Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species—A Potentially Abundant Renewable Resource
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Comparison of Volatile Terpenes and Terpenoids
2.2. Comparison of Volatile Terpenes and Terpenoids
2.3. PCA of SPME-GC-MS
2.4. CA of HS-SPME-GC-MS
3. Materials and Methods
3.1. Plant Material and Reagents
3.2. Instruments and Equipments
3.3. Test Method
3.3.1. Sample Preparation and Extraction Process for HS-SPME
3.3.2. GC/MS Analysis Conditions
3.3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hizume, M.; Shibata, F.; Matsusaki, Y.; Garajova, Z. Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor. Appl. Genet. 2002, 105, 491–497. [Google Scholar] [CrossRef]
- Kim, H.; Lee, B.; Yun, K.W. Comparison of chemical composition and antimicrobial activity of essential oils from three Pinus species. Ind. Crop. Prod. 2013, 44, 323–329. [Google Scholar] [CrossRef]
- Jung, K.H.; Yoo, S.K.; Moon, S.K.; Lee, U.S. Furfural from pine needle extract inhibits the growth of a plant pathogenic fungus, Alternaria mali. Mycobiology 2007, 35, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.S.; Bae, J.J.; Choo, Y.S. Effects of an aqueous red pine (Pinus densiflora) needle extract on growth and physiological characteristics of soybean (Glycine max). J. Ecol. Field Biol. 2011, 34, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.D.; Xin, C.; Cheng, C.L.; Wang, Z.Y. Antitumor activity of nanoemulsion based on essential oil of Pinus koraiensis pinecones in MGC-803 tumor-bearing nude mice. Arab. J. Chem. 2020, 13, 8226–8238. [Google Scholar] [CrossRef]
- Wang, C.; He, L.; Yan, M.; Zheng, G.Y.; Liu, X.Y. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in ad-galactose-induced mouse model. Age 2014, 36, 9676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J. Bioactivity-guided fractionation of pine needle reveals catechin as an anti-hypertension agent via inhibiting angiotensin-converting enzyme. Sci. Rep. 2017, 7, 8867. [Google Scholar] [CrossRef]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef] [Green Version]
- Unsicker, S.B.; Kunert, G.; Gershenzon, J. Protective perfumes: The role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 2009, 12, 479–485. [Google Scholar] [CrossRef]
- Heil, M. Indirect defence via tritrophic interactions. N. Phytol. 2008, 178, 41–61. [Google Scholar] [CrossRef]
- Goncalves, E.; Figueiredo, A.C.; Barroso, J.G.; Henriques, J.; Sousa, E.; Bonifacio, L. Effect of Monochamus galloprovincialis feeding on Pinus pinaster and Pinus pinea, oleoresin and insect volatiles. Phytochemistry 2020, 169, 112159. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Serafini, M.R.; Quintans-Júnior, L.J. Terpenes and derivatives as a new perspective for pain treatment: A patent review. Expert Opin. Ther. Pat. 2014, 24, 243–265. [Google Scholar] [CrossRef]
- Dubey, V.S.; Bhalla, R.; Luthra, R. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J. Biosci. 2003, 28, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.S.; Lim, Y.R.; Lee, K.; Lee, J.; Lee, J.H.; Lee, I.S. Terpenes from forests and human health. Toxicol. Res. 2017, 33, 97–106. [Google Scholar] [CrossRef]
- Mitic, Z.S.; Jovanovic, S.C.; Zlatkovic, B.K.; Nikolic, B.M.; Stojanovic, G.S.; Marin, P.D. Needle terpenes as chemotaxonomic markers in Pinus: Subsections Pinus and Pinaster. Chem. Biodivers. 2017, 14, e1600453. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Y.; Xian, J.C.; Wei, W.K.; Xu, C.; Yang, J.; Zhan, R.T.; Ma, D.M. Volatile metabolic profiling and functional characterization of four terpene synthases reveal terpenoid diversity in different tissues of Chrysanthemum indicum L. Phytochemistry 2021, 185, 112687. [Google Scholar] [CrossRef] [PubMed]
- Sayout, A.; Ouarhach, A.; Rabie, R.; Dilagui, I.; Soraa, N.; Romane, A. Evaluation of antibacterial activity of Lavandulapedunculata subsp. atlantica (Braun-Blanq.) Romo essential oil and selected terpenoids against resistant bacteria strains-structure-activity relationships. Chem. Biodivers. 2020, 17, e1900496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs 2012, 21, 1801–1818. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Liu, X.; Wang, Y.; Tong, Y.; Hu, Y. Discovery of a novel series of α-terpineol derivatives as promising anti-asthmatic agents: Their design, synthesis, and biological evaluation. Eur. J. Med. Chem. 2018, 143, 419–425. [Google Scholar] [CrossRef]
- Remigius, C.; Katharina, M. Variability of volatiles in Pinus cembra L. within and between trees from a stand in the Salzburg Alps (Austria) as assessed by essential oil and SPME analysis. Genet. Resour. Crop. Evol. 2021, 68, 567–579. [Google Scholar]
- Gulden, D.; Eyup, B. Chemical composition of essential oil of Pinus nigra subsp pallasiana (Pinaceae) twigs, from different regions of Turkey. J. Essent. Oil Bear. Plants 2018, 21, 511–519. [Google Scholar]
- Zielinska-Blajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives-recent development in biological and medical applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef]
- Orhan, I.; Küpeli, E.; Aslan, M.; Kartal, M.; Yesilada, E. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. J. Ethnopharmacol. 2006, 105, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Lee, D.H.; Jung, Y.; Shin, S.Y.; Koh, D.; Lee, Y.H. α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. Appl. Biol. Chem. 2016, 59, 511–516. [Google Scholar] [CrossRef]
- Lu, Z.G.; Wang, J.Z.; Qu, L.N.; Kan, G.H.; Zhang, T.L.; Shen, J.; Li, Y.; Yang, J.; Niu, Y.W.; Xiao, Z.B.; et al. Reactive mesoporous silica nanoparticles loaded with limonene for improving physical and mental health of mice at simulated microgravity condition. Bioact. Mater. 2020, 5, 1127–1137. [Google Scholar] [CrossRef]
- Ilardi, V.; Badalamenti, N.; Bruno, M. Chemical composition of the essential oil from different vegetative parts of Foeniculum vulgare subsp. piperitum (Ucria) coutinho (Umbelliferae) growing wild in Sicily. Nat. Prod. Res. 2020, 1–11. [Google Scholar] [CrossRef]
- Abdullahi, A.; Ahmad, K.; Ismail, I.S.; Asib, N.; Ahmed, O.H.; Abubakar, A.I.; Siddiqui, Y.; Ismail, M.R. Potential of using ginger essential oils-based nanotechnology to control tropical plant diseases. Plant Pathol. J. 2020, 36, 515–535. [Google Scholar] [CrossRef]
- Abu-Izneid, T.; Rauf, A.; Shariati, M.A.; Khalil, A.A.; Imran, M.; Rebezov, M.; Uddin, M.S.; Mahomoodally, M.F.; Rengasamy, K.R.R. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol. Res. 2020, 161, 105165. [Google Scholar] [CrossRef] [PubMed]
- Ghelardini, C.; Galeotti, N.; Mannelli, L.D.; Mazzanti, G.; Bartolini, A. Local anaesthetic activity of beta-caryophyllene. Farmaco 2001, 56, 387–389. [Google Scholar] [CrossRef]
- da Silva, S.L.; Figueiredo, P.M.S.; Yano, T. Chemotherapeutic potential of the volatile oils from Zanthoxylum rhoifolium Lam leaves. Eur. J. Pharmacol. 2007, 576, 180–188. [Google Scholar] [CrossRef]
- Ishii-Iwamoto, E.L.; Pergo Coelho, E.M.; Reis, B.; Moscheta, I.S.; Bonato, C.M. Effects of monoterpenes on physiological processes during seed germination and seedling growth. Curr. Bioact. Comp. 2012, 8, 50–64. [Google Scholar] [CrossRef]
- Dupuy, A.; Athes, V.; Schenk, J.; Jenelten, U.; Souchon, I. Solvent extraction of highly valuable oxygenated terpenes from lemon essential oil using a polypropylene membrane contactor: Potential and limitations. Flavour Frag. J. 2011, 26, 192–203. [Google Scholar] [CrossRef]
- Chen, N.; Sun, G.Q.; Yuan, X.; Hou, J.L.; Wu, Q.C.; Soromou, L.W.; Feng, H.H. Inhibition of lung inflammatory responses by bornyl acetate is correlated with regulation of myeloperoxidase activity. J. Surg. Res. 2014, 186, 436–445. [Google Scholar] [CrossRef]
- Karan, T.; Yildiz, I.; Aydin, A.; Erenler, R. Inhibition of various cancer cells proliferation of bornyl acetate and essential oil from Inula graveolens (Linnaeus) desf. Rec. Nat. Prod. 2018, 12, 273–284. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, R.G.; Chen, H.; Jia, P.; Bao, L.; Tang, H. Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11. IUBMB Life 2014, 66, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Paraschos, S.; Magiatis, P.; Gousia, P.; Economou, V.; Sakkas, H.; Papadopoulou, C.; Skaltsounis, A.L. Chemical investigation and antimicrobial properties of mastic water and its major constituents. Food Chem. 2011, 129, 907–911. [Google Scholar] [CrossRef]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Mihajilov-Krstev, T.; Stojanović-Radić, Z.Z.; Cvetkovića, V.J.; Mitrović, T.Lj.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Comparative study of the essential oils of four Pinus species: Chemical composition, antimicrobial and insect larvicidal activity. Ind. Crop. Prod. 2018, 111, 55–62. [Google Scholar]
- Tayyebeh, G.; Hossein, S.K.; Solmaz, A.; Safar, F.; Abbas, D.; Su, C.B.; Hamed, H.; Ki, H.K. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Pinus eldarica grown in Northwestern Iran. Molecules 2019, 24, 3203. [Google Scholar]
- Allwood, J.W.; Cheung, W.; Xu, Y.; Mumm, R.; De Vos, R.C.H.; Deborde, C.; Biais, B.; Maucourt, M.; Berger, Y.; Schaffer, A.A.; et al. Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry 2014, 99, 61–72. [Google Scholar] [CrossRef]
- Fan, J.J.; Zhang, W.X.; Zhou, T.; Zhang, D.D.; Zhang, D.L.; Zhang, L.; Wang, G.B.; Cao, F.L. Discrimination of Malus taxa with different scent intensities using electronic nose and gas chromatography-mass spectrometry. Sensors 2018, 18, 3429. [Google Scholar] [CrossRef] [Green Version]
NO. | Components | CAS No. | RI b/RIL c | Relative Content/% | |||||
---|---|---|---|---|---|---|---|---|---|
P. sylvestris | P. tabuliformis | P. bungeana | C. deodara | P. densiflora | P. thunbergii | ||||
Monoterpene | |||||||||
1 | 1,7,7-Trimethyl- ricyclo [2.2.1.0(2,6)]heptane | 508-32-7 | 924/927 | 0.25 ± 0.04 | 0.15 ± 0.04 | 2.25 ± 0.59 | N.D. a | 0.27 ± 0.04 | 0.28 ± 0.05 |
2 | (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene | 7785-70-8 | 935/937 | 53.81 ± 7.01 | 36.20 ± 5.62 | 25.98 ± 1.23 | 6.53 ± 1.26 | 20.54 ± 2.21 | 11.72 ± 1.16 |
3 | Camphene | 79-92-5 | 950/950 | 1.33 ± 0.19 | 0.85 ± 0.17 | 5.39 ± 0.39 | 0.09 ± 0.03 | 1.07 ± 0.16 | 1.15 ± 0.20 |
4 | 4-Methylene-1-(1-methylethyl)-bicyclo[3.1.0]hexane | 3387-41-5 | 974/974 | N.D. | 0.15 ± 0.01 | N.D. | N.D. | 0.43 ± 0.02 | 0.25 ± 0.01 |
5 | á-Pinene | 127-91-3 | 979/979 | 5.28 ± 0.49 | 3.23 ± 0.36 | 3.87 ± 0.29 | 7.25 ± 1.44 | 4.25 ± 0.49 | N.D. |
6 | á-Myrcene | 123-35-3 | 991/992 | 6.23 ± 0.15 | 17.54 ± 0.72 | 3.95 ± 0.17 | 36.79 ± 9.01 | 22.27 ± 1.90 | 13.02 ± 0.34 |
7 | 1-Methylene-4-(1-methylethenyl)-cyclohexane | 499-97-8 | 1006/1005 | N.D. | N.D. | N.D. | N.D. | 0.28 ± 0.02 | N.D. |
8 | 3-Carene | 13466-78-9 | 1011/1013 | N.D. | 0.06 ± 0.00 | N.D. | N.D. | N.D. | N.D. |
9 | Limonene | 138-86-3 | 1030/1031 | 10.89 ± 0.21 | 4.37 ± 0.18 | 1.12 ± 0.05 | 3.42 ± 0.90 | N.D. | N.D. |
10 | á-Phellandrene | 555-10-2 | 1032/1031 | N.D. | N.D. | N.D. | N.D. | 14.75 ± 1.32 | 14.25 ± 0.74 |
11 | trans-á-Ocimene | 3779-61-1 | 1038/1041 | N.D. | N.D. | 0.82 ± 0.02 | N.D. | N.D. | N.D. |
12 | á-Ocimene | 13877-91-3 | 1048/1053 | 2.46 ± 0.30 | N.D. | N.D. | N.D. | N.D. | N.D. |
13 | ç-Terpinene | 99-85-4 | 1061/1062 | N.D. | 0.05 ± 0.01 | 0.19 ± 0.01 | N.D. | 0.10 ± 0.01 | 0.10 ± 0.01 |
14 | Terpinolene | 586-62-9 | 1091/1089 | 0.32 ± 0.02 | 0.90 ± 0.04 | 0.14 ± 0.01 | 0.40 ± 0.10 | 0.56 ± 0.04 | 1.49 ± 0.07 |
15 | (E,Z)-2,6-Dimethyl-2,4,6-octatriene | 7216-56-0 | 1134/1131 | N.D. | N.D. | 0.13 ± 0.01 | N.D. | N.D. | N.D. |
Oxygenated Terpenes | |||||||||
16 | Linalool | 78-70-6 | 1103/1103 | N.D. | N.D. | N.D. | N.D. | 0.10 ± 0.00 | 1.62 ± 0.27 |
17 | trans-3-Pinanone | 547-60-4 | 1170/1170 | 0.07 ± 0.01 | N.D. | 0.10 ± 0.01 | N.D. | N.D. | N.D. |
18 | endo-Borneol | 507-70-0 | 1178/1172 | N.D. | 0.14 ± 0.04 | N.D. | N.D. | 0.28 ± 0.11 | 0.24 ± 0.11 |
19 | à-Terpineol | 98-55-5 | 1201/1198 | N.D. | N.D. | N.D. | 0.21 ± 0.13 | N.D. | 0.13 ± 0.04 |
20 | 4,6,6-Trimethyl-bicyclo[3.1.1]hept-3-en-2-one | 80-57-9 | 1218/1217 | N.D. | 0.04 ± 0.01 | N.D. | N.D. | N.D. | N.D. |
21 | Germacrene D-4-ol | 198991-79-6 | 1595/1578 | 1.09 ± 0.79 | N.D. | N.D. | 0.42 ± 0.61 | 0.10 ± 0.05 | 0.13 ± 0.03 |
22 | Caryophyllene oxide | 1139-30-6 | 1605/1592 | N.D. | 0.07 ± 0.01 | 0.41 ± 0.08 | N.D. | N.D. | N.D. |
Terpene esters | |||||||||
23 | (-)-Bornyl acetate | 5655-61-8 | 1292/1289 | 0.91 ± 0.39 | 3.63 ± 1.42 | N.D. | 0.16 ± 0.02 | 8.69 ± 0.15 | 9.54 ± 0.63 |
24 | trans-Pinocarvyl acetate | 1686-15-3 | 1306/1298 | N.D. | N.D. | N.D. | 0.07 ± 0.01 | N.D. | N.D. |
25 | (Z)-3,7-Dimethyl-2,6-octadien-1-ol, acetate | 141-12-8 | 1364/1362 | N.D. | N.D. | N.D. | N.D. | 0.11 ± 0.03 | N.D. |
26 | Geranyl acetate | 105-87-3 | 1384/1379 | N.D. | N.D. | N.D. | N.D. | 1.07 ± 0.41 | 2.25 ± 0.57 |
Sesquiterpenes | |||||||||
27 | à-Cubebene | 17699-14-8 | 1356/1352 | 0.34 ± 0.15 | 0.07 ± 0.01 | 1.02 ± 0.12 | 0.10 ± 0.02 | N.D. | 0.16 ± 0.01 |
28 | α-Longipinene | 5989-08-2 | 1363/1358 | N.D. | N.D. | N.D. | 0.08 ± 0.01 | N.D. | N.D. |
29 | Ylangene | 14912-44-8 | 1381/1377 | N.D. | N.D. | 0.60 ± 0.08 | N.D. | N.D. | N.D. |
30 | Copaene | 3856-25-5 | 1388/1381 | 0.41 ± 0.23 | N.D. | 1.73 ± 0.18 | 0.28 ± 0.09 | N.D. | N.D. |
31 | (-)-á-Bourbonene | 5208-59-3 | 1398/1393 | N.D. | N.D. | 0.39 ± 0.03 | N.D. | N.D. | N.D. |
32 | Longifolene | 475-20-7 | 1422/1418 | 0.55 ± 0.24 | N.D. | N.D. | 0.13 ± 0.05 | N.D. | 0.83 ± 0.25 |
33 | Caryophyllene | 87-44-5 | 1434/1430 | 7.33 ± 2.01 | 13.98 ± 3.36 | 28.42 ± 0.75 | 6.20 ± 2.03 | 6.40 ± 1.81 | 8.56 ± 1.01 |
34 | β-Copaene | 18252-44-3 | 1435/1442 | N.D. | 0.32 ± 0.06 | N.D. | 0.00 ± 0.00 | 0.40 ± 0.12 | N.D. |
35 | (-)-Aristolene | 6831-16-9 | 1452/1455 | 2.19 ± 1.31 | N.D. | N.D. | N.D. | N.D. | N.D. |
36 | cis-á-Farnesene | 28973-97-9 | 1458/1458 | N.D. | N.D. | 0.19 ± 0.01 | N.D. | N.D. | N.D. |
37 | Humulene | 6753-98-6 | 1469/1468 | 1.11 ± 0.37 | 2.51 ± 0.52 | 5.82 ± 0.42 | 1.35 ± 0.49 | 1.24 ± 0.62 | 1.64 ± 0.15 |
38 | cis-Muurola-4(15),5-diene | 157477-72-0 | 1478/1469 | 0.11 ± 0.05 | 0.14 ± 0.02 | 0.13 ± 0.01 | 0.18 ± 0.05 | 0.16 ± 0.04 | 0.30 ± 0.03 |
39 | ç-Muurolene | 30021-74-0 | 1489/1480 | 0.52 ± 0.20 | 0.32 ± 0.04 | 6.49 ± 0.23 | 0.64 ± 0.21 | 0.36 ± 0.11 | 0.89 ± 0.02 |
40 | Germacrene D | 23986-74-5 | 1498/1489 | 2.30 ± 1.01 | 13.50 ± 2.25 | 0.23 ± 0.01 | 32.70 ± 9.78 | 14.86 ± 4.14 | 30.19 ± 1.16 |
41 | à-Muurolene | 10208-80-7 | 1513/1505 | N.D. | 0.32 ± 0.02 | 1.66 ± 0.09 | 0.39 ± 0.08 | N.D. | N.D. |
42 | α-cadinene | 39029-41-9 | 1528/1521 | 2.03 ± 0.92 | 0.48 ± 0.03 | 2.66 ± 0.15 | 0.83 ± 0.15 | 0.57 ± 0.11 | 0.99 ± 0.03 |
43 | Cadina-3,9-diene | 523-47-7 | 1534/1520 | N.D. | N.D. | 5.73 ± 0.40 | 1.43 ± 0.22 | 0.96 ± 0.12 | N.D. |
44 | Cadina-1(10),4-diene | 483-76-1 | 1536/1528 | N.D. | 0.81 ± 0.03 | N.D. | N.D. | N.D. | N.D. |
45 | Cubenene | 29837-12-5 | 1546/1535 | 0.12 ± 0.05 | N.D. | 0.27 ± 0.03 | 0.08 ± 0.02 | N.D. | N.D. |
46 | à-Cadinene | 24406-05-1 | 1551/1542 | 0.37 ± 0.28 | 0.16 ± 0.01 | 0.31 ± 0.03 | 0.28 ± 0.05 | 0.17 ± 0.03 | 0.25 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Ji, X. Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species—A Potentially Abundant Renewable Resource. Molecules 2021, 26, 5244. https://doi.org/10.3390/molecules26175244
Ji W, Ji X. Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species—A Potentially Abundant Renewable Resource. Molecules. 2021; 26(17):5244. https://doi.org/10.3390/molecules26175244
Chicago/Turabian StyleJi, Wensu, and Xiaoyue Ji. 2021. "Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species—A Potentially Abundant Renewable Resource" Molecules 26, no. 17: 5244. https://doi.org/10.3390/molecules26175244
APA StyleJi, W., & Ji, X. (2021). Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species—A Potentially Abundant Renewable Resource. Molecules, 26(17), 5244. https://doi.org/10.3390/molecules26175244