The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Analysis of Samples
2.2. Antibacterial Activity
2.2.1. Disc Inhibitory Assay
2.2.2. Determination of Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Apple Vinegar
2.3. Correlation between Investigated Quality Parameters of the Vinegars
3. Materials and Methods
3.1. Preparation of Samples
3.2. Physiochemical Analysis
3.3. Quantitative Assessment of Antibacterial Activity of Apple Vinegar
3.3.1. Bacterial Strains and Inoculums Standardization
3.3.2. Agar Well Diffusion (AWD) Assay
3.3.3. Determination of the Minimum Inhibitory Concentration (MIC)
3.3.4. Determination of the Minimum Bactericidal Concentration (MBC)
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tesfaye, W.; Morales, M.L.; García-Parrilla, M.C.; Troncoso, A.M. Wine Vinegar: Technology, Authenticity and Quality Evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. [Google Scholar] [CrossRef]
- Office of the Commissioner, U.S. Food and Drug Administration. Available online: https://www.fda.gov/home (accessed on 3 December 2020).
- Pianta, L.; Vinciguerra, A.; Bertazzoni, G.; Morello, R.; Mangiatordi, F.; Lund, V.J.; Trimarchi, M. Acetic Acid Disinfection as a Potential Adjunctive Therapy for Non-Severe COVID-19. Eur. Arch. Otorhinolaryngol. 2020, 1–4. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, Production, Composition and Health Benefits of Vinegars: A Review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef]
- Johnston, C.S.; Gaas, C.A. Vinegar: Medicinal Uses and Antiglycemic Effect. Medscape Gen. Med. 2006, 8, 61. [Google Scholar]
- Baldas, B.; Altuner, E. The Antimicrobial Activity of Apple Cider Vinegar and Grape Vinegar, Which Are Used as a Traditional Surface Disinfectant for Fruits and Vegetables. Commun. Fac. Sci. Univ. Ank. Ser. C Biol. Geol. Eng. Geophys. Eng. 2018, 27, 1–10. [Google Scholar] [CrossRef]
- Yagnik, D.; Serafin, V.; Shah, A.J. Antimicrobial Activity of Apple Cider Vinegar against Escherichia Coli, Staphylococcus Aureus and Candida Albicans; Downregulating Cytokine and Microbial Protein Expression. Sci. Rep. 2018, 8, 1732. [Google Scholar] [CrossRef]
- Rutala, W.A.; Barbee, S.L.; Aguiar, N.C.; Sobsey, M.D.; Weber, D.J. Antimicrobial Activity of Home Disinfectants and Natural Products Against Potential Human Pathogens. Infect. Control Hosp. Epidemiol. 2000, 21, 33–38. [Google Scholar] [CrossRef]
- Watson, R.R.; Preedy, V.R.; Zibadi, S. Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Academic Press: London, UK, 2018; Volume 1, ISBN 978-0-12-813006-3. [Google Scholar]
- Erika, C.; Anna, M. Antibacterial Activity of Polyphenols. Curr. Pharm. Biotechnol. 2014, 15, 380–390. [Google Scholar] [CrossRef]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, Antimicrobial, Mineral, Volatile, Physicochemical and Microbiological Characteristics of Traditional Home-Made Turkish Vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Kelebek, H.; Kadiroğlu, P.; Demircan, N.B.; Selli, S. Screening of Bioactive Components in Grape and Apple Vinegars: Antioxidant and Antimicrobial Potential. J. Inst. Brew. 2017, 123, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Natera, R.; Castro, R.; Hernández, M.J.; García-Barroso, C. Chemometric Studies of Vinegars from Different Raw Materials and Processes of Production. J. Agric. Food Chem. 2003, 51, 3345–3351. [Google Scholar] [CrossRef]
- Zarghi, H. Use of Natural Organic Acid “Apple Vinegar” as a Method of Biological Health Control. J. Food Drug Res. 2018, 2, 19–20. [Google Scholar]
- Budak, N.H.; Kumbul Doguc, D.; Savas, C.M.; Seydim, A.C.; Kok Tas, T.; Ciris, M.I.; Guzel-Seydim, Z.B. Effects of Apple Cider Vinegars Produced with Different Techniques on Blood Lipids in High-Cholesterol-Fed Rats. J. Agric. Food Chem. 2011, 59, 6638–6644. [Google Scholar] [CrossRef]
- Gálvez, M.C.; Barroso, C.G.; Pérez-Bustamante, J.A. Analysis of Polyphenolic Compounds of Different Vinegar Samples. Z. Lebensm. Unters. Forsch. 1994, 199, 29–31. [Google Scholar] [CrossRef]
- Budak, H.N. Alteration of Antioxidant Activity and Total Phenolic Content during the Eight-Week Fermentation of Apple Cider Vinegar. Hortic. Stud. 2021, 38, 39–45. [Google Scholar] [CrossRef]
- Petsiou, E.I.; Mitrou, P.I.; Raptis, S.A.; Dimitriadis, G.D. Effect and Mechanisms of Action of Vinegar on Glucose Metabolism, Lipid Profile, and Body Weight. Nutr. Rev. 2014, 72, 651–661. [Google Scholar] [CrossRef]
- Budak, H.N.; Guzel-Seydim, Z.B. Antioxidant Activity and Phenolic Content of Wine Vinegars Produced by Two Different Techniques. J. Sci. Food Agric. 2010, 90, 2021–2026. [Google Scholar] [CrossRef]
- Sáiz-Abajo, M.J.; Gonzáles-Sáiz, J.M.; Pizarro, C. Classification of Wine and Alcohol Vinegar Samples Based on Near-Infrared Spectroscopy. Feasibility Study on the Detection of Adulterated Vinegar Samples. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf049098h (accessed on 18 October 2020).
- Masino, F.; Chinnici, F.; Bendini, A.; Montevecchi, G.; Antonelli, A. A Study on Relationships among Chemical, Physical, and Qualitative Assessment in Traditional Balsamic Vinegar. Food Chem. 2008, 106, 90–95. [Google Scholar] [CrossRef]
- ONSSA, R.; ONSSA, R. Du M. Décret N°2-10-385 Du 23 Joumada II 1432 (27 Mai 2011) Portant Réglementation de La Fabrication et Du Commerce Des Vinaigres. Available online: http://www.onssa.gov.ma/images/reglementation/reglementation-sectorielle/vegetaux-et-produits-dorigine-vegetaux/Produits-dorigine-vegetale/Produits_alimentaires/DEC.2-10-385.FR.pdf (accessed on 16 October 2020).
- Janchovska, E.; Janchovska, M.; Ristovski, B.; Bocevska, M. Antimicrobial and Antioxidative Activity of Commercial versus Traditional Apple Vinegar. In Proceedings of the International Conference on Sustainable Development (ICSD 2015), Belgrade, Serbia, 12–15 November 2015; pp. 28–32. [Google Scholar]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional Properties of Vinegar. Journal of Food Science 2014, 79, R757–R764. [Google Scholar] [CrossRef]
- Chen, H.; Chen, T.; Giudici, P.; Chen, F. Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1124–1138. [Google Scholar] [CrossRef]
- Al-Rousan, W.M.; Olaimat, A.N.; Osaili, T.M.; Al-Nabulsi, A.A.; Ajo, R.Y.; Holley, R.A. Use of Acetic and Citric Acids to Inhibit Escherichia Coli O157:H7, Salmonella Typhimurium and Staphylococcus Aureus in Tabbouleh Salad. Food Microbiol. 2018, 73, 61–66. [Google Scholar] [CrossRef]
- Karapinar, M.; Gönül, Ş.A. Effects of Sodium Bicarbonate, Vinegar, Acetic and Citric Acids on Growth and Survival of Yersinia Enterocolitica. Int. J. Food Microbiol. 1992, 16, 343–347. [Google Scholar] [CrossRef]
- Reygaert, W.; Jusufi, I. Green Tea as an Effective Antimicrobial for Urinary Tract Infections Caused by Escherichia Coli. Front. Microbiol. 2013, 4, 162. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Oh, Y.J.; Lim, J.; Youn, M.; Lee, I.; Pak, H.K.; Park, W.; Jo, W.; Park, S. AFM Study of the Differential Inhibitory Effects of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) against Gram-Positive and Gram-Negative Bacteria. Food Microbiol. 2012, 29, 80–87. [Google Scholar] [CrossRef]
- Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial Potential of Caffeic Acid against Staphylococcus Aureus Clinical Strains. BioMed Res. Int. 2018, 2018, e7413504. [Google Scholar] [CrossRef] [Green Version]
- Lima, V.N.; Oliveira-Tintino, C.D.M.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.S.; Cruz, R.P.; Menezes, I.R.A.; et al. Antimicrobial and Enhancement of the Antibiotic Activity by Phenolic Compounds: Gallic Acid, Caffeic Acid and Pyrogallol. Microb. Pathog. 2016, 99, 56–61. [Google Scholar] [CrossRef]
- Fu, J.; Cheng, K.; Zhang, Z.; Fang, R.; Zhu, H. Synthesis, Structure and Structure–Activity Relationship Analysis of Caffeic Acid Amides as Potential Antimicrobials. Eur. J. Med. Chem. 2010, 45, 2638–2643. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal Catechins Damage the Lipid Bilayer. Biochim. Biophys. Acta 1993, 1147, 132–136. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Phenolic Compounds in Apple (Malus x Domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing. Antioxidants 2013, 2, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Renard, C.M.G.C.; Baron, A.; Guyot, S.; Drilleau, J.-F. Interactions between Apple Cell Walls and Native Apple Polyphenols: Quantification and Some Consequences. Int. J. Biol. Macromol. 2001, 29, 115–125. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Non-Covalent Interaction between Procyanidins and Apple Cell Wall Material: Part I. Effect of Some Environmental Parameters. Biochim. Biophys. Acta Gen. Subj. 2004, 1672, 192–202. [Google Scholar] [CrossRef]
- Nielsen, S.S. Standard Solutions and Titratable Acidity. Food Anal. Lab. Man. 2010, 95–102. [Google Scholar] [CrossRef]
- Albornoz, C.E.H. Microbiological Analysis and Control of the Fruit Vinegar Production Process. Ph.D. Thesis, Universitat Rovira i Virgili, Tarragona, Spain, 2012. [Google Scholar]
- Nielsen, S.S. Determination of Moisture Content. Food Anal. Lab. Man. 2010, 17–27. [Google Scholar] [CrossRef]
- Imtara, H.; Elamine, Y.; Lyoussi, B. Honey Antibacterial Effect Boosting Using Origanum Vulgare L. Essential Oil. Available online: https://www.hindawi.com/journals/ecam/2018/7842583/ (accessed on 27 August 2020).
- Furtado, G.L.; Medeiros, A.A. Single-Disk Diffusion Testing (Kirby-Bauer) of Susceptibility of Proteus Mirabilis to Chloramphenicol: Significance of the Intermediate Category. J. Clin. Microbiol. 1980, 12, 550–553. [Google Scholar] [CrossRef] [Green Version]
- Kiehlbauch, J.A.; Hannett, G.E.; Salfinger, M.; Archinal, W.; Monserrat, C.; Carlyn, C. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories. J. Clin. Microbiol. 2000, 38, 3341–3348. [Google Scholar]
- Dimitrijević, D.; Stanković, M.; Stojanović-Radić, Z.; Ranđelović, V.; Lakuscaron, D. Antioxidant and Antimicrobial Activity of Different Extracts from Leaves and Roots of Jovibarba Heuffelii (Schott.) A. Lve and D. Lve. J. Med. Plants Res. 2012, 6, 4804–4810. [Google Scholar] [CrossRef]
- Barry, A.L. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1999; ISBN 978-1-56238-384-8. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
Varieties | Manufacturing Techniques | Code of Simple | Acetic Acid (%) | Density (g/cm3) | Alcohol Content (%) | Total Dry Matter (%) | TSS (°B) | pH | Conductivity (mS/cm) |
---|---|---|---|---|---|---|---|---|---|
RD | AP | V1 | 4.7 | 1.003 | 0 | 2.45 | 1.5 | 4.6 | 301 |
CA | V2 | 0.5 | 1.005 | 1 | 3.44 | 4 | 4.96 | 287 | |
AJ | V3 | 0.7 | 1.011 | 0.5 | ND | 1.2 | 5.02 | 298 | |
Gala | AP | V4 | 0.5 | 1.015 | 1.3 | 2.68 | 4.2 | 5.06 | 284 |
CA | V5 | 0.6 | 1.010 | 0 | 3.32 | 1.5 | 5.29 | 266 | |
AJ | V6 | 3.0 | 1.013 | 1 | 1.52 | 4 | 4.84 | 296 | |
GD | AP | V7 | 4.0 | 1.023 | 1 | 2.22 | 4 | 5.11 | 281 |
CA | V8 | 0.9 | 1.006 | 1 | 3.4 | 4 | 5.08 | 289 | |
AJ | V9 | 1.0 | 1.024 | 1 | 2.59 | 4 | 5.33 | 266 | |
SD | AP | V10 | 3.6 | 1.015 | 0.7 | 3.30 | 3 | 5.15 | 278 |
CA | V11 | 1.0 | 1.012 | 1.5 | 8.51 | 4.9 | 4.02 | 260 | |
AJ | V12 | 3.1 | 0.987 | 0 | 2.07 | 1 | 3.7 | 84 |
Varieties | Manufacturing Techniques | Code of Sample | Diameter of Inhibition Zone (mm) # | ||||
---|---|---|---|---|---|---|---|
S. aureus | K. pneumonia | E.coli (ATB: 57) | E.coli (ATB: 97) | P. aeruginosa | |||
RD | AP | V1 | 19.00 ab ± 1.00 | 17.30 a ± 0.58 | 15.00 b ± 1.00 | 14.00 ab ± 1.00 | 32.70 a ± 2.52 |
CA | V2 | 15.70 bc ± 1.10 | 14.70ab ± 0.58 | 11.70 bc ± 1.53 | 13.70 bc ± 1.15 | 25.70 bc ± 1.15 | |
AJ | V3 | 12.00 f ± 0.00 | 13.30 d ± 0.58 | 10.70 c ± 1.15 | 9.00 e ± 1.00 | 10.70 d ± 1.15 | |
Gala | AP | V4 | 11.30 d ± 1.15 | 11.30 c ± 1.15 | 12.00 bc ± 0.00 | 10.70 cde ±1.15 | 30.00 ab ± 0.00 |
CA | V5 | 10.70 d ± 0.58 | 11.00 c ± 1.00 | 10.30 c ± 0.58 | 10.00 de ± 0.00 | 13.00 d ± 0.00 | |
AJ | V6 | 15.70 bc ± 1.15 | 15.70 a ± 2.52 | 15.30 b ± 2.52 | 14.00 ab ± 1.73 | 22.00 c ± 1.73 | |
GD | AP | V7 | 14.00 cd ± 1.73 | 12.30 bc ± 2.08 | 11.30 bc ± 3.05 | 13.00 bcd ±1.00 | 21.00 c ± 3.61 |
CA | V8 | 12.00cd ± 0.00 | 10.00 c ± 0.00 | 12.30 bc ± 0.58 | 12.00 cde ± 1.73 | 10.00 d ± 0.00 | |
AJ | V9 | 20.70 a ± 1.15 | 6.30 d ± 0.58 | 20.70a ± 1.00 | 17.30 a ± 0.58 | 12.70 d ± 1.15 | |
SD | AP | V10 | 11.30d ± 1.15 | 14.70ab ± 1.53 | 10.00 c ± 0.00 | 12.70 cd ± 1.53 | 21.30 c ± 1.15 |
CA | V11 | 13.00g ± 0.00 | 10.00 c ± 0.00 | 15.30 b ± 1.15 | 16.30 ab ± 1.15 | 12.70 d ± 0.58 | |
AJ | V12 | 13.30cd ± 2.89 | 12.30 bc ± 0.58 | 10.00 c ± 0.00 | 10.00 de ± 0.00 | 20.00 c ± 5.00 |
Varieties | Manufacturing Techniques | Code of Sample | MIC and MBC (µL/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus | K. pneumonia | E.coli (ATB: 57) | E.coli (ATB: 97) | P. aeruginosa | ||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |||
RD | AP | V1 | 7.81 | 15.62 | 7.81 | 15.62 | 7.81 | 15.62 | 1.95 | 3.91 | 7.81 | 7.81 |
CA | V2 | 7.81 | 15.62 | 7.81 | 15.62 | 7.81 | 15.62 | 1.95 | 7.81 | 7.81 | 15.62 | |
AJ | V3 | 125 | 62.5 | 125 | 31.25 | 62.5 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 | |
Gala | AP | V4 | 7.81 | 31.25 | 15.62 | 31.25 | 7.81 | 31.25 | 7.81 | 15.62 | 7.81 | 15.62 |
CA | V5 | 62.5 | 125 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | |
AJ | V6 | 500 | 500 | 250 | 250 | 500 | 500 | 500 | 500 | 250 | 250 | |
GD | AP | V7 | 7.81 | 31.25 | 3.91 | 15.62 | 15.62 | 31.25 | 7.81 | 31.25 | 7.81 | 31.25 |
CA | V8 | 62.5 | 62.5 | 62.5 | 31.25 | 62.5 | 31.25 | 31.25 | 31.25 | 31.25 | 31.25 | |
AJ | V9 | 31.25 | 62.5 | 31.25 | 62.5 | 31.25 | 125 | 62.5 | 125 | 31.25 | 125 | |
SD | AP | V10 | 15.62 | 62.5 | 7.81 | 31.25 | 15.62 | 31.25 | 7.81 | 31.25 | 7.81 | 31.25 |
CA | V11 | ND | ND | 500 | ND | 500 | ND | 500 | ND | 500 | ND | |
AJ | V12 | 7.81 | 31.25 | 7.81 | 31.25 | 15.62 | 62.5 | 15.62 | 31.25 | 3.91 | 15.62 |
Acetic Acid | Density | Alcoholic Strength in % | Total Dry Matter | TSS (°B) | pH | Conductivity (mS/cm) | S. aureus | K. pneumonia | E. coli (ATB: 57) | E. coli (ATB: 97) | P. aeruginosa | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetic acid | 1.0000 | |||||||||||
Density | −0.1646 | 1.0000 | ||||||||||
Alcoholic strength in % | −0.4109 | 0.6104 | 1.0000 | |||||||||
Total dry matter | −0.3886 | 0.0654 | 0.4328 | 1.0000 | ||||||||
TSS (°B) | −0.3891 | 0.6780 | 0.9866 | 0.3963 | 1.0000 | |||||||
pH | −0.2069 | 0.7404 | 0.1485 | −0.3567 | 0.2390 | 1.0000 | ||||||
Conductivity (mS/cm) | −0.0759 | 0.7064 | 0.4134 | 0.0718 | 0.5086 | 0.6939 | 1.0000 | |||||
S. aureus | 0.2993 | 0.0394 | −0.3536 | −0.8296 | −0.2729 | 0.4049 | 0.1045 | 1.0000 | ||||
K. pneumonia | 0.6094 | −0.3944 | −0.3292 | −0.3032 | −0.3036 | −0.1257 | 0.1997 | 0.3788 | 1.0000 | |||
E. coli (ATB: 57) | −0.1348 | 0.4218 | 0.3424 | 0.1144 | 0.4001 | 0.1123 | 0.2964 | 0.3657 | −0.1771 | 1.0000 | ||
E. coli (ATB: 97) | −0.0438 | 0.4793 | 0.5191 | 0.3875 | 0.5895 | 0.0605 | 0.4013 | 0.2628 | 0.0996 | 0.8360 | 1.0000 | |
P. aeruginosa | 0.3770 | −0.2465 | −0.1129 | −0.4278 | −0.1309 | 0.0048 | 0.2349 | 0.4518 | 0.7677 | −0.0769 | 0.0208 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, M.; Assouguem, A.; kamaly, O.M.A.; Benmessaoud, S.; Imtara, H.; Mechchate, H.; Hano, C.; Zerhouni, A.R.; Bahhou, J. The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples. Molecules 2021, 26, 5437. https://doi.org/10.3390/molecules26185437
Kara M, Assouguem A, kamaly OMA, Benmessaoud S, Imtara H, Mechchate H, Hano C, Zerhouni AR, Bahhou J. The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples. Molecules. 2021; 26(18):5437. https://doi.org/10.3390/molecules26185437
Chicago/Turabian StyleKara, Mohammed, Amine Assouguem, Omkulthom Mohamed Al kamaly, Safaâ Benmessaoud, Hamada Imtara, Hamza Mechchate, Christophe Hano, Abdou Rachid Zerhouni, and Jamila Bahhou. 2021. "The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples" Molecules 26, no. 18: 5437. https://doi.org/10.3390/molecules26185437
APA StyleKara, M., Assouguem, A., kamaly, O. M. A., Benmessaoud, S., Imtara, H., Mechchate, H., Hano, C., Zerhouni, A. R., & Bahhou, J. (2021). The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples. Molecules, 26(18), 5437. https://doi.org/10.3390/molecules26185437