Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets
Abstract
:1. Introduction
2. Results
2.1. Vincristine Reduced Collagen-Induced Human Platelet Aggregation
2.2. Vincristine Inhibited Collagen-Induced Granule Release and Calcium Mobilization of Human Platelets
2.3. Vincristine Blocked Collagen-Induced Activation Signaling in Human Platelets
2.4. Vincristine Did Not Affect In Vitro and In Vivo Hemostasis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Platelet Aggregation
4.3. ATP Release and Calcium Mobilization
4.4. Flow Cytometry
4.5. Immunoblotting Study
4.6. Animals
4.7. Platelet Plug Formation
4.8. Tail Bleeding Assay
4.9. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lindemann, S.; Krämer, B.; Seizer, P.; Gawaz, M. Platelets, inflammation and atherosclerosis. J. Thromb. Haemost. 2007, 5, 203–211. [Google Scholar] [CrossRef]
- Nieswandt, B.; Pleines, I.; Bender, M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J. Thromb. Haemost. 2011, 9, 92–104. [Google Scholar] [CrossRef]
- Borst, O.; Gawaz, M. Glycoprotein VI—novel target in antiplatelet medication. Pharmacol. Ther. 2020, 217, 107630. [Google Scholar] [CrossRef]
- Estevez, B.; Du, X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology 2017, 32, 162–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.; Naik, U.P. Platelet MAPKs—A 20+ year history: What do we really know? J. Thromb. Haemost. 2020, 18, 2087–2102. [Google Scholar] [CrossRef] [PubMed]
- Nieswandt, B.; Varga-Szabo, D.; Elvers, M. Integrins in platelet activation. J. Thromb. Haemost. 2009, 7 (Suppl. 1), 206–209. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.M.; Moroi, M. Platelets Interact with Soluble and Insoluble Collagens through Characteristically Different Reactions. J. Biol. Chem. 1998, 273, 14827–14837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieswandt, B.; Brakebusch, C.; Bergmeier, W.; Schulte, V.; Bouvard, D.; Mokhtari-Nejad, R.; Lindhout, T.; Heemskerk, J.W.; Zirngibl, H.; Fässler, R. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J. 2001, 20, 2120–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gidding, C. Vincristine revisited. Crit. Rev. Oncol. 1999, 29, 267–287. [Google Scholar] [CrossRef]
- Said, R.; Tsimberidou, A.M. Pharmacokinetic evaluation of vincristine for the treatment of lymphoid malignancies. Expert Opin. Drug Metab. Toxicol. 2014, 10, 483–494. [Google Scholar] [CrossRef]
- Shvidel, L.; Sigler, E.; Shtalrid, M.; Berrebi, A. Vincristine-loaded platelet infusion for treatment of refractory autoimmune hemolytic anemia and chronic immune thrombocytopenia: Rethinking old cures. Am. J. Hematol. 2006, 81, 423–425. [Google Scholar] [CrossRef]
- Stirnemann, J.; Kaddouri, N.; Khellaf, M.; Morin, A.-S.; Prendki, V.; Michel, M.; Mekinian, A.; Bierling, P.; Fenaux, P.; Godeau, B.; et al. Vincristine efficacy and safety in treating immune thrombocytopenia: A retrospective study of 35 patients. Eur. J. Haematol. 2015, 96, 269–275. [Google Scholar] [CrossRef]
- Weigert, O.; Wittmann, G.; Grützner, S.; Christ, O.; Christ, B.; Rank, A.; Ostermann, H. Vincristine-loaded platelets for immune thrombocytopenia. Thromb. Haemost. 2010, 104, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Jiang, Y.; Zuo, H.; Liu, X.; Xia, T.; Zhou, R.; Chen, B.; Ouyang, J. Vincristine-loaded platelets coated with anti-CD41 mAbs: A new macrophage targeting proposal for the treatment of immune thrombocytopenia. Biomater. Sci. 2019, 7, 4568–4577. [Google Scholar] [CrossRef]
- Mateos, J.; A Pérez-Simón, J.; Caballero, D.; Castilla, C.; Lopez, O.; Perez, E.; Cañizo, C.; Vazquez, L.; Miguel, J.F.S. Vincristine is an effective therapeutic approach for transplantation-associated thrombotic microangiopathy. Bone Marrow Transplant. 2005, 37, 337–338. [Google Scholar] [CrossRef] [Green Version]
- Steinherz, P.G.; Miller, D.R.; Hilgartner, M.W.; Schmalzer, E.A. Platelet Dysfunction in Vincristine Treated Patients. Br. J. Haematol. 1976, 32, 439–450. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Rao, G. Effects of a microtubule stabilizing agent on the response of platelets to vincristine. Blood 1982, 60, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Allen, E.C.; Tarigo, J.L.; LeVine, D.N.; Barber, J.P.; Brainard, B.M. Platelet number and function in response to a single intravenous dose of vincristine. J. Vet. Intern. Med. 2021, 35, 1754–1762. [Google Scholar] [CrossRef]
- Grau-Bassas, E.R.; Kociba, G.J.; Couto, C.G. Vincristine impairs platelet aggregation in dogs with lymphoma. J. Vet. Intern. Med. 2000, 14, 81–85. [Google Scholar] [CrossRef]
- Mackin, A.; Allen, D.G.; Johnston, I.B. Effects of vincristine and prednisone on platelet numbers and function in clinically normal dogs. Am. J. Vet. Res. 1995, 56, 100–108. [Google Scholar]
- Bobbio-Pallavicini, E.; Gugliotta, L.; Centurioni, R.; Porta, C.; Vianelli, N.; Billio, A.; Tacconi, F.; Ascari, E. Antiplatelet agents in thrombotic thrombocytopenic purpura (TTP). Results of a randomized multicenter trial by the Italian Cooperative Group for TTP. Haematologica 1997, 82, 429–435. [Google Scholar] [PubMed]
- Li, Z.; Delaney, M.K.; O’Brien, K.A.; Du, X. Signaling During Platelet Adhesion and Activation. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2341–2349. [Google Scholar] [CrossRef] [Green Version]
- Barry, F.A.; Gibbins, J. Protein Kinase B Is Regulated in Platelets by the Collagen Receptor Glycoprotein VI. J. Biol. Chem. 2002, 277, 12874–12878. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Mangin, P.; Dangelmaier, C.; Lillian, R.; Jackson, S.; Daniel, J.L.; Kunapuli, S.P. Role of Phosphoinositide 3-Kinase β in Glycoprotein VI-mediated Akt Activation in Platelets. J. Biol. Chem. 2009, 284, 33763–33772. [Google Scholar] [CrossRef] [Green Version]
- Adam, F.; Kauskot, A.; Nurden, P.; Sulpice, E.; Hoylaerts, M.F.; Davis, R.J.; Rosa, J.-P.; Bryckaert, M. Platelet JNK1 is involved in secretion and thrombus formation. Blood 2010, 115, 4083–4092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flevaris, P.; Li, Z.; Zhang, G.; Zheng, Y.; Liu, J.; Du, X. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK–dependent integrin outside-in retractile signaling pathway. Blood 2009, 113, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xi, X.; Du, X. A Mitogen-activated Protein Kinase-dependent Signaling Pathway in the Activation of Platelet Integrin αIIbβ3. J. Biol. Chem. 2001, 276, 42226–42232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuis, H.K.; Akkerman, J.W.N.; Houdijk, W.P.M.; Sixma, J.J. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature 1985, 318, 470–472. [Google Scholar] [CrossRef]
- Kehrel, B.; Balleisen, L.; Kokott, R.; Mesters, R.; Stenzinger, W.; Clemetson, K.; Van De Loo, J. Deficiency of intact thrombospondin and membrane glycoprotein Ia in platelets with defective collagen-induced aggregation and spontaneous loss of disorder. Blood 1988, 71, 1074–1078. [Google Scholar] [CrossRef] [Green Version]
- Saelman, E.; Nieuwenhuis, H.; Hese, K.; de Groot, P.; Heijnen, H.; Sage, E.; Williams, S.; McKeown, L.; Gralnick, H.; Sixma, J. Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (alpha 2 beta 1-integrin). Blood 1994, 83, 1244–1250. [Google Scholar] [CrossRef] [Green Version]
- Verkleij, M.W.; Morton, L.F.; Knight, C.G.; De Groot, P.G.; Barnes, M.J.; Sixma, J.J. Simple Collagen-Like Peptides Support Platelet Adhesion Under Static But Not Under Flow Conditions: Interaction Via α2β1 and von Willebrand Factor With Specific Sequences in Native Collagen Is a Requirement to Resist Shear Forces. Blood 1998, 91, 3808–3816. [Google Scholar] [CrossRef]
- Morton, L.F.; Peachey, A.R.; Zijenah, L.S.; Goodall, A.H.; Humphries, M.J.; Barnes, M.J. Conformation-dependent platelet adhesion to collagen involving integrin alpha 2 beta 1-mediated and other mechanisms: Multiple alpha 2 beta 1-recognition sites in collagen type I. Biochem. J. 1994, 299, 791–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, B.; Ginsberg, M.H.; Ruggeri, Z.M. Influence of Fibrillar Collagen Structure on the Mechanisms of Platelet Thrombus Formation Under Flow. Blood 1999, 94, 2704–2715. [Google Scholar] [CrossRef]
- Varga-Szabo, D.; Pleines, I.; Nieswandt, B. Cell Adhesion Mechanisms in Platelets. Arter. Thromb. Vasc. Biol. 2008, 28, 403–412. [Google Scholar] [CrossRef]
- Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2012, 71, 555–564. [Google Scholar] [CrossRef] [Green Version]
- McFadyen, J.D.; Schaff, M.; Peter, K. Current and future antiplatelet therapies: Emphasis on preserving haemostasis. Nat. Rev. Cardiol. 2018, 15, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Carbone, P.P.; Bono, V.; Frei, E., 3rd; Brindley, C.O. Clinical studies with vincristine. Blood 1963, 21, 640–647. [Google Scholar] [PubMed]
- Campbell, O.; Macdonald, V.S.; Dickinson, R.M.; Gagnon, J. Evaluation of the effect of vincristine on platelet count in dogs with lymphoma. J. Small Anim. Pract. 2019, 60, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Kim, J.-W.; Song, K.-H.; Seo, K.-W. Application of vincristine-loaded platelet therapy in three dogs with refractory immune-mediated thrombocytopenia. J. Vet. Sci. 2015, 16, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Rozanski, E.A.; Callan, M.B.; Hughes, D.; Sanders, N.; Giger, U. Comparison of platelet count recovery with use of vincristine and prednisone or prednisone alone for treatment for severe immune-mediated thrombocytopenia in dogs. J. Am. Vet. Med. Assoc. 2002, 220, 477–481. [Google Scholar] [CrossRef]
- Joly, B.S.; Coppo, P.; Veyradier, A. Thrombotic thrombocytopenic purpura. Blood 2017, 129, 2836–2846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadler, J.E. Pathophysiology of thrombotic thrombocytopenic purpura. Blood 2017, 130, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Hovinga, J.A.K.; Coppo, P.; Lämmle, B.; Moake, J.L.; Miyata, T.; Vanhoorelbeke, K. Thrombotic thrombocytopenic purpura. Nat. Rev. Dis. Prim. 2017, 3, nrdp201720. [Google Scholar] [CrossRef] [Green Version]
- Hrdinova, J.; D’Angelo, S.; Graça, N.A.G.; Ercig, B.; Vanhoorelbeke, K.; Veyradier, A.; Voorberg, J.; Coppo, P. Dissecting the pathophysiology of immune thrombotic thrombocytopenic purpura: Interplay between genes and environmental triggers. Haematologica 2018, 103, 1099–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohm, M.; Betz, C.; Miesbach, W.; Krause, M.; Auer, C.; Geiger, H.; Scharrer, I. The course of ADAMTS-13 activity and inhibitor titre in the treatment of thrombotic thrombocytopenic purpura with plasma exchange and vincristine. Br. J. Haematol. 2005, 129, 644–652. [Google Scholar] [CrossRef]
- Rubio, M.T.; Ittelet, D.; Raymond, E.; Blay, J.Y.; Bernard, J.; Chouaib, S. The immunosuppressive effect of vincristine on allostimulatory potential of human dendritic cells interferes with their function and survival. Int. J. Oncol. 2004, 25, 407–412. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.-H.; Skattør, T.H.; Tjønnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef]
- Scully, M.; Singh, D.; Lown, R.; Poles, A.; Solomon, T.; Levi, M.; Goldblatt, D.; Kotoucek, P.; Thomas, W.; Lester, W. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2202–2211. [Google Scholar] [CrossRef]
- Huynh, A.; Kelton, J.G.; Arnold, D.M.; Daka, M.; Nazy, I. Antibody epitopes in vaccine-induced immune thrombotic thrombocytopaenia. Nature 2021, 596, 565–569. [Google Scholar] [CrossRef]
- Lu, W.J.; Li, J.Y.; Chen, R.J.; Huang, L.T.; Lee, T.Y.; Lin, K.H. VAS2870 and VAS3947 attenuate platelet activation and thrombus formation via a NOX-independent pathway downstream of PKC. Sci. Rep. 2019, 9, 18852. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.-M.; Hsia, C.-W.; Tsai, C.-L.; Hsia, C.-H.; Jayakumar, T.; Velusamy, M.; Sheu, J.-R. Modulation of human platelet activation and in vivo vascular thrombosis by columbianadin: Regulation by integrin αIIbβ3 inside-out but not outside-in signals. J. Biomed. Sci. 2020, 27, 1–14. [Google Scholar] [CrossRef]
- Lien, L.-M.; Lin, K.-H.; Huang, L.-T.; Tseng, M.-F.; Chiu, H.-C.; Chen, R.-J.; Lu, W.-J. Licochalcone A Prevents Platelet Activation and Thrombus Formation through the Inhibition of PLCγ2-PKC, Akt, and MAPK Pathways. Int. J. Mol. Sci. 2017, 18, 1500. [Google Scholar] [CrossRef] [Green Version]
- Jilma, B. Platelet function analyzer (PFA-100): A tool to quantify congenital or acquired platelet dysfunction. J. Lab. Clin. Med. 2001, 138, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2007, 22, 659–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lien, L.-M.; Lu, W.-J.; Lin, K.-H.; Kang, L.-H.; Chen, T.-Y.; Lin, B.-J.; Lu, Y.-C.; Huang, C.-Y.; Shih, C.-M.; Chen, H.; et al. Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets. Molecules 2021, 26, 5340. https://doi.org/10.3390/molecules26175340
Lien L-M, Lu W-J, Lin K-H, Kang L-H, Chen T-Y, Lin B-J, Lu Y-C, Huang C-Y, Shih C-M, Chen H, et al. Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets. Molecules. 2021; 26(17):5340. https://doi.org/10.3390/molecules26175340
Chicago/Turabian StyleLien, Li-Ming, Wan-Jung Lu, Kuan-Hung Lin, Ling-Hsuan Kang, Ting-Yu Chen, Bo-Jung Lin, Yung-Chang Lu, Chun-Yao Huang, Chun-Ming Shih, Hsuan Chen, and et al. 2021. "Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets" Molecules 26, no. 17: 5340. https://doi.org/10.3390/molecules26175340
APA StyleLien, L.-M., Lu, W.-J., Lin, K.-H., Kang, L.-H., Chen, T.-Y., Lin, B.-J., Lu, Y.-C., Huang, C.-Y., Shih, C.-M., Chen, H., Tsai, Y.-C., Chen, R.-J., & Sheu, J.-R. (2021). Influence of Vincristine, Clinically Used in Cancer Therapy and Immune Thrombocytopenia, on the Function of Human Platelets. Molecules, 26(17), 5340. https://doi.org/10.3390/molecules26175340