
- Ma, W.; Waffo-Teguo, P.; Jourdes, M.; Li, H.; Teissedre, P.-L. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency. PLoS ONE 2016, 11, e0161095. [Google Scholar] [CrossRef] [Green Version]
- Watrelot, A.A.; Le Bourvellec, C.; Imberty, A.; Renard, C.M.G.C. Interactions between Pectic Compounds and Procyanidins Are Influenced by Methylation Degree and Chain Length. Biomacromolecules 2013, 14, 709–718. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Renard, C.M.G.C.; Le Bourvellec, C. Comparison of Microcalorimetry and Haze Formation to Quantify the Association of B-Type Procyanidins to Poly-L-Proline and Bovine Serum Albumin. LWT Food Sci. Technol. 2015, 63, 376–382. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Smith, P.A. Tannin Quantification in Red Grapes and Wine: Comparison of Polysaccharide- and Protein-Based Tannin Precipitation Techniques and Their Ability to Model Wine Astringency. J. Agric. Food Chem. 2008, 56, 5528–5537. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Downey, M.O. Investigating Differences in Tannin Levels Determined by Methylcellulose and Protein Precipitation. Am. J. Enol. Vitic. 2009, 60, 246–249. [Google Scholar]
- Kennedy, J.A.; Ferrier, J.; Harbertson, J.F. Analysis of Tannins in Red Wine Using Multiple Methods: Correlation with Perceived Astringency. Am. J. Enol. Vitic. 2006, 57, 481–485. [Google Scholar]
- Springer, L.F.; Sherwood, R.W.; Sacks, G.L. Pathogenesis-Related Proteins Limit the Retention of Condensed Tannin Additions to Red Wines. J. Agric. Food Chem. 2016, 64, 1309–1317. [Google Scholar] [CrossRef]
- Rice, S.; Koziel, J.A.; Dharmadhikari, M.; Fennell, A. Evaluation of Tannins and Anthocyanins in Marquette, Frontenac, and St. Croix Cold-Hardy Grape Cultivars. Fermentation 2017, 3, 47. [Google Scholar] [CrossRef] [Green Version]
- Fuleki, T.; Ricardo da Silva, J.M. Catechin and Procyanidin Composition of Seeds from Grape Cultivars Grown in Ontario. J. Agric. Food Chem. 1997, 45, 1156–1160. [Google Scholar] [CrossRef]
- Nicolle, P.; Marcotte, C.; Angers, P.; Pedneault, K. Pomace Limits Tannin Retention in Frontenac Wines. Food Chem. 2019, 277, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Watrelot, A.A.; Norton, E.L. Chemistry and Reactivity of Tannins in Vitis Spp.: A Review. Molecules 2020, 25, 2110. [Google Scholar] [CrossRef] [PubMed]
- Burtch, C.E.; Mansfield, A.K.; Manns, D.C. Reaction Kinetics of Monomeric Anthocyanin Conversion to Polymeric Pigments and Their Significance to Color in Interspecific Hybrid Wines. J. Agric. Food Chem. 2017, 65, 6379–6386. [Google Scholar] [CrossRef]
- Barak, J.A.; Kennedy, J.A. HPLC Retention Thermodynamics of Grape and Wine Tannins. J. Agric. Food Chem. 2013, 61, 4270–4277. [Google Scholar] [CrossRef]
- Revelette, M.R.; Barak, J.A.; Kennedy, J.A. High-Performance Liquid Chromatography Determination of Red Wine Tannin Stickiness. J. Agric. Food Chem. 2014, 62, 6626–6631. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Hodgins, R.E.; Thurston, L.N.; Schaffer, L.J.; Reid, M.S.; Landon, J.L.; Ross, C.F.; Adams, D.O. Variability of Tannin Concentration in Red Wines. Am. J. Enol. Vitic. 2008, 59, 210–214. [Google Scholar]
- Springer, L.F.; Sacks, G.L. Protein-Precipitable Tannin in Wines from Vitis Vinifera and Interspecific Hybrid Grapes (Vitis Ssp.): Differences in Concentration, Extractability, and Cell Wall Binding. J. Agric. Food Chem. 2014, 62, 7515–7523. [Google Scholar] [CrossRef]
- Spayd, S.E.; Harbertson, J.F.; Mireles, M.S. Concentrations of phenolic components in north carolina wines. J. Food Chem. Nutr. 2015, 3, 19–26. [Google Scholar]
- Cáceres-Mella, A.; Peña-Neira, Á.; Narváez-Bastias, J.; Jara-Campos, C.; López-Solís, R.; Canals, J.M. Comparison of Analytical Methods for Measuring Proanthocyanidins in Wines and Their Relationship with Perceived Astringency. Int. J. Food Sci. Technol. 2013, 48, 2588–2594. [Google Scholar] [CrossRef]
- Manns, D.C.; Lenerz, C.T.M.C.; Mansfield, A.K. Impact of Processing Parameters on the Phenolic Profile of Wines Produced from Hybrid Red Grapes Maréchal Foch, Corot noir, and Marquette. J. Food Sci. 2013, 78, C696–C702. [Google Scholar] [CrossRef] [PubMed]
- Norton, E.L.; Sacks, G.L.; Talbert, J.N. Nonlinear Behavior of Protein and Tannin in Wine Produced by Cofermentation of an Interspecific Hybrid ( Vitis Spp.) and Vinifera Cultivar. Am. J. Enol. Vitic. 2020, 71, 26–32. [Google Scholar] [CrossRef]
- del Llaudy, M.C.; Canals, R.; Canals, J.M.; Zamora, F. Influence of Ripening Stage and Maceration Length on the Contribution of Grape Skins, Seeds and Stems to Phenolic Composition and Astringency in Wine-Simulated Macerations. Eur. Food Res. Technol. 2008, 226, 337–344. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Picciotto, E.A.; Adams, D.O. Measurement of Polymeric Pigments in Grape Berry Extracts and Wines Using a Protein Precipitation Assay Combined with Bisulfite Bleaching. Am. J. Enol. Vitic. 2003, 54, 6. [Google Scholar]
- Sarneckis, C.J.; Dambergs, R.G.; Jones, P.; Mercurio, M.; Herderich, M.J.; Smith, P.A. Quantification of Condensed Tannins by Precipitation with Methyl Cellulose: Development and Validation of an Optimised Tool for Grape and Wine Analysis. Aust. J. Grape Wine Res. 2006, 12, 39–49. [Google Scholar] [CrossRef]
- Burtch, C.; Mansfield, A.K. Comparing Red Wine Color in V. Vinifera and Hybrid Cultivars. Appell. Cornell Res. Focus 2016, 3b, 1–6. [Google Scholar]
- Heredia, T.M.; Adams, D.O.; Fields, K.C.; Held, P.G.; Harbertson, J.F. Evaluation of a Comprehensive Red Wine Phenolics Assay Using a Microplate Reader. Am. J. Enol. Vitic. 2006, 57, 6. [Google Scholar]
- Peng, Z.; Iland, P.G.; Oberholster, A.; Sefton, M.A.; Waters, E.J. Analysis of Pigmented Polymers in Red Wine by Reverse Phase HPLC. Aust. J. Grape Wine Res. 2002, 8, 70–75. [Google Scholar] [CrossRef]
Name | Vintage | Variety | Origin | pH | Alcohol (% v/v) |
---|---|---|---|---|---|
CS1 | NA | Cabernet sauvignon | California | 3.78 | 13.68 |
CS2 | NA | Cabernet sauvignon | California | 3.73 | 13.6 |
PN1 | NA | Pinot noir | California | 3.76 | 13.54 |
PN2 | 2017 | Pinot noir | California | 3.6 | 13.58 |
M1 | 2014 | Marquette | Iowa | 3.83 | 12.55 |
M2 | 2016 | Marquette | Iowa | 3.6 | 13.12 |
M3 | 2017 | Marquette | Iowa | 3.55 | 13.34 |
M4 | 2017 | Marquette | Montana | 3.75 | 15.68 |
M5 | 2019 | Marquette | Montana | 3.54 | 11.5 |
F1 | 2017 | Frontenac | Iowa | 3.67 | 12.14 |
F2 | 2018 | Frontenac | Iowa | 3.35 | 12.61 |
F3 | 2017 | Frontenac | Iowa | 3.36 | 14.51 |
F4 | 2018 | Frontenac | Iowa | 3.99 | 11.82 |
F5 | 2015 | Frontenac | Iowa | 3.5 | 12.52 |
F6 | NA | Frontenac | Iowa | 3.44 | 10.07 |
F7 | NA | Frontenac | Iowa | 3.37 | 12.48 |
F8 | NA | Frontenac | Iowa | 3.55 | 12.79 |
F9 | NA | Frontenac | Iowa | 3.36 | 12.35 |
F10 | NA | Frontenac | Iowa | 3.8 | 11.22 |
PP1 | NA | Petite pearl | Iowa | 3.59 | 13.7 |
PP2 | NA | Petite pearl | Iowa | 3.55 | 12.02 |
PP3 | NA | Petite pearl | Iowa | 3.53 | 12.34 |
PP4 | NA | Petite pearl | Iowa | 3.56 | 11.73 |
PP5 | NA | Petite pearl | Iowa | 3.69 | 11.7 |
Variety | Phenolics Content (mg/L cat. eq.) | Tannin Content (mg/L cat. eq.) (PP) | Tannin Content (mg/L epi. eq.) (MCP) | Tannin Content (mg/L epi. eq.) (RPC) |
---|---|---|---|---|
Cabernet sauvignon | 1540 ± 91 a | 557 ± 18 a | 2045 ± 169 a | 978 ± 181 a |
Pinot noir | 1234 ± 93 b | 362 ± 16 b | 1367 ± 137 b | 748 ± 82 b |
Petite pearl | 930 ± 397 ab | 110 ± 51 c | 651 ± 379 cd | 289 ± 158 c |
Frontenac | 911 ± 204 ab | 48 ± 38 d | 412 ± 392 d | 168 ± 60 d |
Marquette | 1098 ± 640 ab | 200 ± 158 bc | 831 ± 406 c | 310 ± 134 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watrelot, A.A. Tannin Content in Vitis Species Red Wines Quantified Using Three Analytical Methods. Molecules 2021, 26, 4923. https://doi.org/10.3390/molecules26164923
Watrelot AA. Tannin Content in Vitis Species Red Wines Quantified Using Three Analytical Methods. Molecules. 2021; 26(16):4923. https://doi.org/10.3390/molecules26164923
Chicago/Turabian StyleWatrelot, Aude A. 2021. "Tannin Content in Vitis Species Red Wines Quantified Using Three Analytical Methods" Molecules 26, no. 16: 4923. https://doi.org/10.3390/molecules26164923
APA StyleWatrelot, A. A. (2021). Tannin Content in Vitis Species Red Wines Quantified Using Three Analytical Methods. Molecules, 26(16), 4923. https://doi.org/10.3390/molecules26164923