Electronic Nose Differentiation between Quercus robur Acorns Infected by Pathogenic Oomycetes Phytophthora plurivora and Pythium intermedium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) Analysis
2.3. Electronic Nose
2.3.1. Device Construction
2.3.2. Samples Measurements
2.3.3. Data Analysis Techniques
Data Visualisation Using Principal Component Analysis
Machine Learning Classification Modelling
- In the first step, the raw data of the collected sensor responses are transformed into the modelling features describing the shapes of the response curves.
- To estimate the classification models performance, we performed the six-fold cross-validation (CV) procedure. For this task, we applied group splitting, assuring that all data collected during one day of the measurements were put to one of these subsets. Such an approach is commonly observed to correlate measuring conditions due to external measurement conditions such as sensor drift. Moreover, since we are interested in estimating the performance of the classification model for measurements performed in the future, this approach is the most suitable to give reliable estimates. This number of repetitions in the CV loop was determined because our measurements were performed during six days. Thus, the maximal number of splits could ensure the separation of the training and testing subsets by the day.
- The machine learning classification model was applied and the most important features were selected using the recursive forward selection approach [39] when we first select the best performing model based on a single feature and then add to the model subsequent features based on the performance improvement.
- The basic characteristics of the response curve include minimum, maximum value, average (which is equivalent to the integral/area under the curve), standard deviation, skewness and kurtosis.
- Extreme values of the response curve derivative [45,46] as well as other statistics calculated from the derivative curve such as average, standard deviation, skewness, kurtosis. These features are calculated separately for two parts of the sensor response curve, the adsorption phase, when sensors respond to the measured odour conditions, and the desorption phase when they relax after moving them to the clean air. Moreover, the derivative of the curve is calculated after smoothing by the exponential moving average method.
- Characteristic times, such as the time to reach 10%, 25%, 50%, 90% of the sensor response range and time to reach maximum/minimum of the curve derivative,
3. Results and Discussion
3.1. VOCs Identified in Emission from Acorns with Use HS-SPME/GC-MS Method
3.2. Principal Components Analysis of the Electronic Nose Data
3.3. Classification Model Using Electronic Nose Data
3.4. Discussion
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Results of the Gas Chromatography-Mass Spectrometry Measurements
Healthy | Phytophthora | Pythium | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | CAS | m/z | t (min) | Area | TIC (%) | Area | TIC (%) | Area | TIC (%) | |||
Alkanes | 601.6 | 71.67 | 608.3 | 68.12 | 623.4 | 71.63 | ||||||
including: | ||||||||||||
n-Butane | 106-97-8 | 43, 41, 58, 42, 44 | 58 | 1.706 | 400 | 400 | 20.7 | 2.47 | 30.2 | 3.39 | 34.8 | 4.00 |
2.3.5-Trimethylhexane | 1069-53-0 | 43, 41, 85, 84, 57 | 128 | 5.003 | 808 | 810 | 2.4 | 0.29 | 2.5 | 0.29 | 2.2 | 0.26 |
2.4-Dimethylheptane | 2213-23-2 | 43, 41, 85, 57, 71 | 128 | 5.163 | 815 | 818 | 59.0 | 7.03 | 34.3 | 3.84 | 52.9 | 6.09 |
4-Methyloctane | 2216-34-4 | 43, 41, 85, 71, 84 | 128 | 6.163 | 858 | n/a | 5.3 | 0.64 | 5.5 | 0.62 | 4.1 | 0.48 |
n-Decane | 124-18-5 | 57, 43, 71, 85, 41 | 142 | 9.984 | 1000 | 1000 | 21.4 | 2.55 | 13.2 | 1.48 | 22.7 | 2.61 |
2.6-Dimethylnonane | 17302-28-2 | 43, 57, 71, 41, 85 | 156 | 10.425 | 1019 | 1022 | 10.7 | 1.28 | 6.8 | 0.77 | 7.8 | 0.90 |
5-Methyldecane | 13151-35-4 | 43, 57, 71, 41, 85 | 156 | 11.156 | 1054 | 1057 | 15.6 | 1.87 | 15.2 | 1.71 | 11.0 | 1.27 |
4-Methyldecane | 2847-72-5 | 41, 71, 57, 41, 70 | 156 | 11.431 | 1056 | 1059 | 15.6 | 1.87 | 15.8 | 1.78 | 5.2 | 0.61 |
Alkane CH | - | 43, 57, 71, 41, 85…155, 170 | 170 | 11.671 | 1057 | - | 89.4 | 10.66 | 87.5 | 9.81 | 74.4 | 8.55 |
Alkane CH | - | 43, 57, 71, 41, 85…155, 170 | 170 | 11.829 | 1063 | - | 18.6 | 2.22 | 20.8 | 2.33 | 15.4 | 1.78 |
n-Undecane | 1120-21-4 | 57, 43, 71, 85, 41 | 156 | 12.990 | 1100 | 1100 | 28.1 | 3.35 | 28.4 | 3.19 | 30.6 | 3.52 |
n-Dodecane | 112-40-3 | 57, 43, 71, 85, 41 | 170 | 15.969 | 1200 | 1200 | 15.4 | 1.84 | 16.3 | 1.83 | 14.5 | 1.68 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 183, 198 | 198 | 16.207 | 1214 | - | 15.8 | 1.89 | 19.0 | 2.13 | 17.4 | 2.01 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 183, 198 | 198 | 17.065 | 1245 | - | 15.3 | 1.83 | 18.2 | 2.04 | 17.8 | 2.05 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 183, 198 | 198 | 17.214 | 1250 | - | 16.2 | 1.93 | 18.2 | 2.04 | 17.1 | 1.98 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 183, 198 | 198 | 17.369 | 1256 | - | 23.4 | 2.79 | 20.8 | 2.34 | 28.8 | 3.32 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 183, 198 | 198 | 17.611 | 1265 | - | 26.1 | 3.12 | 31.4 | 3.52 | 37.6 | 4.32 |
2.6.11-Trimethyldodecane | 31295-56-4 | 43, 57, 71, 41, 85 | 212 | 17.890 | 1275 | 1275 | 9.3 | 1.11 | 10.9 | 1.22 | 6.3 | 0.73 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 197, 212 | 212 | 18.287 | 1289 | - | 18.6 | 2.22 | 22.5 | 2.52 | 20.9 | 2.41 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 197, 212 | 212 | 18.439 | 1295 | - | 22.9 | 2.74 | 24.3 | 2.73 | 25.7 | 2.95 |
n-Tridecane | 629-50-5 | 57, 43, 71, 85, 41 | 186 | 18.645 | 1300 | 1300 | 13.9 | 1.66 | 16.8 | 1.88 | 15.8 | 1.82 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 197, 212 | 212 | 19.293 | 1327 | - | 36.6 | 4.36 | 35.5 | 3.98 | 46.0 | 5.29 |
n-Tetradecane | 629-59-4 | 57, 43, 71, 85, 41 | 198 | 21.201 | 1400 | 1400 | 3.7 | 0.45 | 3.2 | 0.37 | 4.4 | 0.51 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 211, 226 | 226 | 21.778 | 1423 | - | 12.4 | 1.49 | 12.8 | 1.43 | 10.4 | 1.20 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 211, 226 | 226 | 22.761 | 1462 | - | 7.0 | 0.85 | 9.3 | 1.04 | 9.8 | 1.13 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 211, 226 | 226 | 22.920 | 1469 | - | 7.5 | 0.90 | 7.6 | 0.86 | 7.5 | 0.87 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 211, 226 | 226 | 23.462 | 1491 | - | 7.5 | 0.90 | 10.9 | 1.23 | 10.7 | 1.24 |
n-Pentadecane | 629-62-9 | 57, 43, 71, 85, 41 | 212 | 23.694 | 1500 | 1500 | 42.8 | 5.11 | 52.8 | 5.91 | 45.5 | 5.23 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 225, 240 | 240 | 24.681 | 1542 | - | 12.4 | 1.49 | 12.8 | 1.44 | 16.6 | 1.91 |
Alkane CH | - | 43, 57, 71, 41, 85, …, 253, 268 | 268 | 28.515 | 1711 | - | 6.5 | 0.78 | 3.5 | 0.40 | 8.0 | 0.93 |
Terpenes | 169.2 | 20.16 | 219.7 | 24.60 | 177.8 | 20.43 | ||||||
including: | ||||||||||||
1,2-Dimethyl-5-prop-1-en-2-ylcyclohex-2-en-1-ol (methylcarveol) | 85710-64-1 | 43, 41, 109, 83, 55 | 166 | 12.683 | 1091 | n/a | - | - | - | - | 12.4 | 1.43 |
2,6,10-Trimethyldodecane (farnesane) | 3891-98-3 | 43, 57, 71, 41, 85 | 212 | 18.068 | 1281 | 1282 | 121.6 | 14.49 | 144.2 | 16.15 | 125.3 | 14.40 |
6,8-Dimethyl-3-propan-2-yl-2,4,5,8-tetrahydro-1H-azulene (daucene) | 16661-00-0 | 161, 121, 162, 91, 93 | 204 | 20.774 | 1383 | 1380 | 5.2 | 0.63 | 24.6 | 2.76 | 6.2 | 0.72 |
(1S,8R)-4,7-Dimethyl-1-propan-2-yl-1,2,3,5,6,8-hexahydronaphthalene (-cadinene) | 483-76-1 | 161, 204, 119, 105, 134 | 204 | 24.251 | 1524 | 1522 | 4.3 | 0.51 | 2.4 | 0.28 | 2.3 | 0.27 |
(3S,8S)-6,8-Dimethyl-3-propan-2-ylidene-1,2,3,4,5,8-hexahydroazulene (dauca-4(11),8-diene) | 395070-76-5 | 136, 121, 41, 204, 91 | 204 | 24.500 | 1532 | 1530 | 6.9 | 0.82 | 7.4 | 0.83 | 4.2 | 0.49 |
Sesquiterpenoid C15H26O | - | 59, 149, 107, 91, 93…222 | 222 | 25.924 | 1594 | - | 9.9 | 1.18 | 6.2 | 0.70 | 5.4 | 0.63 |
2-[(2R,4R,8S)-4-Methyl-8-methylidene-1,2,3,4,5,6,7,8-octahydronaphthalen-2-yl]propan-2-ol (-eudesmol) | 473-15-4 | 59, 149, 41, 109, 43 | 222 | 27.324 | 1651 | 1649 | 4.9 | 0.59 | 3.8 | 0.44 | 3.2 | 0.38 |
2-[(2R,4R,8R)-4,8-Dimethyl-2,3,4,5,6,8-hexahydro-1H-naphthalen-2-yl]propan-2-ol (-eudesmol) | 473-16-5 | 59, 149, 161, 204, 189 | 222 | 27.388 | 1654 | 1652 | 12.6 | 1.51 | 15.3 | 1.72 | 14.3 | 1.65 |
7,11,15-Trimethyl-3-methylidenehexadec-1-ene (neophytadiene), isomer | 504-96-1 | 68, 82, 95, 43, 57 | 278 | 31.219 | 1839 | 1840 | 3.5 | 0.42 | 8.2 | 0.93 | 4.0 | 0.47 |
Neophytadiene, isomer | - | 68, 82, 95, 43, 57 | 278 | 31.723 | 1864 | 1864 | - | - | 2.5 | 0.28 | - | - |
Neophytadiene, isomer | - | 68, 82, 95, 43, 57 | 278 | 32.087 | 1882 | 1882 | - | - | 4.7 | 0.53 | - | - |
Other compounds | 14.1 | 1.68 | 14.6 | 1.64 | 9.0 | 1.04 | ||||||
including: | ||||||||||||
3-Methylbutan-1-ol (isopentanol) | 123-51-3 | 55, 41, 42, 70, 43 | 88 | 3.534 | 723 | 726 | - | - | 5.8 | 0.65 | - | - |
1-Ethenoxy-3-methylbutane (isopentyl vinyl ether) | 39782-38-2 | 43, 70, 55, 41, 71 | 114 | 4.052 | 754 | n/a | 4.9 | 0.59 | - | - | - | - |
2,4-Dimethylhept-1-ene | 19549-87-2 | 43, 70, 55, 41, 39 | 126 | 5.620 | 840 | 842 | 4.9 | 0.59 | 3.9 | 0.44 | 3.7 | 0.43 |
2,2-Dimethylbutan-1-ol | 1185-33-7 | 43, 71, 41, 29, 70 | 102 | 5.783 | 842 | n/a | 4.1 | 0.49 | 4.8 | 0.55 | 5.2 | 0.60 |
Undefined compounds | 54.4 | 6.49 | 50.2 | 5.63 | 60.0 | 6.90 | ||||||
including: | ||||||||||||
NN | - | 133, 151, 135, 134, 77 | - | 7.256 | 904 | - | 36.9 | 4.40 | 22.1 | 2.48 | 35.0 | 4.03 |
NN | - | 43, 69, 111, 55, 75 | - | 20.291 | 1365 | - | 17.5 | 2.09 | 28.1 | 3.15 | 25.0 | 2.88 |
Compound | Group and Name of the Identified Compounds |
---|---|
CAS | CAS Registry Number. |
m/z | Mass-to-charge ratio (fragmentation ion). |
M | Molecular ion. |
t | Retention time. |
RI | Experimental value of the Retention Index. |
RI | Literature value of the Retention Index. |
TIC | Percentage of the Total Ion Current. |
References
- Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguín Casal, O.; Bakonyi, J.; Cacciola, S.O.; Cech, T.; Chavarriaga, D.; et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016, 46, 134–163. [Google Scholar] [CrossRef] [Green Version]
- Gisi, U.; Sierotzki, H. Oomycete fungicides: Phenylamides, quinone outside inhibitors, and carboxylic acid amides. In Fungicide Resistance in Plant Pathogens; Ishii, H., Hollomon, D., Eds.; Springer: Tokyo, Japan, 2015; pp. 145–174. [Google Scholar] [CrossRef]
- Griffith, J.M.; Davis, A.J.; Grant, B.R. Target sites of fungicides to control oomycetes. In Target Sites of Fungicide Action; Köller, W., Ed.; CRC Press: Boca Raton, FL, USA, 1992; pp. 69–100. [Google Scholar]
- Ziogas, B.N.; Markoglou, A.N.; Theodosiou, D.I.; Anagnostou, A.; Boutopoulou, S. A high multi-drug resistance to chemically unrelated oomycete fungicides in Phytophthora infestans. Eur. J. Plant Pathol. 2006, 115, 283–292. [Google Scholar] [CrossRef]
- Ferguson, A.J.; Jeffers, S.N. Detecting Multiple Species of Phytophthora in Container Mixes from Ornamental Crop Nurseries. Plant Dis. 1999, 83, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Swiecki, T.; Quinn, M.; Sims, L.; Bernhardt, E.; Oliver, L.; Popenuck, T.; Garbelotto, M. Three new Phytophthora detection methods, including training dogs to sniff out the pathogen, prove reliable. Calif. Agric. 2018, 72, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Borowik, P.; Adamowicz, L.; Tarakowski, R.; Wacławik, P.; Oszako, T.; Ślusarski, S.; Tkaczyk, M. Application of a Low-Cost Electronic Nose for Differentiation between Pathogenic Oomycetes Pythium intermedium and Phytophthora plurivora. Sensors 2021, 21, 1326. [Google Scholar] [CrossRef] [PubMed]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Nagle, H.T.; Gutierrez-Osuna, R.; Schiffman, S.S. The how and why of electronic noses. IEEE Spectr. 1998, 35, 22–31. [Google Scholar] [CrossRef]
- Wilson, A. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [Green Version]
- Ray, M.; Ray, A.; Dash, S.; Mishra, A.; Achary, K.G.; Nayak, S.; Singh, S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosens. Bioelectron. 2017, 87, 708–723. [Google Scholar] [CrossRef]
- Cellini, A.; Blasioli, S.; Biondi, E.; Bertaccini, A.; Braschi, I.; Spinelli, F. Potential Applications and Limitations of Electronic Nose Devices for Plant Disease Diagnosis. Sensors 2017, 17, 2596. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Ling, P.; Zhu, H.; Keener, H. Plant Pest Detection Using an Artificial Nose System: A Review. Sensors 2018, 18, 378. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Meng, Q.H.; Lilienthal, A.J.; Qi, P.F. Development of compact electronic noses: A review. Meas. Sci. Technol. 2021, 32, 062002. [Google Scholar] [CrossRef]
- Hung, R.; Lee, S.; Bennet, J.W. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Guo, C.; Chen, Q.; Ouyang, Q.; Shi, J.; El-Seedi, H.R.; Zou, X. Classification for Penicillium expansum Spoilage and Defect in Apples by Electronic Nose Combined with Chemometrics. Sensors 2020, 20, 2130. [Google Scholar] [CrossRef]
- Capuano, R.; Paba, E.; Mansi, A.; Marcelloni, A.M.; Chiominto, A.; Proietto, A.R.; Zampetti, E.; Macagnano, A.; Lvova, L.; Catini, A.; et al. Aspergillus Species Discrimination Using a Gas Sensor Array. Sensors 2020, 20, 4004. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Hou, X.; Xiong, B. Bioelectronic Nose Based on Single-Stranded DNA and Single-Walled Carbon Nanotube to Identify a Major Plant Volatile Organic Compound (p-Ethylphenol) Released by Phytophthora Cactorum Infected Strawberries. Nanomaterials 2020, 10, 479. [Google Scholar] [CrossRef] [Green Version]
- Greenshields, M.; Cunha, B.; Coville, N.; Pimentel, I.; Zawadneak, M.; Dobrovolski, S.; Souza, M.; Hümmelgen, I. Fungi Active Microbial Metabolism Detection of Rhizopus sp. and Aspergillus sp. Section Nigri on Strawberry Using a Set of Chemical Sensors Based on Carbon Nanostructures. Chemosensors 2016, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Baietto, M.; Wilson, A.; Bassi, D.; Ferrini, F. Evaluation of Three Electronic Noses for Detecting Incipient Wood Decay. Sensors 2010, 10, 1062–1092. [Google Scholar] [CrossRef] [PubMed]
- Suchorab, Z.; Frąc, M.; Guz, Ł.; Oszust, K.; Łagód, G.; Gryta, A.; Bilińska-Wielgus, N.; Czerwiński, J. A method for early detection and identification of fungal contamination of building materials using e-nose. PLoS ONE 2019, 14, e0215179. [Google Scholar] [CrossRef] [Green Version]
- Falasconi, M.; Gobbi, E.; Pardo, M.; Torre, M.D.; Bresciani, A.; Sberveglieri, G. Detection of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory system. Sens. Actuators B Chem. 2005, 108, 250–257. [Google Scholar] [CrossRef]
- Presicce, D.S.; Forleo, A.; Taurino, A.M.; Zuppa, M.; Siciliano, P.; Laddomada, B.; Logrieco, A.; Visconti, A. Response evaluation of an E-nose towards contaminated wheat by Fusarium poae fungi. Sens. Actuators B Chem. 2006, 118, 433–438. [Google Scholar] [CrossRef]
- Paolesse, R.; Alimelli, A.; Martinelli, E.; Di Natale, C.; D’Amico, A.; D’Egidio, M.G.; Aureli, G.; Ricelli, A.; Fanelli, C. Detection of fungal contamination of cereal grain samples by an electronic nose. Sens. Actuators B Chem. 2006, 119, 425–430. [Google Scholar] [CrossRef]
- Gancarz, M.; Wawrzyniak, J.; Gawrysiak-Witulska, M.; Wiącek, D.; Nawrocka, A.; Tadla, M.; Rusined, R. Application of electronic nose with MOS sensors to prediction of rapeseed quality. Measurement 2017, 103, 227–234. [Google Scholar] [CrossRef]
- Srivastava, S.; Mishra, G.; Mishra, H.N. Probabilistic artificial neural network and E-nose based classification of Rhyzopertha dominica infestation in stored rice grains. Chemom. Intell. Lab. Syst. 2019, 186, 12–22. [Google Scholar] [CrossRef]
- Gu, S.; Wang, J.; Wang, Y. Early discrimination and growth tracking of Aspergillus spp. contamination in rice kernels using electronic nose. Food Chem. 2019, 292, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Baietto, M.; Pozzi, L.; Wilson, A.D.; Bassi, D. Evaluation of a portable MOS electronic nose to detect root rots in shade tree species. Comput. Electron. Agric. 2013, 96, 117–125. [Google Scholar] [CrossRef]
- Sahgal, N.; Magan, N. Fungal volatile fingerprints: Discrimination between dermatophyte species and strains by means of an electronic nose. Sens. Actuators B Chem. 2008, 131, 117–120. [Google Scholar] [CrossRef]
- Lampson, B.D.; Khalilian, A.; Greene, J.K.; Han, Y.J.; Degenhardt, D.C. Development of a Portable Electronic Nose for Detection of Cotton Damaged by Nezara viridula (Hemiptera: Pentatomidae). J. Insects 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Sikora, K.; Galko, J.; Kunca, A.; Milenković, I. Isolation and pathogenicity of Phytophthora species from sessile oak (Quercus petraea (Matt.) Liebl.) stands in Slovakia. For. Pathol. 2020, 50, e12632. [Google Scholar] [CrossRef]
- Jung, T.; Blaschke, H.; Neumann, P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Pathol. 1996, 26, 253–272. [Google Scholar] [CrossRef]
- Oszako, T.; Voitka, D.; Stocki, M.; Stocka, N.; Nowakowska, J.A.; Linkiewicz, A.; Hsiang, T.; Belbahri, L.; Berezovska, D.; Malewski, T. Trichoderma asperellum efficiently protects Quercus robur leaves against Erysiphe alphitoides. Eur. J. Plant Pathol. 2021, 159, 295–308. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Stocki, M.; Stocka, N.; Ślusarski, S.; Tkaczyk, M.; Caetano, J.M.; Tulik, M.; Hsiang, T.; Oszako, T. Interactions between Phytophthora cactorum, Armillaria gallica and Betula pendula Roth. Seedlings Subjected to Defoliation. Forests 2020, 11, 1107. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Stocki, M.; Vetchinikova, L. Inheritance of specific secondary volatile metabolites in buds of white birch Betula pendula and Betula pubescens hybrids. Trees 2019, 33, 1329–1344. [Google Scholar] [CrossRef] [Green Version]
- Oszako, T.; Żółciak, A.; Tulik, M.; Tkaczyk, M.; Stocki, M.; Nowakowska, J.A. Influence of Bacillus subtilis and Trichoderma asperellum on the development of birch seedlings infected with fine root pathogen Phytophthora plurivora. Sylwan 2019, 163, 1006–1015. [Google Scholar] [CrossRef]
- Cervera Gómez, J.; Pelegri-Sebastia, J.; Lajara, R. Circuit Topologies for MOS-Type Gas Sensor. Electronics 2020, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Borowik, P.; Adamowicz, L.; Tarakowski, R.; Siwek, K.; Grzywacz, T. Odor Detection Using an E-Nose With a Reduced Sensor Array. Sensors 2020, 20, 3542. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.M.; James, D.; Ali, Z. Data analysis for electronic nose systems. Microchim. Acta 2007, 156, 183–207. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrez-Galvez, A. Signal and Data Processing for Machine Olfaction and Chemical Sensing: A Review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef]
- Muezzinoglu, M.K.; Vergara, A.; Huerta, R.; Rulkov, N.; Rabinovich, M.I.; Selverston, A.; Abarbanel, H.D.I. Acceleration of chemo-sensory information processing using transient features. Sens. Actuators B Chem. 2009, 137, 507–512. [Google Scholar] [CrossRef]
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 2012, 166-167, 320–329. [Google Scholar] [CrossRef]
- Eklöv, T.; Mårtensson, P.; Lundström, I. Enhanced selectivity of MOSFET gas sensors by systematical analysis of transient parameters. Anal. Chim. Acta 1997, 353, 291–300. [Google Scholar] [CrossRef]
- Distante, C.; Leo, M.; Siciliano, P.; Persuad, K.C. On the study of feature extraction methods for an electronic nose. Sens. Actuators B Chem. 2002, 87, 274–288. [Google Scholar] [CrossRef]
- Cordovez, V.; Mommer, L.; Moisan, K.; Lucas-Barbosa, D.; Pierik, R.; Mumm, R.; Carrion, V.J.; Raaijmakers, J.M. Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Conboy, N.J.A.; McDaniel, T.; George, D.; Ormerod, A.; Edwards, M.; Donohoe, P.; Gatehouse, A.M.R.; Tosh, C.R. Volatile Organic Compounds as Insect Repellents and Plant Elicitors: An Integrated Pest Management (IPM) Strategy for Glasshouse Whitefly (Trialeurodes vaporariorum). J. Chem. Ecol. 2020, 46, 1090–1104. [Google Scholar] [CrossRef] [PubMed]
- Kaddes, A.; Fauconnier, M.L.; Sassi, K.; Nasraoui, B.; Jijakli, M.H. Endophytic Fungal Volatile Compounds as Solution for Sustainable Agriculture. Molecules 2019, 24, 1065. [Google Scholar] [CrossRef] [Green Version]
- Tahir, H.A.S.; Gu, Q.; Wu, H.; Raza, W.; Hanif, A.; Wu, L.; Colman, M.V.; Gao, X. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Schulz-Bohm, K.; Martín-Sánchez, L.; Garbeva, P. Microbial Volatiles: Small Molecules with an Important Role in Intra- and Inter-Kingdom Interactions. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Tilocca, B.; Cao, A.; Migheli, Q. Scent of a Killer: Microbial Volatilome and Its Role in the Biological Control of Plant Pathogens. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Wonglom, P.; Ito, S.; Sunpapao, A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol. 2020, 43, 100867. [Google Scholar] [CrossRef]
- Fernando, W.G.D.; Ramarathnam, R.; Krishnamoorthy, A.S.; Savchuk, S.C. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 2005, 37, 955–964. [Google Scholar] [CrossRef]
- Pohl, C.H.; Kock, J.L.; Thibane, V.S. Antifungal free fatty acids: A review. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; pp. 61–71. [Google Scholar]
- Naznin, H.A.; Kiyohara, D.; Kimura, M.; Miyazawa, M.; Shimizu, M.; Hyakumachi, M. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana. PLoS ONE 2014, 9, e86882. [Google Scholar] [CrossRef] [Green Version]
- Stocki, M.; Banaszczak, P.; Stocka, N.; Borowik, T.; Zapora, E.; Isidorov, V. Taxonomic implications of volatile secondary metabolites emitted from birch (Betula L.) buds. Biochem. Syst. Ecol. 2020, 92, 104132. [Google Scholar] [CrossRef]
- Naznin, H.A.; Kimura, M.; Miyazawa, M.; Hyakumachi, M. Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco. Microbes Environ. 2013, 28, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Fiedler, K.; Schütz, E.; Geh, S. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int. J. Hyg. Environ. Health 2001, 204, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Blom, D.; Fabbri, C.; Connor, E.C.; Schiestl, F.P.; Klauser, D.R.; Boller, T.; Eberl, L.; Weisskopf, L. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 2011, 13, 3047–3058. [Google Scholar] [CrossRef] [PubMed]
- Splivallo, R.; Novero, M.; Bertea, C.M.; Bossi, S.; Bonfante, P. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 2007, 175, 417–424. [Google Scholar] [CrossRef]
- Splivallo, R.; Bossi, S.; Maffei, M.; Bonfante, P. Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 2007, 68, 2584–2598. [Google Scholar] [CrossRef]
Actual | |||
---|---|---|---|
Positive | Negative | ||
Predicted | Positive | (true positive) | (false positive) |
Negative | (false negative) | (true negative) |
Compound | CAS | m/z | M | (min) | TIC (%) | ||
---|---|---|---|---|---|---|---|
Phytophthora | |||||||
Neophytadiene isomer 2 | - | 68, 82, 95, 43, 57 | 278 | 31.723 | 1864 | 1864 | 0.28 |
Neophytadiene isomer 3 | - | 68, 82, 95, 43, 57 | 278 | 32.087 | 1882 | 1882 | 0.53 |
Isopentanol | 123-51-3 | 55, 41, 42, 70, 43 | 88 | 3.534 | 723 | 726 | 0.65 |
Pythium | |||||||
Methylcarveol | 85710-64-1 | 43, 41, 109, 83, 55 | 166 | 12.683 | 1091 | n/a | 1.43 |
All Sensors | One Sensor | |
---|---|---|
accuracy | 58% | 64% |
precision of Phytophthora | 56% | 60% |
precision of Pythium | 59% | 64% |
recall of Phytophthora | 60% | 64% |
recall of Pythium | 55% | 68% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowik, P.; Adamowicz, L.; Tarakowski, R.; Wacławik, P.; Oszako, T.; Ślusarski, S.; Tkaczyk, M.; Stocki, M. Electronic Nose Differentiation between Quercus robur Acorns Infected by Pathogenic Oomycetes Phytophthora plurivora and Pythium intermedium. Molecules 2021, 26, 5272. https://doi.org/10.3390/molecules26175272
Borowik P, Adamowicz L, Tarakowski R, Wacławik P, Oszako T, Ślusarski S, Tkaczyk M, Stocki M. Electronic Nose Differentiation between Quercus robur Acorns Infected by Pathogenic Oomycetes Phytophthora plurivora and Pythium intermedium. Molecules. 2021; 26(17):5272. https://doi.org/10.3390/molecules26175272
Chicago/Turabian StyleBorowik, Piotr, Leszek Adamowicz, Rafał Tarakowski, Przemysław Wacławik, Tomasz Oszako, Sławomir Ślusarski, Miłosz Tkaczyk, and Marcin Stocki. 2021. "Electronic Nose Differentiation between Quercus robur Acorns Infected by Pathogenic Oomycetes Phytophthora plurivora and Pythium intermedium" Molecules 26, no. 17: 5272. https://doi.org/10.3390/molecules26175272
APA StyleBorowik, P., Adamowicz, L., Tarakowski, R., Wacławik, P., Oszako, T., Ślusarski, S., Tkaczyk, M., & Stocki, M. (2021). Electronic Nose Differentiation between Quercus robur Acorns Infected by Pathogenic Oomycetes Phytophthora plurivora and Pythium intermedium. Molecules, 26(17), 5272. https://doi.org/10.3390/molecules26175272