Development and Validation of a Bioanalytical LC-MS/MS Method for Simultaneous Determination of Sirolimus in Porcine Whole Blood and Lung Tissue and Pharmacokinetic Application with Coronary Stents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Method Validation
2.2.1. Selectivity
2.2.2. Linearity
2.2.3. Sensitivity
2.2.4. Accuracy and Precision
2.2.5. Extraction Recovery and Matrix Effects
2.2.6. Stability
2.2.7. Carry-Over
2.3. Applicability to Pharmacokinetic and Bio-Distribution Studies
3. Materials and Methods
3.1. Reagents and Materials
3.2. Instrumentation and Analytical Conditions
3.3. Samples Preparation
3.3.1. Tissue Homogenization
3.3.2. Preparation of Standards and Quality Control Samples
3.4. Assay Validation
3.4.1. Selectivity
3.4.2. Linearity
3.4.3. Sensitivity
3.4.4. Accuracy and Precision
3.4.5. Extraction Recovery and Matrix Effect
3.4.6. Stability
3.4.7. Carry-Over
3.5. Application to Pharmacokinetic and Bio-Distribution Studies in the Lung
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Vezina, C.; Kudelski, A.; Sehgal, S. Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 1975, 28, 721–726. [Google Scholar] [CrossRef]
- Sehgal, S.; Baker, H.; Vezina, C. Rapamycin (AY-22, 989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. 1975, 28, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, S.N. Rapamune (Sirolimus, Rapamycin): An Overview and Mechanism of Action. Ther. Drug Monit. 1995, 17, 660–665. [Google Scholar] [CrossRef]
- Sehgal, S.N. Sirolimus: Its discovery, biological properties, and mechanism of action. Transplant. Proc. 2003, 35, S7–S14. [Google Scholar] [CrossRef]
- Zimmerman, J.J.; Kahan, B.D. Pharmacokinetics of Sirolimus in Stable Renal Transplant Patients after Multiple Oral Dose Administration. J. Clin. Pharmacol. 1997, 37, 405–415. [Google Scholar] [CrossRef]
- Yatscoff, R.; LeGatt, D.; Keenan, R.; Chackowsky, P. Blood Distribution of Rapamycin. Transplantation 1993, 56, 1202–1205. [Google Scholar] [CrossRef]
- Jeon, H.J.; Lee, H.-E.; Yang, J. Safety and efficacy of Rapamune® (Sirolimus) in kidney transplant recipients: Results of a prospective post-marketing surveillance study in Korea. BMC Nephrol. 2018, 19, 201. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.S.; Vautier, M.; Allenbach, Y.; Zahr, N.; Benveniste, O.; Funck-Brentano, C.; Salem, J.-E. Sirolimus and mTOR Inhibitors: A Review of Side Effects and Specific Management in Solid Organ Transplantation. Drug Saf. 2019, 42, 813–825. [Google Scholar] [CrossRef]
- Abizaid, A. Sirolimus-eluting coronary stents: A review. Vasc. Health Risk Manag. 2007, 3, 191–201. [Google Scholar] [CrossRef]
- Yoon, H.-Y.; Hwang, J.J.; Kim, D.S.; Song, J.W. Efficacy and safety of low-dose Sirolimus in Lymphangioleiomyomatosis. Orphanet J. Rare Dis. 2018, 13, 204. [Google Scholar] [CrossRef]
- McCormack, F.X.; Inoue, Y.; Moss, J.; Singer, L.G.; Strange, C.; Nakata, K.; Barker, A.F.; Chapman, J.T.; Brantly, M.L.; Stocks, J.M.; et al. Efficacy and Safety of Sirolimus in Lymphangioleiomyomatosis. N. Engl. J. Med. 2011, 364, 1595–1606. [Google Scholar] [CrossRef]
- Xu, K.-F.; Tian, X.; Ryu, J.H. Recent advances in the management of lymphangioleiomyomatosis. F1000Research 2018, 7, 758. [Google Scholar] [CrossRef]
- Lai, Z.-W.; Kelly, R.; Winans, T.; Marchena, I.; Shadakshari, A.; Yu, J.; Dawood, M.; Garcia, R.; Tily, H.; Francis, L.; et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: A single-arm, open-label, phase 1/2 trial. Lancet 2018, 391, 1186–1196. [Google Scholar] [CrossRef]
- Shoji, M.K.; Shishido, S.; Freitag, S.K. The Use of Sirolimus for Treatment of Orbital Lymphatic Malformations: A Systematic Review. Ophthalmic Plast. Reconstr. Surg. 2020, 36, 215–221. [Google Scholar] [CrossRef]
- Dantal, J.; Morelon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; Marmol, V.d.; Chatelet, V.; Dompmartin, A.; et al. Sirolimus for Secondary Prevention of Skin Cancer in Kidney Transplant Recipients: 5-Year Results. J. Clin. Oncol. 2018, 36, 2612–2620. [Google Scholar] [CrossRef] [Green Version]
- Komiya, T.; Memmott, R.M.; Blumenthal, G.M.; Bernstein, W.; Ballas, M.S.; De Chowdhury, R.; Chun, G.; Peer, C.J.; Figg, W.D.; Liewehr, D.J.; et al. A phase I/II study of pemetrexed with sirolimus in advanced, previously treated non-small cell lung cancer. Transl. Lung Cancer Res. 2019, 8, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Mano, N.; Sato, M.; Nozawa, M.; Matsumoto, Y.; Mori, M.; Yamaguchi, H.; Goto, J.; Shimada, M. An accurate quantitative LC/ESI–MS/MS method for sirolimus in human whole blood. J. Chromatogr. B 2011, 879, 987–992. [Google Scholar] [CrossRef]
- Vogeser, M.; Fleischer, C.; Meiser, B.; Groetzner, J.; Spöhrer, U.; Seidel, D. Quantification of Sirolimus by Liquid Chromatography-Tandem Mass Spectrometry Using On-Line Solid-Phase Extraction. Clin. Chem. Lab. Med. 2002, 40, 40. [Google Scholar] [CrossRef] [Green Version]
- Poquette, M.A.; Lensmeyer, G.L.; Doran, T.C. Effective Use of Liquid Chromatography-Mass Spectrometry (LC/MS) in the Routine Clinical Laboratory for Monitoring Sirolimus, Tacrolimus, and Cyclosporine. Ther. Drug Monit. 2005, 27, 144–150. [Google Scholar] [CrossRef]
- Yuan, C.; Payto, D.; Gabler, J.; Wang, S. A simple and robust LC–MS/MS method for measuring sirolimus and everolimus in whole blood. Bioanalysis 2014, 6, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, B.C.; Noll, B.D.; Morris, R.G. Comparison of blood sirolimus, tacrolimus and everolimus concentrations measured by LC-MS/MS, HPLC-UV and immunoassay methods. Clin. Biochem. 2011, 44, 231–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigo-Bonnin, R.; Arbiol-Roca, A.; de Aledo-Castillo, J.M.G.; Alía, P. Simultaneous Measurement of Cyclosporine A, Everolimus, Sirolimus and Tacrolimus Concentrations in Human Blood by UPLC–MS/MS. Chromatographia 2015, 78, 1459–1474. [Google Scholar] [CrossRef]
- Seger, C.; Tentschert, K.; Stöggl, W.; Griesmacher, A.; Ramsay, S.L. A rapid HPLC-MS/MS method for the simultaneous quantification of cyclosporine A, tacrolimus, sirolimus and everolimus in human blood samples. Nat. Protoc. 2009, 4, 526–534. [Google Scholar] [CrossRef]
- Koster, R.A.; Dijkers, E.C.F.; Uges, D.R.A. Robust, High-Throughput LC-MS/MS Method for Therapeutic Drug Monitoring of Cyclosporine, Tacrolimus, Everolimus, and Sirolimus in Whole Blood. Ther. Drug Monit. 2009, 31, 116–125. [Google Scholar] [CrossRef]
- Bouquié, R.; Deslandes, G.; Renaud, C.; Dailly, E.; Jolliet, P. Validation and application of a fast semi-automated whole blood extraction for LC-MS/MS simultaneous quantification of cyclosporine A, tacrolimus, sirolimus and everolimus—Application to high throughput routine therapeutic drug monitoring. Anal. Methods 2013, 5, 5079–5088. [Google Scholar] [CrossRef]
- Morgan, P.E.; Brown, N.W.; Tredger, J.M. A Direct Method for the Measurement of Everolimus and Sirolimus in Whole Blood by LC–MS/MS Using an Isotopic Everolimus Internal Standard. Ther. Drug Monit. 2014, 36, 358–365. [Google Scholar] [CrossRef]
- Rao, R.N.; Maurya, P.K.; Ramesh, M.; Srinivas, R.; Agwane, S.B. Development of a validated high-throughput LC-ESI-MS method for determination of sirolimus on dried blood spots. Biomed. Chromatogr. 2010, 24, 1356–1364. [Google Scholar] [CrossRef]
- Koster, R.A.; Alffenaar, J.-W.C.; Greijdanus, B.; Uges, D.R.A. Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta 2013, 115, 47–54. [Google Scholar] [CrossRef]
- Lee, J.-H.; Cha, K.-H.; Cho, W.; Park, J.; Park, H.J.; Cho, Y.; Hwang, S.-J. Quantitative determination of sirolimus in dog blood using liquid chromatography–Tandem mass spectrometry, and its applications to pharmacokinetic studies. J. Pharm. Biomed. Anal. 2010, 53, 1042–1047. [Google Scholar] [CrossRef]
- Wang, L.; Tang, Z.; Shi, M.; Wang, Q. Pharmacokinetic study of sirolimus ophthalmic formulations by consecutive sampling and liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2019, 164, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Earla, R.; Cholkar, K.; Gunda, S.; Earla, R.L.; Mitra, A.K. Bioanalytical method validation of rapamycin in ocular matrix by QTRAP LC–MS/MS: Application to rabbit anterior tissue distribution by topical administration of rapamycin nanomicellar formulation. J. Chromatogr. B 2012, 908, 76–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakata, H.; Hoshino, Y.; Takeda, N.; Tatematsu, A. Ammonium adduct ion in ammonia chemical ionization mass spectrometry: 2—Mechanism of elimination of neutrals from the ammonium adduct ion. J. Mass Spectrom. 1985, 20, 467–470. [Google Scholar] [CrossRef]
- Korecka, M.; Shaw, L.M. Quantitation of Sirolimus Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS-MS). In Clinical Applications of Mass Spectrometry: Methods and Protocols; Garg, U., Hammett-Stabler, C.A., Eds.; Humana Press: Totowa, NJ, USA, 2010; pp. 469–477. [Google Scholar] [CrossRef]
- US-FDA. FDA Guidance for Industry: Bioanalytical Method Validation; Center for Drug Evaluation and Research: Rockville, MD, USA, 2018. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm070107.Pdf (accessed on 6 August 2019).
- Sperling, C.; Waliszewski, M.W.; Kherad, B.; Krackhardt, F. Comparative preclinical evaluation of a polymer-free sirolimus-eluting stent in porcine coronary arteries. Ther. Adv. Cardiovasc. Dis. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, X.; Deng, W.; Wang, X.; Wang, S.-G.; Ge, J.; Toft, E. Drug release kinetics from a drug-eluting stent with asymmetrical coat. Front. Biosci. 2017, 22, 407–415. [Google Scholar]
- Duong, V.-A.; Nguyen, T.-T.-L.; Maeng, H.-J.; Chi, S.-C. Preparation of Ondansetron Hydrochloride-Loaded Nanostructured Lipid Carriers Using Solvent Injection Method for Enhancement of Pharmacokinetic Properties. Pharm. Res. 2019, 36, 138. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-T.-L.; Duong, V.-A.; Maeng, H.-J.; Chi, S.-C. Development of an oil suspension containing granisetron hydrochloride as a sustained-release parenteral formulation for enhancement of pharmacokinetic properties. J. Drug Deliv. Sci. Technol. 2019, 51, 643–650. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Nguyen, T.-T.-L.; Duong, V.-A.; Chun, K.-H.; Maeng, H.-J. Determination of KD025 (SLx-2119), a Selective ROCK2 Inhibitor, in Rat Plasma by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and its Pharmacokinetic Application. Molecules 2020, 25, 1369. [Google Scholar] [CrossRef] [Green Version]
Source Parameters | Sirolimus | IS |
---|---|---|
Declustering potential (V) | 36 | 86 |
Entrance potential (V) | 10 | 10 |
Collision energy (V) | 23 | 29 |
Collision cell exit potential (V) | 24 | 32 |
Collision gas (°C) | 9 | 9 |
Ionspray voltage (V) | 5500 | 5500 |
Temperature of ion source (°C) | 500 | 500 |
Nebulizing gas (GS1) (°C) | 50 | 50 |
Drying gas (GS2) (°C) | 50 | 50 |
Curtain gas (°C) | 50 | 50 |
Nominal Conc. (ng/mL) | Whole Blood | Lung Tissue | ||||
---|---|---|---|---|---|---|
Calc. Conc. | Accuracy (%) | Precision (CV, %) | Calc. Conc. | Accuracy (%) | Precision (CV, %) | |
Intra-day (n = 5) | ||||||
0.5 | 0.48 | 95.25 | 14.14 | 0.55 | 110.79 | 1.85 |
1.5 | 1.41 | 94.20 | 8.65 | 1.46 | 97.34 | 2.93 |
15 | 14.39 | 95.92 | 5.14 | 15.25 | 101.69 | 2.68 |
40 | 38.23 | 95.56 | 4.04 | 39.62 | 99.06 | 2.17 |
Inter-day (n = 25) | ||||||
0.5 | 0.47 | 94.83 | 10.48 | 0.46 | 92.97 | 10.06 |
1.5 | 1.45 | 96.46 | 7.92 | 1.47 | 97.85 | 5.91 |
15 | 15.20 | 101.30 | 8.07 | 15.44 | 102.91 | 5.81 |
40 | 39.58 | 98.95 | 8.81 | 40.88 | 102.21 | 5.46 |
Concentration (ng/mL) | Extraction Recovery (%) | |
---|---|---|
Whole Blood | Lung Tissue | |
Sirolimus | ||
1.5 | 59.73 ± 3.81 | 81.54 ± 6.32 |
15 | 56.80 ± 2.36 | 80.00 ± 1.47 |
40 | 63.33 ± 4.33 | 82.91 ± 4.76 |
Ascomycin (IS) | ||
1 | 102.43 ± 2.90 | 83.00 ± 2.63 |
Conc. (ng/mL) | Whole Blood | Lung Tissue | ||||
---|---|---|---|---|---|---|
Absolute Matrix Effect (%) 1 | Precision (CV, %) Set 1 | Precision (CV, %) Set 2 | Absolute Matrix Effect (%) 1 | Precision (CV, %) Set 1 | Precision (CV, %)Set 2 | |
Sirolimus | ||||||
1.5 | 107.12 | 5.32 | 4.04 | 107.07 | 3.82 | 3.19 |
15 | 104.84 | 1.48 | 4.94 | 107.76 | 1.15 | 3.27 |
40 | 107.53 | 8.43 | 9.10 | 107.87 | 3.20 | 8.04 |
Ascomycin (IS) | ||||||
1 | 93.28 | 0.77 | 0.81 | 106.01 | 6.91 | 14.03 |
Storage Condition | Concentration (ng/mL) | Stability (%) | |
---|---|---|---|
Whole Blood | Lung Tissue | ||
Autosampler (24 h, 4 °C) | 1.5 | 104.73 ± 5.44 | 100.12 ± 0.78 |
15 | 95.63 ± 2.97 | 99.27 ± 1.67 | |
40 | 107.46 ± 12.39 | 101.13 ± 1.21 | |
Freeze–thaw (3 cycles) | 1.5 | 87.39 ± 1.36 | 105.75 ± 3.77 |
15 | 85.41 ± 2.05 | 106.14 ± 4.82 | |
40 | 92.92 ± 5.62 | 106.51 ± 3.87 | |
Short-term (4 h, 25 °C) | 1.5 | 91.19 ± 0.52 | 96.67 ± 1.51 |
15 | 93.96 ± 6.27 | 93.22 ± 4.17 | |
40 | 98.48 ± 2.35 | 92.44 ± 0.54 | |
Long-term (3 months, −80 °C) | 1.5 | 100.61 ± 4.31 | 106.24 ± 1.78 |
15 | 94.62 ± 3.41 | 101.01 ± 5.05 | |
40 | 98.08 ± 4.94 | 101.92 ± 5.51 |
PK Parameters | Sirolimus |
---|---|
Cmax (ng/mL) | 7.79 ± 2.79 |
Tmax (h) | 2.26 ± 1.33 |
AUC0–48 h (ng/mL·h) 1 | 156.9 |
AUCinf (ng/mL·h) 1 | 164.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-T.-L.; Duong, V.-A.; Vo, D.-K.; Jo, J.; Maeng, H.-J. Development and Validation of a Bioanalytical LC-MS/MS Method for Simultaneous Determination of Sirolimus in Porcine Whole Blood and Lung Tissue and Pharmacokinetic Application with Coronary Stents. Molecules 2021, 26, 425. https://doi.org/10.3390/molecules26020425
Nguyen T-T-L, Duong V-A, Vo D-K, Jo J, Maeng H-J. Development and Validation of a Bioanalytical LC-MS/MS Method for Simultaneous Determination of Sirolimus in Porcine Whole Blood and Lung Tissue and Pharmacokinetic Application with Coronary Stents. Molecules. 2021; 26(2):425. https://doi.org/10.3390/molecules26020425
Chicago/Turabian StyleNguyen, Thi-Thao-Linh, Van-An Duong, Dang-Khoa Vo, Jeongae Jo, and Han-Joo Maeng. 2021. "Development and Validation of a Bioanalytical LC-MS/MS Method for Simultaneous Determination of Sirolimus in Porcine Whole Blood and Lung Tissue and Pharmacokinetic Application with Coronary Stents" Molecules 26, no. 2: 425. https://doi.org/10.3390/molecules26020425
APA StyleNguyen, T. -T. -L., Duong, V. -A., Vo, D. -K., Jo, J., & Maeng, H. -J. (2021). Development and Validation of a Bioanalytical LC-MS/MS Method for Simultaneous Determination of Sirolimus in Porcine Whole Blood and Lung Tissue and Pharmacokinetic Application with Coronary Stents. Molecules, 26(2), 425. https://doi.org/10.3390/molecules26020425