Phragmites australis (Reed) as an Efficient, Eco-Friendly Adsorbent for Brackish Water Pre-Treatment in Reverse Osmosis: A Kinetic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Composition of Brackish Water
2.2. Adsorbent Preparation
2.3. Optimization of the Adsorption Parameters
2.4. Testing Procedures
2.4.1. Investigation of the As-Prepared Adsorbent
2.4.2. Analysis of Raw and Treated Water
3. Results and Discussion
3.1. Characterization Studies of Fresh and Exploited Adsorbent
3.1.1. FTIR Spectroscopy
3.1.2. Scanning Electron Microscopy (SEM) and Elemental Mapping
3.1.3. XRD Results
3.1.4. BET Surface Analysis
3.2. Effect of pH
3.3. The Effect of Adsorbent Dosage
3.4. The Effect of Contact Time
3.5. The Effect of Agitation Speed
3.6. Initial Concentration Effect
3.7. Adsorption Kinetics and Isotherm Models
3.7.1. The Adsorption Kinetic Parameters
3.7.2. Adsorption Isotherms
3.7.3. Adsorption Mechanism
3.8. Application to the Treatment of Brackish Water
3.9. Periodicity
3.10. Industry Application
4. Comparison with Other Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
Fourier transform infrared | FTIR |
Brunauer–Emmett–Teller | BET |
Energy dispersive radiation spectroscopy | EDX |
Biological oxygen demand | BOD |
Chemical oxygen demand | COD |
Total dissolved solids | TDS |
X-ray diffraction | XRD |
Reverse osmosis | (RO) |
Nano-Filtration | (NF) |
Electrodialysis | (ED) |
Pore size distribution curve | (PSD) |
References
- Wydra, K.; Jaskolski, M.; Wagner, L.; Mohamed, E.S. Nexus approach to solar technology for energy and water supply for sustainable rural development in Egypt: A review. J. Photon Energy 2019, 9, 043108. [Google Scholar] [CrossRef]
- Assaha, D.V.M.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017, 8, 509. [Google Scholar] [CrossRef]
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2016, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Fathy, M.; Mousa, M.A.; Moghny, T.A.; Awadallah, A.E. Characterization and evaluation of amorphous carbon thin film (ACTF) for sodium ion adsorption. Appl. Water Sci. 2017, 7, 4427–4435. [Google Scholar] [CrossRef] [Green Version]
- Feria-Díaz, J.; Correa-Mahecha, F.; López-Méndez, M.; Rodríguez-Miranda, J.; Barrera-Rojas, J. Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water 2021, 13, 1369. [Google Scholar] [CrossRef]
- Sahu, P. A comprehensive review of saline effluent disposal and treatment: Conventional practices, emerging technologies, and future potential. J. Water Reuse Desalination 2021, 11, 33–65. [Google Scholar] [CrossRef]
- Ali, M.E.; Hoque, M.E.; Hossain, S.K.S.; Biswas, M.C. Nanoadsorbents for Wastewater Treatment: Next Generation Biotech-nological Solution. Int. J. Environ. Sci. Technol. 2020, 17, 4095–4132. [Google Scholar] [CrossRef]
- Sanz-Santos, E.; Álvarez-Torrellas, S.; Ceballos, L.; Larriba, M.; Águeda, V.; García, J. Application of Sludge-Based Activated Carbons for the Effective Adsorption of Neonicotinoid Pesticides. Appl. Sci. 2021, 11, 3087. [Google Scholar] [CrossRef]
- El Shahawy, A.; Heikal, G. Organic pollutants removal from oily wastewater using clean technology economically, friendly biosorbent (Phragmites australis). Ecol. Eng. 2018, 122, 207–218. [Google Scholar] [CrossRef]
- Fathy, M.; Selim, H.; Shahawy, A.E.L. Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from aqueous solution. RSC Adv. 2020, 10, 23417–23430. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: Influence of acid activation. J. Colloid Interface Sci. 2007, 310, 411–424. [Google Scholar] [CrossRef]
- Jagtap, S.; Yenkie, M.K.; Das, S.; Rayalu, S. Synthesis and characterization of lanthanum impregnated chitosan flakes for fluoride removal in water. Desalination 2011, 273, 267–275. [Google Scholar] [CrossRef]
- Nsami, J.N.; Mbadcam, J.K. The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by on Methylene Blue. J. Chem. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Shah, B.A.; Shah, A.V.; Patel, H.D. Alkaline hydrothermal conversion of agricultural waste Bagasse Fly Ash into zeolite: Utilisation in dye removal from aqueous solution. Int. J. Environ. Waste Manag. 2011, 7, 192. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Selective Adsorption of Palladium(II) Complexes onto the Chelating Ion Exchange Resin Dowex M 4195 – Kinetic Studies. Solvent Extr. Ion Exch. 2010, 28, 124–159. [Google Scholar] [CrossRef]
- Unamuno, V.; De Visscher, A.; Lesage, E.; Meers, E.; Leuridan, I.; Tack, F. Cu sorption on Phragmites australis leaf and stem litter: A kinetic study. Chemosphere 2007, 69, 1136–1143. [Google Scholar] [CrossRef]
- Boudrahem, F.; Aissani-Benissad, F.; Soualah, A. Removal of basic yellow dye from aqueous solutions by sorption onto reed as an adsorbent. Desalination Water Treat. 2014, 54, 1–8. [Google Scholar] [CrossRef]
- Baraka, A. Investigation of temperature effect on surface-interaction and diffusion of aqueous-solution/porous-solid adsorption systems using diffusion–binding model. J. Environ. Chem. Eng. 2015, 3, 129–139. [Google Scholar] [CrossRef]
- Inci, I.; Bayazit, S.S.; Uslu, H. Investigation of Adsorption Equilibrium and Kinetics of Propionic Acid and Glyoxylic Acid from Aqueous Solution by Alumina. J. Chem. Eng. Data 2011, 56, 3301–3308. [Google Scholar] [CrossRef]
- Wang, B.; Bai, Z.; Jiang, H.; Prinsen, P.; Luque, R.; Zhao, S.; Xuan, J. Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: Characteristics, modeling and application. J. Hazard. Mater. 2019, 364, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Shalliker, R.A.; Douglas, G.K.; Rintoul, L.; Comino, P.R.; Kavanagh, P.E. The Measurement of Pore Size Distributions, Surface Areas, and Pore Volumes of Zirconia and Zirconiasilica Mixed Oxide Stationary Phases Using Size Exclusion Chromatography. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 1471–1488. [Google Scholar] [CrossRef]
- Gerçel, Özgül Biosorption of a Basic Dye from Aqueous Solutions byEuphorbia rigida. Sep. Sci. Technol. 2008, 43, 192–211. [CrossRef]
- Rostamian, R.; Heidarpour, M.; Mousavi, S.F.; Afyuni, M. Characterization and Sodium Sorption Capacity of Biochar and Activated Carbon Prepared from Rice Husk. J. Agric. Sci. Technol. 2015, 17, 1057–1069. [Google Scholar]
- Santiago, O.; Walsh, K.; Kele, B.; Gardner, E.; Chapman, J. Novel pre-treatment of zeolite materials for the removal of sodium ions: Potential materials for coal seam gas co-produced wastewater. SpringerPlus 2016, 5, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Shahawy, A.; Heikal, G. Regression, kinetics and isotherm models for biosorption of organic pollutants, suspended and dissolved solids by environmentally friendly and economical dried Phragmites australis. RSC Adv. 2018, 8, 40511–40528. [Google Scholar] [CrossRef] [Green Version]
- Ramana, D.K.V.; Desireddy, H.K.R.; Kumar, B.N.; Seshaiah, K.; Rao, G.P.C.; Lu, C. Adsorption of Pb(II) from Aqueous Solutions by Chemically Modified Zeolite supported Carbon Nanotubes: Equilibrium, Kinetic, and Thermodynamic Studies. Sep. Sci. Technol. 2013, 48, 403–412. [Google Scholar] [CrossRef]
- Mohamed, S.K.; Alazhary, A.M.; Al-Zaqri, N.; Alsalme, A.; Alharthi, F.A.; Hamdy, M.S. Cost-effective adsorbent from arabinogalactan and pectin of cactus pear peels: Kinetics and thermodynamics studies. Int. J. Biol. Macromol. 2020, 150, 941–947. [Google Scholar] [CrossRef]
- Kumar, A.A.; Al Hashimi, S.; Hilal, N. Investigation of Kinetics and Mechanism Involved in the Biosorption of Heavy Metals on Activated Sludge. Int. J. Green Energy 2008, 5, 313–321. [Google Scholar] [CrossRef]
- Balaji, S.; Kalaivani, T.; Shalini, M.; Gopalakrishnan, M.; Muhammad, M.A.R.; Rajasekaran, C. Sorption sites of microalgae possess metal binding ability towards Cr(VI) from tannery effluents—a kinetic and characterization study. Desalination Water Treat. 2015, 57, 14518–14529. [Google Scholar] [CrossRef]
- Pholosi, A.; Naidoo, E.B.; Ofomaja, A.E. Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. South Afr. J. Chem. Eng. 2020, 32, 39–55. [Google Scholar] [CrossRef]
- Zelmanov, G.; Semiat, R. Boron removal from water and its recovery using iron (Fe+3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination 2014, 333, 107–117. [Google Scholar] [CrossRef]
- Korenak, J.; Basu, S.; Balakrishnan, M.; Hélix-Nielsen, C.; Petrinic, I. Forward Osmosis in Wastewater Treatment Processes. Acta Chim. Slov. 2017, 64, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lin, S.; Qiao, J.; Kołodyńska, D.; Ju, Y.; Zhang, M.; Cai, M.; Deng, D.; Dionysiou, D.D. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr(VI) and Cu(II) from aqueous solution. Chem. Eng. J. 2018, 353, 225–236. [Google Scholar] [CrossRef]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E. (Eds.) Adsorption Processes for Water Treatment and Purification; Springer Science and Business Media LLC: Cham, Switzerland, 2017. [Google Scholar]
- Naushad, M.; Alqadami, A.A.; Alothman, Z.; Alsohaimi, I.H.; Algamdi, M.S.; Aldawsari, A.M. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 2019, 293, 111442. [Google Scholar] [CrossRef]
- Southichak, B.; Nakano, K.; Nomura, M.; Chiba, N.; Nishimura, O. Phragmites australis: A novel biosorbent for the removal of heavy metals from aqueous solution. Water Res. 2006, 40, 2295–2302. [Google Scholar] [CrossRef]
- Siemens, A.M.; Dynes, J.J.; Chang, W. Sodium adsorption by reusable zeolite adsorbents: Integrated adsorption cycles for salinised groundwater treatment. Environ. Technol. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ozdemir, O.; Hampton, M.A.; Nguyen, A.; Do, D.D. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water. Water Res. 2012, 46, 5247–5254. [Google Scholar] [CrossRef] [PubMed]
Color | Turbidity (NTU) | Conductivity (µs/cm) | ζ- Potential (mv) | BOD (ppm) | COD (ppm) | TDS (ppm) | Na (ppm) | Ca (ppm) | K (ppm) |
---|---|---|---|---|---|---|---|---|---|
Light grey | 25 ± 2 | 10,000 ± 5 | −25 ± 2 | Nil | Nil | 10,000 ± 3 | 8000 ± 2 | 500 ± 1.5 | 350 ± 0.5 |
Proximate Analysis (wt%) | Leaves | Stems | Fiber Analysis | Leaves | Stems |
---|---|---|---|---|---|
Ash | 4.50 ± 0.02 | 5.10 ± 0.03 | Cellulose | 39.50 ± 1.75 | 42.70 ± 1.83 |
Moisture | 3.70 ± 0.15 | 4.20 ± 0.11 | Lignin | 29.69 ± 3.15 | 27.27 ± 2.38 |
Volatile | 42.00 ± 0.23 | 36.10 ± 0.21 | Hemicellulose | 23.61 ± 0.52 | 23.73 ± 0.41 |
Fixed Carbon | 49.80 ± 0.36 | 54.60 ± 0.32 | Extractives | 7.20 ± 0.74 | 6.30 ± 0.89 |
Sample | SBET (m2/g) | DPCP (nm) | Vp0.95 (mL/g) |
---|---|---|---|
Fresh Adsorbent | 211.6 ± 0.17 | 4.2 ± 0.23 | 0.215 ± 0.25 |
Adsorbent | 188.5 ± 0.25 | 3.77 ± 0.34 | 0.187 ± 0.38 |
qe (mg/g) Experimental | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
qe (mg/g) | K1 × 103 (min−1) | R2 | qe (mg/g) | K2 × 103 (g·mg−1·min−1) | R2 | |
112.5 | 92.17 | 0.0187 | 0.97 | 119.8 | 0.000139 | 0.98 |
Langmuir Model | Plotting | qo (mg·g−1) | KL (L mg−1) | RL | R2 |
---|---|---|---|---|---|
189.7632 | 0.001245 | 0.07–0.29 | 0.959518 | ||
146.795 | 0.002228 | 0.04–0.18 | 0.884024 | ||
Freundlich model | Kf((mg/g)/(mg/L)n) | n | R2 | ||
1.728578 | 1.674918 | 0.98078 | |||
2.729497 | 1.90501 | 0.987677 | |||
Dubinin–Radushkevich model | qm | β | E (kJ·mol−1) | R2 | |
83.39953 | 0.000996 | −22.401 | 0.596461 | ||
77.95046 | 0.000712 | −26.4994 | 0.75261 |
The Pseudo-First-Order Model | Plotting | k1 min−1 | qe mg·g−1 | R2 |
---|---|---|---|---|
0.018782 | 92.7422 | 0.957782 | ||
0.018677 | 92.17512 | 0.972588 | ||
The Pseudo-Second-Order Model | Plotting | k2 g mg−1 min−1 | qe mg·g−1 | R2 |
0.000154 | 117.8253 | 0.942221 | ||
0.000139 | 119.771 | 0.974754 | ||
Intraparticle Diffusion Model | Plotting | k1 mg·g−1 min−0.5 | C mg·g−1 | R2 |
5.8358932 | 12.760076 | 0.8648146 | ||
5.835941 | 12.75952 | 0.864815 | ||
Pore Diffusion Model | Plotting | kp min−0.5 | Dii cm2·min−1 | R2 |
0.074761776 | 2.74 × 10−8 | 0.865 | ||
Film Diffusion Model | Plotting | kfd min−1 | Dii cm2·min−1 | R2 |
0.019093063 | 1.096E−07 | 0.9729 |
Sample | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Color | Turbidity (NTU) | Conductivity (µS/cm) | ϛ-Potential (mV) | TSS (ppm | TDS (ppm) | Na (ppm) | Ca (ppm) | K (ppm) | |
Raw water | Light grey | 25 | 10,000 | −25 | 10 | 10,000 | 8000 | 500 | 350 |
Treated water | Clear | 5 | 4000 | −5 | 4 | 2015 | 800 | 166 | 102 |
Cycle | 1 (Fresh Adsorbent) | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
R % | 79.85 | 78.77 | 78.14 | 77.76 | 77.2 | 77.1 |
Adsorbent | qmax (mg/g)/R.R | Isotherms | Kinetic | Ref. |
---|---|---|---|---|
Canadian (CMZ), Bear River (BRZ), and St. Cloud (SCZ) zeolites, the application of natural and pre-treated zeolites | qmax = Natural BRZ (14.3 ± 0.4 mg/g), Natural CMZ (5.8 ± 0.5 mg/g), and SCZ (5.6 ± 0.7 mg/g) | [24,37] | ||
amorphous carbon thin film (ACTF) | NA/35 | freundlich R2 = 0.99 n = 4.18 Kf = 4.055 | Pseudo (2) R2 = 0.99 qe = 105 k2 = 3.066 | [4] |
RICE HUSK CARBONACEOUS ADSORBENTS | NA/77 | Intraparticle R2 = 0.993 Ki = 3.84 C = −10.07 Pseudo (1) R2 = 0.995 Qe = 158 K1 = 0.0014 | [23] | |
Natural zeolite (acid activated zeolite at 30%wt solid ratio) in Coal Seam Gas (CSG) waters | NA/67.55 | [38] | ||
zeolite materials | Pseudo (2) R2 = 0.99 Qe = 38.28 k2 = 0.002 | [24] | ||
P. australis | 117.68/90 | Langmuir (nonlinear)R2 = 0.96 qo = 189.7632 KL = 0.001245 freundlich R2 = 0.99 n = 1.90501 Kf =2.729497 | Pseudo (2) R2 = 0.97 Qe = 119.771 k2 = 0.000139 film diffusion model R2 = 0.97 Dii cm2min−1 = 1.096 × 10−7 kfd = 0.019093063 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Shahawy, A.; Ahmed, I.A.; Wagdy, R.; Ragab, A.H.; Shalaby, N.H. Phragmites australis (Reed) as an Efficient, Eco-Friendly Adsorbent for Brackish Water Pre-Treatment in Reverse Osmosis: A Kinetic Study. Molecules 2021, 26, 6016. https://doi.org/10.3390/molecules26196016
El Shahawy A, Ahmed IA, Wagdy R, Ragab AH, Shalaby NH. Phragmites australis (Reed) as an Efficient, Eco-Friendly Adsorbent for Brackish Water Pre-Treatment in Reverse Osmosis: A Kinetic Study. Molecules. 2021; 26(19):6016. https://doi.org/10.3390/molecules26196016
Chicago/Turabian StyleEl Shahawy, Abeer, Inas A. Ahmed, Rabab Wagdy, Ahmed H. Ragab, and Nasser H. Shalaby. 2021. "Phragmites australis (Reed) as an Efficient, Eco-Friendly Adsorbent for Brackish Water Pre-Treatment in Reverse Osmosis: A Kinetic Study" Molecules 26, no. 19: 6016. https://doi.org/10.3390/molecules26196016
APA StyleEl Shahawy, A., Ahmed, I. A., Wagdy, R., Ragab, A. H., & Shalaby, N. H. (2021). Phragmites australis (Reed) as an Efficient, Eco-Friendly Adsorbent for Brackish Water Pre-Treatment in Reverse Osmosis: A Kinetic Study. Molecules, 26(19), 6016. https://doi.org/10.3390/molecules26196016