Controversy of Peptide Cyclization from Tripeptide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Fmoc-l-Prolyl-l-Glutamyl Dibenzyl Ester (3)
3.2. l-Prolyl-l-Glutamyl Dibenzyl Ester (4)
3.3. Boc-Glycyl-l-Prolyl-l-Glutamyl Dibenzyl Ester (5)
3.4. Boc-Glycyl-l-Prolyl-l-Glutamic Acid γ-Benzyl Ester (6)
3.5. Cyclo(Glycyl-l-Prolyl-l-Glutamyl(OBn))2 (7)
3.6. Cyclo(Glycyl-l-Prolyl-l-Glutamyl)2 (2)
3.7. Cyclo(Glycyl-l-Prolyl-d-Glutamyl) (10)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Friedrich, A.B.; Fischer, I.; Proksch, P.; Hacker, J.; Hentschel, U. Temporal variation of the microbial community associated with the mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 2001, 38, 105–113. [Google Scholar] [CrossRef]
- Proksch, P.; Edrada, R.A.; Ebel, R. Drugs from the seas–current status and microbiological implications. Appl. Microbiol. Biotechnol. 2002, 59, 125–134. [Google Scholar] [PubMed]
- Li, L.; Zhan, H.; Duan, P.; Liao, J.; Quan, J.; Hu, Y.; Chen, Z.; Zhu, J.; Liu, M.; Wu, Y.-D.; et al. Self-assembling nanotubes consisting of rigid cyclic γ–peptides. Adv. Funct. Mater. 2012, 22, 3051–3056. [Google Scholar] [CrossRef]
- Zainuddin, E.N.; Jansen, R.; Nimtz, M.; Wray, V.; Preisitsch, M.; Lalk, M.; Mundt, S.; Lyngbyazothrins, A.-D. antimicrobial cyclic undecapeptides from the cultured cyanobacterium Lyngbya sp. J. Nat. Prod. 2009, 72, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Yu, K.; Behrisch, H.W.; Soest, R.V.; Andersen, R.J. Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the caribbean marine Sponge Eurypon laughlini. J. Nat. Prod. 2009, 72, 1253–1257. [Google Scholar] [CrossRef]
- Ford, P.W.; Gustafson, K.R.; McKee, T.C.; Shigematsu, N.; Maurizi, L.K.; Pannell, L.K.; Williams, D.E.; Silva, E.D.; Lassota, P.; Allen, T.M.; et al. HIV-inhibitory and cytotoxic depsipeptides from the Sponges Theonella mirabilis and Theonella swinhoei Collected in Papua New Guinea. J. Am. Chem. Soc. 1999, 121, 5899–5909. [Google Scholar] [CrossRef]
- Capon, R.J.; Ford, J.; Lacey, E.; Gill, J.H.; Heiland, K.; Friedel, T. Phoriospongin A and B: Two new nematocidal depsipeptides from the australian marine sponges Phoriospongia sp. and Callyspongiabilamell- ata. J. Nat. Prod. 2002, 65, 358–363. [Google Scholar] [CrossRef]
- Mitova, M.; Popov, S.; De Rosa, S. Cyclic peptides from a Ruegeria strain of bacteria associated with the sponge Suberites domuncula. J. Nat. Prod. 2004, 67, 1178–1181. [Google Scholar] [CrossRef]
- Aracil, J.M.; Badre, A.; Fadli, M.; Jeanty, G.; Banaigs, B.; Francisco, C.; Lafargue, F.; Heitz, A.; Aumelas, A. Nouveaux cyclotétrapeptides isolés de l’ascidie cystodytes delle chiajei. Tetrahedron Lett. 1991, 32, 2609–2612. [Google Scholar] [CrossRef]
- Kawagishi, H.; Somoto, A.; Kuranari, J.; Kimura, A.; Chiba, S. A novel cyclotetrapeptide produced by Lactobacillus helveticus as a tyrosinase inhibitor. Tetrahedron Lett. 1993, 34, 3439–3440. [Google Scholar] [CrossRef]
- Yang, L.; Tan, R.X.; Wang, Q.; Huang, W.Y.; Yin, Y.X. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett. 2002, 43, 6545–6548. [Google Scholar] [CrossRef]
- Shin, J.; Seo, Y.; Lee, H.S.; Rho, J.R.; Mo, S.J. A new cyclic peptide from a marine-derived bacterium of the genus Nocardiopsis. J. Nat. Prod. 2003, 66, 883–884. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zou, B.; Pei, D.; Ma, D. Total synthesis of cyclic tetrapeptide FR235222, a potent immunosuppressant that inhibits mammalian histone deacetylases. Org. Lett. 2005, 7, 2775–2777. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.S.; Ross, N.C.; McLaughlin, J.P.; Aldrich, J.V. Synthesis of Cyclic Tetrapeptide CJ 15,208: A Novel Kappa Opioid Receptor Antagonist. Adv. Exp. Med. Biol. 2009, 611, 269. [Google Scholar] [PubMed]
- Davies, J.S. The cyclization of peptides and depsipeptides. J. Peptide Sci. 2003, 9, 471–501. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Shioiri, T. Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem. Rev. 2005, 105, 4441–4482. [Google Scholar] [CrossRef]
- Schmidt, U.; Langner, J. Cyclotetrapeptides and cyclopentapeptides: Occurrence and synthesis. J. Peptide Res. 1997, 49, 67–73. [Google Scholar] [CrossRef]
- Tajima, H.; Wakimoto, T.; Takada, K.; Ise, Y.; Abe, I. Revised structure of cyclolithistide A, a cyclic depsipeptide from the marine sponge Discodermia japonica. J. Nat. Prod. 2014, 77, 154–158. [Google Scholar] [CrossRef]
- Usami, Y. Recent synthetic studies leading to structural revisions of marine natural products. Mar. Drugs 2009, 7, 314–330. [Google Scholar] [CrossRef]
- Chakraborty, S.; Tyagi, P.; Tai, D.F.; Lee, G.H.; Peng, S.M. A lead (II) 3D coordination polymer based on a marine cyclic peptide motif. Molecules 2013, 18, 4972–4985. [Google Scholar] [CrossRef]
- Chakraborty, S.; Tai, D.F.; Lin, Y.C.; Chiou, T.W. Antitumor and antimicrobial activity of some cyclic tetrapeptides and tripeptides derived from marine bacteria. Mar. Drugs 2015, 13, 3029–3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Lin, S.H.; Shiuan, D.; Tai, D.F. Syntheses of some α-cyclic tripeptides as potential inhibitors for HMG-CoA reductase. Amino Acids 2015, 47, 1495–1505. [Google Scholar] [CrossRef] [PubMed]
- New, R.; Bogus, M.; Bansal, G.S.; Dryjska, M.; Zajkowska, K.; Burnet, M. Efficacy of bioactive cyclic peptides in Rheumatoid Arthritis: Translation from in vitro to in vivo models. Molecules 2017, 22, 1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sara, V.R.; Carlsson-Skwirut, C.; Bergman, T.; Jornvall, H.; Roberts, P.J.; Crawford, M.; Hakansson, L.N.; Civalero, I.; Nordberg, A. Identification of Gly-Pro-Glu (GPE), the aminoterminal tripeptide of insulin-like growth factor 1 which is truncated in brain, as a novel neuroactive peptide. Biochem. Biophys. Res. Commun. 1989, 165, 766–771. [Google Scholar] [CrossRef]
- Gorecki, D.C.; Beresewicz, M.; Zabłocka, B. Neuroprotective effects of short peptides derived from the Insulin-like growth factor 1. Neurochemistry International. Neurochem. Int. 2007, 51, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Gluckman, P.D. IGF-1 derived small neuropeptides and analogues: A novel strategy for the development of pharmaceuticals for neurological conditions. Br. J. Pharmacol. 2009, 157, 881–898. [Google Scholar] [CrossRef] [Green Version]
- Cacciatore, I.; Cornacchia, C.; Baldassarre, L.; Fornasari, E.; Mollica, A.; Stefanucci, A.; Pinnen, F. GPE and GPE analogues as promising neuroprotective agents. Mini Rev. Med. Chem. 2012, 1, 13–23. [Google Scholar] [CrossRef]
- Sizonenko, S.V.; Sirimanne, E.S.; Williams, C.E.; Gluckman, P.D. Neuroprotective effects of the N-terminal tripeptide of IGF-1, glycine-proline-glutamate, in the immature rat brain after hypoxic-ischemic injury. Brain Res. 2001, 22, 42–50. [Google Scholar]
- White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 2011, 3, 509–524. [Google Scholar] [CrossRef]
- Kartha, G.; Ambady, G.; Shankar, P.V. Structure and conformation of a cyclic tripeptide. Nature 1974, 247, 204–205. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Ogura, M.; Nakajo, S.; Yamada, T. Synthesis of monoesters of N-protected α-aminodicarboxylic acids via the microbial protease-catalyzed regioselective hydrolysis of their diesters. Biotechnol. Tech. 1998, 12, 431–434. [Google Scholar] [CrossRef]
- Mendoza-Sanchez, R.; Corless, V.B.; Nguyen, Q.N.; Bergeron-Brlek, M.; Frost, J.; Adachi, S.; Tantillo, D.J.; Yudin, A.K. Cyclols revisited: Facile synthesis of medium-sized cyclic peptides. Chem. Eur. J. 2017, 23, 13319–13322. [Google Scholar] [PubMed]
- Kessler, H.; Bermel, W.; Krack, G.; Bats, J.W.; Fuess, H.; Fuess, H.; Hull, W.E. Peptidkonformationen, 27. cyclo-[l-Pro-(Bzl)Gly-d-Pro]. Synthese und Konformation im Kristall und in Lösung. Chem. Ber. 1983, 116, 3164–3181. [Google Scholar]
- Kessler, H.; Schuck, R.; Siegmeier, R.; Bats, J.W.; Fuess, H.; Forster, H. Peptidkonformationen, 22. Die Konformation von cyclo-[Pro2-(NB)Gly] im Kristall und in Lösung durch Röntgenstrukturanalyse und ein- und zweidimensionale NMR-Spektroskopie. Liebigs Ann. Chem. 1983, 2, 231–247. [Google Scholar] [CrossRef]
- Kessler, H.; Kondor, P.; Krack, G.; Kramer, P. Conformational equilibrium in the backbone of cyclic tripeptides. J. Am. Chem. Soc. 1978, 100, 2548–2550. [Google Scholar]
- Venkatachalam, C.M. Stereochemical studies of cyclic peptides. II. molecular structure of cyclotriprolyl. Biochim. Biophys. Acta 1968, 168, 397–401. [Google Scholar] [CrossRef]
- Tosso, R.D.; Zamora, M.A.; Suvire, F.D.; Enriz, R.D. Ab Initio and DFT study of the conformational energy hypersurface of cyclic Gly-Gly-Gly. J. Phys. Chem. A 2009, 113, 10818–10825. [Google Scholar] [CrossRef]
- Kartha, G.; Varughese, K.I.; Aimoto, S. Conformation of cyclo(-l-Pro-Gly-)3 and its Ca2+ and Mg2+ complexes. Proc. Natl. Acad. Sci. USA 1982, 79, 4519–4522. [Google Scholar]
- Dahiya, R.; Gautam, H. Total synthesis and antimicrobial activity of a natural cyclohexapeptide of marine origin. Mar. Drugs 2010, 8, 2384–2394. [Google Scholar]
- Vera, B.; Vicente, J.; Rodriguez, A.D. Isolation and structural elucidation of euryjanicins B−D, proline-containing cycloheptapeptides from the Caribbean marine sponge Prosuberites laughlini. J. Nat. Prod. 2009, 72, 1555–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitova, M.I.; Stuart, B.G.; Cao, G.H.; Blunt, J.W.; Cole, A.L.J.; Munro, M.H.; Chrysosporide, G.A. Cyclic pentapeptide from a New Zealand sample of the fungus Sepedonium chrysospermum. J. Nat. Prod. 2006, 69, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.W.; Chang, F.R.; Wu, C.C.; Wu, K.Y.; Li, C.M.; Chen, S.L.; Wu, Y.C. New cytotoxic cyclic peptides and dianthramide from Dianthus superbus. J. Nat. Prod. 2004, 67, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.L.; Hodges, R.S. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S. Biopolymers 2003, 71, 28–48. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Nigro, E.; De Biasi, M.G.; Daniele, A.; Morelli, G.; Galdiero, S.; Scudiero, O. Cyclic peptides as novel therapeutic microbicides: Engineering of human defensin mimetics. Molecules 2017, 22, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dartois, V.; Sanchez-Quesada, J.; Cabezas, E.; Chi, E.; Dubbelde, C.; Dunn, C.; Granja, J.; Gritzen, C.; Weinberger, D.; Reza Ghadiri, M.; et al. Systemic antibacterial activity of novel synthetic cyclic peptides. Antimicrob. Agents Chemother. 2005, 49, 3302–3310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheinpflug, K.; Krylova, O.; Nikolenko, H.; Thurm, C.; Dathe, M. Evidence for a novel mechanism of antimicrobial action of a cyclic R-, W-rich hexapeptide. PLoS ONE 2015, 10, e0125056. [Google Scholar] [CrossRef]
- Wiese, J.; Abdelmohsen, U.R.; Motiei, A.; Humeida, U.H.; Imhoff, J.F. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorg. Med. Chem. Lett. 2018, 28, 558–561. [Google Scholar] [CrossRef]
Cyclic Tripeptides | Solvents | 13C Chemical Shift Values of Carbonyls (ppm) | |
---|---|---|---|
Pro- | Gly- | ||
Cyclo(l-Pro-BnG-d-Pro) [34] | C6D6 | 171.0 166.0 | 165.0 |
Cyclo(l-Pro-l-Pro-BnG) [35] | CDCl3 | 169.6 168.8 | 165.2 |
Cyclo(l-Pro-l-Pro-d-Pro) [35] | CDCl3 | 169.0 168.0 166.0 | |
Cyclo(l-Pro-l-Pro-l-Pro) [36] | CDCl3 | 167.6 | |
Cyclo (BnG-BnG-BnG) [36] | CDCl3 | 166.0 |
Amino Unit | Reported Data | Synthesized Product |
---|---|---|
Cyclo(GPE) 1 [8] | Cyclo(GPE)2 2 | |
Glycine (carbonyl) | 169.8 | 169.6 |
α- | 42.2 | 43.7 |
Proline (carbonyl) | 174.8 | 173.8 |
α- | 60.0 | 63.5 |
β- | 29.5 | 35.4 |
γ- | 24.9 | 26.1 |
δ- | 47.6 | 47.7 |
Glutamate (carbonyl) | 176.2 | 175.0 |
Side Chain (carbonyl) | 183.1 | 181.6 |
α- | 57.5 | 54.5 |
β- | 25.8 | 29.0 |
γ- | 29.5 | 30.7 |
Amino Unit | Reported Data | Synthesized Product | |
---|---|---|---|
Cyclo(GPE) 1 [8] | Cyclo(GPE)2 2 | ||
Glycine | α- | 4.20 d (17.3) | 4.33 d (17.3) |
4.13 d (17.3) | 4.20 d (17.3) | ||
Proline | α- | 4.49 dd (8.6; 3.5) | 4.51 dd (8.7; 6.1) |
β- | 2.34 m, 2.08 m | 2.41 m, 2.13 m | |
γ- | 2.08 m | 2.13 m | |
δ- | 3.67 m | 3.96 m | |
Glutamate | α- | 4.42 dd (9.1; 4.9) | 4.64 dd (10.3; 4.1) |
β- | 2.58 m, 2.14 m | 2.48 m, 2.13 m | |
γ- | 2.47 m | 2.48 m |
Amino Unit | Reported Data | Synthesized Product |
---|---|---|
Cyclo(GPE) 1 | Cyclo(GPDE) 10 | |
Glycine | ||
α- | 4.20 d (17.3) | 4.24 dd (17.4, 7.6) |
4.13 d (17.3) | 4.10 dd (17.1, 3.3) | |
Proline | ||
α- | 4.49 dd (8.6; 3.5) | 4.17 t (4.6) |
β- | 2.34 m, 2.08 m | 2.67 m, 2.12 m |
γ- | 2.08 m | 2.12 m |
δ- | 3.67 m | 3.47 m, 3.70 m |
Glutamate | ||
α- | 4.42 dd (9.1; 4.9) | 3.79 t (6.4) |
β- | 2.58 m, 2.14 m | 2.22 m |
γ- | 2.47 m | 2.37 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Chakraborty, S.; Wong, C.-W.; Tai, D.-F. Controversy of Peptide Cyclization from Tripeptide. Molecules 2021, 26, 389. https://doi.org/10.3390/molecules26020389
Lin C-Y, Chakraborty S, Wong C-W, Tai D-F. Controversy of Peptide Cyclization from Tripeptide. Molecules. 2021; 26(2):389. https://doi.org/10.3390/molecules26020389
Chicago/Turabian StyleLin, Chung-Yin, Subrata Chakraborty, Chia-Wei Wong, and Dar-Fu Tai. 2021. "Controversy of Peptide Cyclization from Tripeptide" Molecules 26, no. 2: 389. https://doi.org/10.3390/molecules26020389
APA StyleLin, C.-Y., Chakraborty, S., Wong, C.-W., & Tai, D.-F. (2021). Controversy of Peptide Cyclization from Tripeptide. Molecules, 26(2), 389. https://doi.org/10.3390/molecules26020389