Raffinose Capped Silver Nanoparticles: A New Localized Surface Plasmon Resonance Based Sensor for Selective Quantification of Cr(VI) in Waste Waters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanoparticle Characterization
2.1.1. Optical Characteristics and Stability of Nanoparticle Aqueous Dispersion at Storage
2.1.2. Morphology and Crystal Structure
2.2. Raffinose Capped Silver Nanoparticles as LSPR Based Optical Sensor for Cr(VI) Determination
2.2.1. Optimization of Experimental Procedure
2.2.2. Analytical Characteristics of the Developed LSPR Based Optical Sensor for Selective Quantification of Cr(VI)
2.2.3. Selectivity of the Developed Optical Sensor
2.3. Analytical Application
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of Raffinose Capped Silver Nanoparticles
3.3. Characterization of Silver Nanoparticles
3.4. Colorimetric Detection of Cr(VI)
3.5. Analytical Procedure for Cr(VI) Determination in Water
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bielicka, A.; Bojanowska, I.; Wisniewski, A. Two Faces of Chromium-Pollutant and Bioelement. Pol. J. Environ. Stud. 2005, 14, 5–10. [Google Scholar]
- Rakhunde, R.; Deshpande, L.; Juneja, H.D. Chemical speciation of chromium in water: A review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 776–810. [Google Scholar] [CrossRef]
- Carvalho, D.C.; Coelho, N.M.; Coelho, L.M.; Borges, S.S.; Neri, T.S.; Alves, V.N. Strategies to increase selectivity of analytical methods for As, Cr and Se speciation in biological samples: A review. Sample Perp. 2014, 2, 1–12. [Google Scholar] [CrossRef]
- Trzonkowska, L.; Leśniewska, B.; Godlewska-Żyłkiewicz, B. Recent advances in on-line methods based on extraction for speciation analysis of chromium in environmental matrices. Crit. Rev. Anal. Chem. 2016, 46, 305–322. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-Garcia, J.; Garcia-Martin, S.; Peňa-Crecente, R.M. Graphene and carbon nanotubes as solid phase extraction sorbets for the speciation of chromium: A review. Anal. Chim. Acta 2018, 1002, 1–17. [Google Scholar] [CrossRef]
- Arain, M.B.; Ali, I.; Yilmaz, E.; Soylak, M. Nanomaterial’s based chromium speciation in environmental samples: A review. TrAC Trends Anal. Chem. 2018, 103, 44–55. [Google Scholar] [CrossRef]
- Filik, H.; Avan, A.A. Magnetic nanostructures for preconcentration, speciation and determination of chromium ions: A review. Talanta 2019, 203, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.A.; Grinberg, P.; Bobeda, C.R.; Reyes, M.N.; Campos, R.C. Non-chromatographic atomic spectrometric methods in speciation analysis: A review. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 459–476. [Google Scholar] [CrossRef]
- Karadjova, I.; Dakova, I.; Yordanova, T.; Vasileva, P. Nanomaterials for elemental speciation. J. Anal. At. Spectrom. 2016, 31, 1949–1973. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Mehra, R.; Walia, A.; Gupta, S.; Chawla, P.; Kumar, H.; Thakur, A.; Kaushik, R.; Kumar, N. Colorimetric sensing approaches based on silver nanoparticles aggregation for determination of toxic metal ions in water sample: A review. Int. J. Environ. Anal. Chem. 2021, 1–16. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B Chem. 2017, 238, 888–902. [Google Scholar] [CrossRef]
- Lai, Y.J.; Tseng, W.L. Role of 5-thio-(2-nitrobenzoic acid)-capped gold nanoparticles in the sensing of chromium (VI): Remover and sensor. Analyst 2011, 136, 2712–2717. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xu, Y.; Dong, Y.; Jiang, X.; Zhu, N. Colorimetric determination of hexavalent chromium with ascorbic acid capped silver nanoparticles. Anal. Methods 2013, 5, 560–565. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X. Colorimetric speciation of Cr (III) and Cr (VI) with a gold nanoparticle probe. Anal. Methods 2013, 5, 1442–1448. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Y.; Wang, S.; Chen, L. Red-to-blue colorimetric detection of chromium via Cr (III)-citrate chelating based on Tween 20-stabilized gold nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 472, 57–62. [Google Scholar] [CrossRef]
- Shrivas, K.; Sahu, S.; Patra, G.K.; Jaiswal, N.K.; Shankar, R. Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples. Anal. Methods 2016, 8, 2088–2096. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.S.; Tian, X.L.; Zhang, Y.Y.; Yang, L.; Zhang, J.H.; Wang, X.R.; Lu, S.Y.; Ren, H.L.; Liu, Z.S. Enhanced ultrasensitive detection of Cr (III) using 5-thio-2-nitrobenzoic acid (TNBA) and horseradish peroxidase (HRP) dually modified gold nanoparticles (AuNPs). Sens. Actuators B Chem. 2012, 161, 1108–1113. [Google Scholar] [CrossRef]
- Sharif, T.; Niaz, A.; Najeeb, M.; Zaman, M.I.; Ihsan, M. Isonicotinic acid hydrazide-based silver nanoparticles as simple colorimetric sensor for the detection of Cr3+. Sens. Actuators B Chem. 2015, 216, 402–408. [Google Scholar] [CrossRef]
- Chen, W.; Cao, F.; Zheng, W.; Tian, Y.; Xianyu, Y.; Xu, P.; Zhang, W.; Wang, Z.; Deng, K.; Jiang, X. Detection of the nanomolar level of total Cr [(III) and (VI)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Anal. Methods 2015, 7, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Simon, T.; Sun, K.W.; Ko, F.H. Simple bare gold nanoparticles for rapid colorimetric detection of Cr3+ ions in aqueous medium with real sample applications. Sens. Actuators B Chem. 2016, 226, 44–51. [Google Scholar] [CrossRef]
- Ravindran, A.; Elavarasi, M.; Prathna, T.C.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Selective colorimetric detection of nanomolar Cr (VI) in aqueous solutions using unmodified silver nanoparticles. Sens. Actuators B Chem. 2012, 166, 365–371. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Akhtar, K.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Biosynthesis of silver nanoparticles: A colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Phys. E Low Dimens. Syst. Nanostruct. 2018, 103, 367–376. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, Y.; Yan, Z.; Liu, Y.; Zhu, H. Novel, highly selective detection of Cr(III) in aqueous solution based on a gold nanoparticles colorimetric assay and its application for determining Cr(VI). Anal. Chim. Acta 2012, 731, 75–81. [Google Scholar] [CrossRef]
- Bhatt, R.; Bhatt, R.; Padmaja, P. DTPA capped gold and silver nanofluids-facile synthesis and their application as chromium sensors. Sens. Actuators B Chem. 2018, 258, 602–611. [Google Scholar] [CrossRef]
- Mousapour, K.; Hajizadeh, S.; Farhadi, K. Colorimetric speciation analysis of chromium using 2-thiobarbituric acid capped silver nanoparticles. Anal. Methods 2020, 12, 2484–2490. [Google Scholar] [CrossRef] [PubMed]
- Li, F.M.; Liu, J.M.; Wang, X.X.; Lin, L.P.; Cai, W.L.; Lin, X.; Zeng, Y.N.; Li, Z.M.; Lin, S.Q. Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. Sens. Actuators B Chem. 2011, 155, 817–822. [Google Scholar] [CrossRef]
- Xin, J.; Zhang, F.; Gao, Y.; Feng, Y.; Chen, S.; Wu, A. A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Agcore–Aushell nanoparticles at room temperature. Talanta 2012, 101, 122–127. [Google Scholar] [CrossRef]
- Guo, J.F.; Huo, D.Q.; Yang, M.; Hou, C.J.; Li, J.J.; Fa, H.B.; Luo, H.B.; Yang, P. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor. Talanta 2016, 161, 819–825. [Google Scholar] [CrossRef]
- Kim, D.; Choi, E.; Lee, C.; Choi, Y.; Kim, H.; Yu, T.; Piao, Y. Highly sensitive and selective visual detection of Cr (VI) ions based on etching of silver-coated gold nanorods. Nano Converg. 2019, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dvoynenko, O.; Lo, S.L.; Chen, Y.J.; Chen, G.W.; Tsai, H.M.; Wang, Y.L.; Wang, J.K. Speciation Analysis of Cr (VI) and Cr (III) in Water with Surface-Enhanced Raman Spectroscopy. ACS Omega 2021, 6, 2052–2059. [Google Scholar] [CrossRef]
- Hutter, E.; Fendler, J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Hanaor, D.; Michelazzi, M.; Leonelli, C.; Sorrell, C.C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 2012, 32, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Tongsakul, D.; Wongravee, K.; Thammacharoen, C.; Ekgasit, S. Enhancement of the reduction efficiency of soluble starch for platinum nanoparticles synthesis. Carbohydr. Res. 2012, 357, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Cooke, D.; Gidley, M.J. Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydr. Res. 1992, 227, 103–112. [Google Scholar] [CrossRef]
- Vasileva, P.; Donkova, B.; Karadjova, I.; Dushkin, C. Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surf. A Physicochem. Eng. Asp. 2011, 382, 203–210. [Google Scholar] [CrossRef]
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef]
- Chichova, M.; Shkodrova, M.; Vasileva, P.; Kirilova, K.; Doncheva-Stoimenova, D. Influence of silver nanoparticles on the activity of rat liver mitochondrial ATFase. J. Nanopart. Res. 2014, 16, 1–14. [Google Scholar] [CrossRef]
Sample | Added Cr(III), µmol L−1 | Added Cr(VI), µmol L−1 | Found Cr(VI), µmol L−1 | Recovery, % |
---|---|---|---|---|
Model solution | 10 | 10 | 9.7 ± 0.2 1 | 97 |
Model solution | 50 | 10 | 9.8 ± 0.2 1 | 98 |
Model solution | 100 | 10 | 9.7 ± 0.2 1 | 97 |
River water (Tundja) | 50 | 8 | 8.2 ± 0.2 2 | 102 |
Mineral water (Bankya) | 50 | 8 | 8.1 ± 0.3 2 | 101 |
Mineral water (Gorna Banya) | 50 | 8 | 7.9 ± 0.2 2 | 99 |
Sample | Total Cr, µg L−1 ICP-MS; Mean ± SD | Cr(VI), µg L−1 Proposed Method; Mean ± SD | Cr(VI), µg L−1 ISO; Mean ± SD | tcalc1 |
---|---|---|---|---|
Sample 1 | 346 ± 9 | 318 ± 16 | 325 ± 19 | 0.9 |
Sample 2 | 576 ± 11 | 521 ± 20 | 532 ± 21 | 1.2 |
Sample 3 | 126 ± 4 | 67 ± 3 | 64 ± 2 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasileva, P.; Djerahov, L.; Karadjova, I. Raffinose Capped Silver Nanoparticles: A New Localized Surface Plasmon Resonance Based Sensor for Selective Quantification of Cr(VI) in Waste Waters. Molecules 2021, 26, 5418. https://doi.org/10.3390/molecules26175418
Vasileva P, Djerahov L, Karadjova I. Raffinose Capped Silver Nanoparticles: A New Localized Surface Plasmon Resonance Based Sensor for Selective Quantification of Cr(VI) in Waste Waters. Molecules. 2021; 26(17):5418. https://doi.org/10.3390/molecules26175418
Chicago/Turabian StyleVasileva, Penka, Lubomir Djerahov, and Irina Karadjova. 2021. "Raffinose Capped Silver Nanoparticles: A New Localized Surface Plasmon Resonance Based Sensor for Selective Quantification of Cr(VI) in Waste Waters" Molecules 26, no. 17: 5418. https://doi.org/10.3390/molecules26175418
APA StyleVasileva, P., Djerahov, L., & Karadjova, I. (2021). Raffinose Capped Silver Nanoparticles: A New Localized Surface Plasmon Resonance Based Sensor for Selective Quantification of Cr(VI) in Waste Waters. Molecules, 26(17), 5418. https://doi.org/10.3390/molecules26175418