New Insight into the Chemical Composition, Antimicrobial and Synergistic Effects of the Moroccan Endemic Thymus atlanticus (Ball) Roussine Essential Oil in Combination with Conventional Antibiotics
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material and Essential Oil (EO) Distillation
3.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
3.3. Microorganisms and Culture Conditions
3.4. Minimum Inhibitory Concentration (MIC) and Synergistic Effect Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fennane, M.; Ibn Tattou, M.; Ouyahya, A.; El Oualidi, J. Flore pratique du Maroc, Manuel de détermination des plantes vasculaires. Inst. Sci. Rabat 2007, 2, 636. [Google Scholar]
- Dobignard, A. Iter maroccanum 2014 de la Société botanique du Centre-Ouest dans le Grand Atlas marocain. Rev. Électron. Annu. Soc. Bot. Cent. Ouest. Evaxiana 2016, 2, 107–252. [Google Scholar]
- Soković, M.; Glamočlija, J.; Ćirić, A.; Kataranovski, D.; Marin, P.D.; Vukojević, J.; Brkić, D. Antifungal Activity of the Essential oil of Thymus vulgaris L. and Thymol on Experimentally Induced Dermatomycoses. Drug Dev. Ind. Pharm. 2008, 34, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Almanea, A.; El-Aziz, G.S.A.; Ahmed, M.M.M. The Potential Gastrointestinal Health Benefits of Thymus Vulgaris Essential Oil: A Review. Biomed. Pharmacol. J. 2019, 12, 1793–1799. [Google Scholar] [CrossRef]
- Khouya, T.; Ramchoun, M.; Hmidani, A.; Amrani, S.; Harnafi, H.; Benlyas, M.; Filali Zegzouti, Y.; Alem, C. Anti-inflammatory, anticoagulant and antioxidant effects of aqueous extracts from Moroccan thyme varieties. Asian Pac. J. Trop. Biomed. 2015, 5, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Khouya, T.; Ramchoun, M.; Amrani, S.; Harnafi, H.; Rouis, M.; Couchie, D.; Simmet, T.; Alem, C. Anti-inflammatory and anticoagulant effects of polyphenol-rich extracts from Thymus atlanticus: An in vitro and in vivo study. J. Ethnopharmacol. 2020, 252, 112475. [Google Scholar] [CrossRef]
- Fadli, M.; Saad, A.; Sayadi, S.; Chevalier, J.; Mezrioui, N.-E.; Pagès, J.-M.; Hassani, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection—Bacteria and their synergistic potential with antibiotics. Phytomedicine 2012, 19, 464–471. [Google Scholar] [CrossRef]
- Kasrati, A.; Alaoui Jamali, C.; Fadli, M.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Antioxidative activity and synergistic effect of Thymus saturejoides Coss. essential oils with cefixime against selected food-borne bacteria. Ind. Crops Prod. 2014, 61, 338–344. [Google Scholar] [CrossRef]
- Saad, A.; Fadli, M.; Bouaziz, M.; Benharref, A.; Mezrioui, N.E.; Hassani, L. Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol. Phytomedicine 2010, 17, 1057–1060. [Google Scholar] [CrossRef]
- Fadli, M.; Bolla, J.-M.; Mezrioui, N.-E.; Pagès, J.-M.; Hassani, L. First evidence of antibacterial and synergistic effects of Thymus riatarum essential oil with conventional antibiotics. Ind. Crops Prod. 2014, 61, 370–376. [Google Scholar] [CrossRef]
- Mahboubi, M.; Heidarytabar, R.; Mahdizadeh, E.; Hosseini, H. Antimicrobial activity and chemical composition of Thymus species and Zataria multiflora essential oils. Agric. Nat. Resour. 2017, 51, 395–401. [Google Scholar] [CrossRef]
- Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr. 2019, 7, 1704–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarshenas, M.M.; Krenn, L. A critical overview on Thymus daenensis Celak: Phytochemical and pharmacological investigations. J. Integr. Med. 2015, 13, 91–98. [Google Scholar] [CrossRef]
- Memar, M.Y.; Raei, P.; Alizadeh, N.; Akbari Aghdam, M.; Kafil, H.S. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Rev. Med. Microbiol. 2017, 28, 63–68. [Google Scholar] [CrossRef]
- Marinelli, L.; Di Stefano, A.; Cacciatore, I. Carvacrol and its derivatives as antibacterial agents. Phytochem. Rev. 2018, 17, 903–921. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phyther. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef]
- Yang, L.; Zhan, C.; Huang, X.; Hong, L.; Fang, L.; Wang, W.; Su, J. Durable Antibacterial Cotton Fabrics Based on Natural Borneol-Derived Anti-MRSA Agents. Adv. Healthc. Mater. 2020, 9, 2000186. [Google Scholar] [CrossRef]
- Gao, Z.; Van Nostrand, J.D.; Zhou, J.; Zhong, W.; Chen, K.; Guo, J. Anti-listeria Activities of Linalool and Its Mechanism Revealed by Comparative Transcriptome Analysis. Front. Microbiol. 2019, 10, 2947. [Google Scholar] [CrossRef]
- Cai, R.; Zhang, M.; Cui, L.; Yuan, Y.; Yang, Y.; Wang, Z.; Yue, T. Antibacterial activity and mechanism of thymol against Alicyclobacillus acidoterrestris vegetative cells and spores. LWT 2019, 105, 377–384. [Google Scholar] [CrossRef]
- Oyedemi, S.; Okoh, A.; Mabinya, L.; Pirochenva, G.; Afolayan, A. The proposed mechanism of bactericidal action of eugenol, ∝-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr. J. Biotechnol. 2002, 8, 1280–1286. [Google Scholar]
- Hirsch, E.B.; Tam, V.H. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev. Pharmacoecon. Outcomes Res. 2010, 10, 441–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Mezrioui, N.; Setzer, W.; Abbad, A.; Hassani, L. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crops Prod. 2019, 137, 396–400. [Google Scholar] [CrossRef]
- Nafis, A.; Oubaha, B.; Elhidar, N.; Ortlieb, N.; Kulik, A.; Niedermeyer, T.; Hassani, L.; Barakate, M. Novel production of two new nonpolyenic antifungal macrolide derivatives by Streptomyces Z26 isolated from moroccan Rhizospheric soil. Online J. Biol. Sci. 2018, 18, 176–185. [Google Scholar] [CrossRef]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Samri, S.E.; Mezrioui, N.; Abbad, A.; Hassani, L. Antioxidative Effect and First Evidence of Synergistic Antimicrobial Effects of Ficus carica (L.) Leaf Essential Oil with Conventional Antibiotics. J. Essent. Oil-Bear. Plants 2019, 22, 1289–1298. [Google Scholar] [CrossRef]
- Nafis, A.; Hassani, L.; Marraiki, N.; Al-Rashed, S.; Elgorban, A.M.; Syed, A.; Iriti, M. Antimicrobial and synergistic effect of Moroccan native Argania spinosa essential oil for modulating of antibiotics resistance. Nat. Prod. Res. 2020, 1–5. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
RI | Abundance % | Compounds |
---|---|---|
841 | 1.55 | (E)-2-Hexenal |
865 | 4.4 | 3-Heptanone |
953 | 7.28 | Camphene |
978 | 0.16 | 1-Octen-3-ol |
991 | 2.77 | α-Myrcene |
1088 | 1.93 | Terpinolene |
1020 | 8.14 | o-Cymene |
1062 | 9.98 | γ-Terpinene |
1026 | 0.43 | cis-Sabinene hydrate |
1098 | 7.8 | Linalool |
1078 | 0.23 | cis-4-Thujanol |
1143 | 0.22 | Camphor |
1165 | 21.13 | endo-Borneol |
1177 | 1.69 | L-4-terpineol |
1189 | 4.26 | α-Terpineol |
1242 | 0.34 | Carvone |
1290 | 1.31 | Thymol |
1298 | 21.62 | Carvacrol |
1454 | 1.81 | Caryophyllene |
1526 | 0.15 | δ-Cadinene |
1581 | 0.24 | Caryophyllene oxide |
88.91 | Monoterpenes | |
2.2 | Sesqueterpenes | |
6.33 | Others | |
97.44 | Total |
Microorganisms | EO | Ciprofloxacin | Fluconazole | |||
---|---|---|---|---|---|---|
IZ (mm) | MIC (mg/mL) | IZ (mm) | MIC (mg/mL) | IZ (mm) | MIC (mg/mL) | |
Gram-positive bacteria | ||||||
Staphylococcus aureus | 13.0 | 1.12 | 26.0 | 0.01 | - | - |
Micrococcus luteus | 12.0 | 0.56 | 27.0 | 0.03 | - | - |
Bacillus subtilis | 22.0 | 0.56 | 35.0 | 0.01 | - | - |
Gram-negative bacteria | ||||||
Escherichia coli | 18.0 | 0.56 | 12.0 | 0.06 | - | - |
Klebsiella pneumoniae | 16.0 | 0.56 | 09.0 | 01.0 | - | - |
Pseudomonas aeruginosa | 07.0 | 4.47 | 08.0 | 0.25 | - | - |
Yeasts | ||||||
Candida albicans | 15.0 | 0.56 | - | - | 20.0 | 1 |
Candida glabrata | 18.0 | 0.56 | - | - | 13.0 | 1 |
Candida krusei | 20.0 | 0.56 | - | - | 24.0 | 1 |
Candida parapsilosis | 12.0 | 0.56 | - | - | 28.2 | 1 |
Micrococcus luteus | Staphylococcus aureus | Bacillus subtilis | Escherichia coli | Pseudomonas aeruginosa | Klebsiella pneumoniae | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | |
EO | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - |
Ciprofloxacin | 0.02 | 0.27 a | 64 | 0.25 | 0.50 a | 4 | 0.06 | 0.31 a | 16 | 0.02 | 0.27 a | 64 | 0.25 | 0.50 a | 4 | 0.00 | 0.25 a | 256 |
Candida albicans | Candida glabrata | Candida krusei | Candida parapsilosis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | FIC | FICI | Gain | |
EO | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - | 0.25 | - | - |
Fluconazole | 0.03 | 0.28 a | 32 | 0.03 | 0.28 a | 32 | 0.03 | 0.28 a | 32 | 0.00 | 0.25 a | 256 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nafis, A.; Iriti, M.; Ouchari, L.; El Otmani, F.; Marraiki, N.; Elgorban, A.M.; Syed, A.; Mezrioui, N.; Hassani, L.; Custódio, L. New Insight into the Chemical Composition, Antimicrobial and Synergistic Effects of the Moroccan Endemic Thymus atlanticus (Ball) Roussine Essential Oil in Combination with Conventional Antibiotics. Molecules 2021, 26, 5850. https://doi.org/10.3390/molecules26195850
Nafis A, Iriti M, Ouchari L, El Otmani F, Marraiki N, Elgorban AM, Syed A, Mezrioui N, Hassani L, Custódio L. New Insight into the Chemical Composition, Antimicrobial and Synergistic Effects of the Moroccan Endemic Thymus atlanticus (Ball) Roussine Essential Oil in Combination with Conventional Antibiotics. Molecules. 2021; 26(19):5850. https://doi.org/10.3390/molecules26195850
Chicago/Turabian StyleNafis, Ahmed, Marcello Iriti, Lahcen Ouchari, Fatima El Otmani, Najat Marraiki, Abdallah M. Elgorban, Asad Syed, Noureddine Mezrioui, Lahcen Hassani, and Luísa Custódio. 2021. "New Insight into the Chemical Composition, Antimicrobial and Synergistic Effects of the Moroccan Endemic Thymus atlanticus (Ball) Roussine Essential Oil in Combination with Conventional Antibiotics" Molecules 26, no. 19: 5850. https://doi.org/10.3390/molecules26195850
APA StyleNafis, A., Iriti, M., Ouchari, L., El Otmani, F., Marraiki, N., Elgorban, A. M., Syed, A., Mezrioui, N., Hassani, L., & Custódio, L. (2021). New Insight into the Chemical Composition, Antimicrobial and Synergistic Effects of the Moroccan Endemic Thymus atlanticus (Ball) Roussine Essential Oil in Combination with Conventional Antibiotics. Molecules, 26(19), 5850. https://doi.org/10.3390/molecules26195850